Quasidualizing Modules and the Auslander and Bass Classes

Bethany Kubik

United States Military Academy

16 October 2011

Let (R, \mathfrak{m}, k) be a local noetherian ring with completion \widehat{R} and let $E = E_R(k)$ be the injective hull of the residue field.

Let (R, \mathfrak{m}, k) be a local noetherian ring with completion \widehat{R} and let $E = E_R(k)$ be the injective hull of the residue field.

Definition

Given an *R*-module *M*, the Matlis dual is $M^{\vee} = \operatorname{Hom}_{R}(M, E)$.

Let (R, \mathfrak{m}, k) be a local noetherian ring with completion \widehat{R} and let $E = E_R(k)$ be the injective hull of the residue field.

Definition

Given an R-module M, the Matlis dual is $M^{\vee} = \operatorname{Hom}_{R}(M, E)$. We say that M is Matlis reflexive if the natural biduality map $\delta: M \to M^{\vee\vee}$ is an isomorphism.

Let (R, \mathfrak{m}, k) be a local noetherian ring with completion \widehat{R} and let $E = E_R(k)$ be the injective hull of the residue field.

Definition

Given an R-module M, the Matlis dual is $M^{\vee} = \operatorname{Hom}_{R}(M, E)$. We say that M is Matlis reflexive if the natural biduality map $\delta: M \to M^{\vee\vee}$ is an isomorphism.

Fact

Assume that R is complete. If A is an artinian R-module, then A^{\vee} is noetherian. If N is a noetherian R-module, then N^{\vee} is artinian. The modules A and N are Matlis reflexive.

Definition

An *R*-module *C* is semidualizing if it satisfies the following:

Definition

An *R*-module *C* is semidualizing if it satisfies the following:

1. *C* is noetherian, i.e. finitely generated;

Definition

An *R*-module *C* is semidualizing if it satisfies the following:

- 1. C is noetherian, i.e. finitely generated;
- 2. $R \xrightarrow{\chi_C^R} \operatorname{Hom}_R(C,C)$ is an isomorphism; and

Definition

An *R*-module *C* is semidualizing if it satisfies the following:

- 1. C is noetherian, i.e. finitely generated;
- 2. $R \xrightarrow{\chi_C^R} \operatorname{Hom}_R(C,C)$ is an isomorphism; and
- 3. $\operatorname{Ext}_{R}^{i}(C,C) = 0$ for all i > 0.

Definition

An *R*-module *C* is semidualizing if it satisfies the following:

- 1. C is noetherian, i.e. finitely generated;
- 2. $R \xrightarrow{\chi_C^R} \operatorname{Hom}_R(C,C)$ is an isomorphism; and
- 3. $\operatorname{Ext}_{R}^{i}(C,C) = 0$ for all i > 0.

Example

The R-module R is always semidualizing.

Definition

An R-module T is quasidualizing if it satisfies the following:

Definition

An R-module T is quasidualizing if it satisfies the following:

1. T is artinian;

Definition

An R-module T is quasidualizing if it satisfies the following:

- 1. T is artinian;
- 2. $\widehat{R} \xrightarrow{\widehat{\chi_T^R}} \operatorname{Hom}_R(T,T)$ is an isomorphism; and

Definition

An R-module T is quasidualizing if it satisfies the following:

- 1. T is artinian;
- 2. $\widehat{R} \xrightarrow{\widehat{X_T^R}} \operatorname{Hom}_R(T,T)$ is an isomorphism; and
- 3. $\operatorname{Ext}_{R}^{i}(T, T) = 0$ for all i > 0.

Definition

An R-module T is quasidualizing if it satisfies the following:

- 1. T is artinian;
- 2. $\widehat{R} \xrightarrow{\widehat{\chi_T^R}} \operatorname{Hom}_R(T,T)$ is an isomorphism; and
- 3. $\operatorname{Ext}_{R}^{i}(T, T) = 0$ for all i > 0.

Example

E is a quasidualizing *R*-module.

Definition

An R-module T is quasidualizing if it satisfies the following:

- 1. T is artinian;
- 2. $\widehat{R} \xrightarrow{\widehat{X_T^R}} \operatorname{Hom}_R(T,T)$ is an isomorphism; and
- 3. $\operatorname{Ext}_{R}^{i}(T, T) = 0$ for all i > 0.

Example

E is a quasidualizing R-module.

Example

If R is complete, then T is a quasidualizing R-module if and only if T^{\vee} is a semidualizing R-module.

Hom-tensor adjointness

Fact

Let A, B, and C be R-modules. Then the natural map

$$\psi: \operatorname{\mathsf{Hom}}_R(A \otimes_R B, C) \to \operatorname{\mathsf{Hom}}_R(A, \operatorname{\mathsf{Hom}}_R(B, C))$$

is an isomorphism. This map is called Hom-tensor adjointness.

Hom-tensor adjointness

Fact

Let A, B, and C be R-modules. Then the natural map

$$\psi: \operatorname{\mathsf{Hom}}_R(A \otimes_R B, C) \to \operatorname{\mathsf{Hom}}_R(A, \operatorname{\mathsf{Hom}}_R(B, C))$$

is an isomorphism. This map is called Hom-tensor adjointness.

Hom-tensor adjointness explains the first and second steps in the following sequence:

$$\begin{aligned} \mathsf{Hom}_R(T^\vee, T^\vee) &\cong \mathsf{Hom}_R(T^\vee \otimes_R T, E) \\ &\cong \mathsf{Hom}_R(T, \mathsf{Hom}_R(T^\vee, E)) \\ &\cong \mathsf{Hom}_R(T, T). \end{aligned}$$

Definition

Let M be an R-module. Then an R-module L is derived M-reflexive if it satisfies the following:

Definition

Let M be an R-module. Then an R-module L is derived M-reflexive if it satisfies the following:

1. the natural biduality map $\delta_L^M: L \to \operatorname{Hom}_R(\operatorname{Hom}_R(L, M), M)$ defined by $I \mapsto [\phi \mapsto \phi(I)]$ is an isomorphism; and

Definition

Let M be an R-module. Then an R-module L is derived M-reflexive if it satisfies the following:

- 1. the natural biduality map $\delta_L^M: L \to \operatorname{Hom}_R(\operatorname{Hom}_R(L, M), M)$ defined by $I \mapsto [\phi \mapsto \phi(I)]$ is an isomorphism; and
- 2. one has $\operatorname{Ext}_R^i(L,M) = 0 = \operatorname{Ext}_R^i(\operatorname{Hom}_R(L,M),M)$ for all i > 0.

Definition

Let M be an R-module. Then an R-module L is derived M-reflexive if it satisfies the following:

- 1. the natural biduality map $\delta_L^M: L \to \operatorname{Hom}_R(\operatorname{Hom}_R(L, M), M)$ defined by $I \mapsto [\phi \mapsto \phi(I)]$ is an isomorphism; and
- 2. one has $\operatorname{Ext}_R^i(L,M) = 0 = \operatorname{Ext}_R^i(\operatorname{Hom}_R(L,M),M)$ for all i > 0.

Remark

We write $\mathcal{G}_M^{artin}(R)$ to denote the class of all artinian derived M-reflexive R-modules, $\mathcal{G}_M^{noeth}(R)$ to denote the class of all noetherian derived M-reflexive R-modules, and $\mathcal{G}_M^{mr}(R)$ to denote the class of all Matlis reflexive M-reflexive R-modules.

Remark

When M = C is a semidualizing R-module, the class $\mathcal{G}_M^{noeth}(R)$ is the class of totally C-reflexive R-modules, sometimes denoted $\mathcal{G}_C(R)$.

Remark

When M = C is a semidualizing R-module, the class $\mathcal{G}_M^{noeth}(R)$ is the class of totally C-reflexive R-modules, sometimes denoted $\mathcal{G}_C(R)$.

Definition

Let L and M be R-modules. We say that L is in the Auslander class $\mathcal{A}_M(R)$ with respect to M if it satisfies the following:

Remark

When M=C is a semidualizing R-module, the class $\mathcal{G}_M^{noeth}(R)$ is the class of totally C-reflexive R-modules, sometimes denoted $\mathcal{G}_C(R)$.

Definition

Let L and M be R-modules. We say that L is in the Auslander class $\mathcal{A}_M(R)$ with respect to M if it satisfies the following:

1. the natural homomorphism $\gamma_L^M:L\to \operatorname{Hom}_R(M,M\otimes_R L)$, defined by $I\mapsto \psi_I$ where $\psi_I(m)=m\otimes I$, is an isomorphism; and

Remark

When M=C is a semidualizing R-module, the class $\mathcal{G}_M^{noeth}(R)$ is the class of totally C-reflexive R-modules, sometimes denoted $\mathcal{G}_C(R)$.

Definition

Let L and M be R-modules. We say that L is in the Auslander class $\mathcal{A}_M(R)$ with respect to M if it satisfies the following:

- 1. the natural homomorphism $\gamma_L^M: L \to \operatorname{Hom}_R(M, M \otimes_R L)$, defined by $I \mapsto \psi_I$ where $\psi_I(m) = m \otimes I$, is an isomorphism; and
- 2. one has $\operatorname{Tor}_{i}^{R}(M,L) = 0 = \operatorname{Ext}_{R}^{i}(M,M \otimes_{R} L)$ for all i > 0.

Theorem

Lemma (-,Leamer, Sather-Wagstaff)

Let A and M be R-modules such that A is artinian and M is Matlis reflexive. Then $A \otimes_R M$ is Matlis reflexive.

Theorem

Lemma (-,Leamer, Sather-Wagstaff)

Let A and M be R-modules such that A is artinian and M is Matlis reflexive. Then $A \otimes_R M$ is Matlis reflexive.

Theorem

Assume that R is complete and let T be a quasidualizing R-module. Then there exists an equality of classes

$$\mathcal{G}^{mr}_{T^{\vee}}(R) = \mathcal{A}^{mr}_{T}(R).$$

Sketch of Proof

Let M be a Matlis reflexive R-module. We will show that $M \in \mathcal{G}^{mr}_{T^\vee}(R)$ if and only if $M \in \mathcal{A}^{mr}_T(R)$.

Sketch of Proof

Let M be a Matlis reflexive R-module. We will show that $M \in \mathcal{G}^{mr}_{T^{\vee}}(R)$ if and only if $M \in \mathcal{A}^{mr}_{T}(R)$. We have the following commutative diagram:

Let P be a projective resolution of M.

Let P be a projective resolution of M. Hom-tensor adjointness explains the second step in the following sequence:

$$\operatorname{Ext}_{R}^{i}(M, T^{\vee}) \cong \operatorname{H}_{-i}(\operatorname{Hom}_{R}(P, T^{\vee}))$$

$$\cong \operatorname{H}_{-i}(\operatorname{Hom}_{R}(P \otimes_{R} T, E))$$

$$\cong \operatorname{Hom}_{R}(\operatorname{H}_{i}(P \otimes_{R} T), E)$$

$$\cong \operatorname{Hom}_{R}(\operatorname{Tor}_{i}^{R}(M, T), E).$$

Let P be a projective resolution of M. Hom-tensor adjointness explains the second step in the following sequence:

$$\operatorname{Ext}_{R}^{i}(M, T^{\vee}) \cong \operatorname{H}_{-i}(\operatorname{Hom}_{R}(P, T^{\vee}))$$

$$\cong \operatorname{H}_{-i}(\operatorname{Hom}_{R}(P \otimes_{R} T, E))$$

$$\cong \operatorname{Hom}_{R}(\operatorname{H}_{i}(P \otimes_{R} T), E)$$

$$\cong \operatorname{Hom}_{R}(\operatorname{Tor}_{i}^{R}(M, T), E).$$

The third step follows from the fact that E is injective and homology commutes with exact functors.

Let P be a projective resolution of M. Hom-tensor adjointness explains the second step in the following sequence:

$$\operatorname{Ext}_{R}^{i}(M, T^{\vee}) \cong \operatorname{H}_{-i}(\operatorname{Hom}_{R}(P, T^{\vee}))$$

$$\cong \operatorname{H}_{-i}(\operatorname{Hom}_{R}(P \otimes_{R} T, E))$$

$$\cong \operatorname{Hom}_{R}(\operatorname{H}_{i}(P \otimes_{R} T), E)$$

$$\cong \operatorname{Hom}_{R}(\operatorname{Tor}_{i}^{R}(M, T), E).$$

The third step follows from the fact that E is injective and homology commutes with exact functors. Since the Matlis dual of a module is zero if and only if the module is zero, we conclude that $\operatorname{Ext}_R^i(M,T^\vee)=0$ if and only if $\operatorname{Tor}_i^R(M,T)=0$.

Hom-tensor adjointness explains the first step in the following sequence:

$$\begin{aligned} \operatorname{Ext}_R^i(\operatorname{Hom}_R(M,T^\vee),T^\vee) &\cong \operatorname{Ext}_R^i((M\otimes_R T)^\vee,T^\vee) \\ &\cong \operatorname{Ext}_R^i(T^{\vee\vee},(M\otimes_R T)^{\vee\vee}) \\ &\cong \operatorname{Ext}_R^i(T,M\otimes_R T). \end{aligned}$$

Hom-tensor adjointness explains the first step in the following sequence:

$$\begin{aligned} \operatorname{Ext}_R^i(\operatorname{Hom}_R(M,T^\vee),T^\vee) &\cong \operatorname{Ext}_R^i((M\otimes_R T)^\vee,T^\vee) \\ &\cong \operatorname{Ext}_R^i(T^{\vee\vee},(M\otimes_R T)^{\vee\vee}) \\ &\cong \operatorname{Ext}_R^i(T,M\otimes_R T). \end{aligned}$$

The second step follows from the fact that T^{\vee} is Matlis reflexive and a manifestation of Hom-tensor adjointness. The third step follows from the fact that T and $M \otimes_R T$ are Matlis reflexive.

Hom-tensor adjointness explains the first step in the following sequence:

$$\begin{aligned} \operatorname{Ext}_R^i(\operatorname{Hom}_R(M,T^\vee),T^\vee) &\cong \operatorname{Ext}_R^i((M\otimes_R T)^\vee,T^\vee) \\ &\cong \operatorname{Ext}_R^i(T^{\vee\vee},(M\otimes_R T)^{\vee\vee}) \\ &\cong \operatorname{Ext}_R^i(T,M\otimes_R T). \end{aligned}$$

The second step follows from the fact that T^{\vee} is Matlis reflexive and a manifestation of Hom-tensor adjointness. The third step follows from the fact that T and $M \otimes_R T$ are Matlis reflexive. Thus $\operatorname{Ext}^i_R(\operatorname{Hom}_R(M,T^{\vee}),T^{\vee})=0$ if and only if $\operatorname{Ext}^i_R(T,M\otimes_R T)=0$ concluding our proof.

Corollary

Corollary

1.
$$\mathcal{G}_T^{artin}(R) = \mathcal{A}_{T^{\vee}}^{artin}(R);$$

Corollary

- 1. $\mathcal{G}_T^{artin}(R) = \mathcal{A}_{T^{\vee}}^{artin}(R);$
- 2. $\mathcal{G}_{T^{\vee}}^{noeth}(R) = \mathcal{A}_{T}^{noeth}(R);$

Corollary

- 1. $\mathcal{G}_T^{artin}(R) = \mathcal{A}_{T^{\vee}}^{artin}(R);$
- 2. $\mathcal{G}_{T^{\vee}}^{noeth}(R) = \mathcal{A}_{T}^{noeth}(R);$
- 3. $\mathcal{G}_T^{noeth}(R) = \mathcal{A}_{T^{\vee}}^{noeth}(R)$; and

Corollary

- 1. $\mathcal{G}_T^{artin}(R) = \mathcal{A}_{T^{\vee}}^{artin}(R);$
- 2. $\mathcal{G}_{T^{\vee}}^{noeth}(R) = \mathcal{A}_{T}^{noeth}(R);$
- 3. $\mathcal{G}_T^{noeth}(R) = \mathcal{A}_{T^{\vee}}^{noeth}(R)$; and
- 4. $\mathcal{G}_{T^{\vee}}^{artin}(R) = \mathcal{A}_{T}^{artin}(R)$.

Bass Class

Definition

Let L and M be R-modules. We say that L is in the Bass Class $\mathcal{B}_M(R)$ with respect to M if it satisfies the following:

Bass Class

Definition

Let L and M be R-modules. We say that L is in the Bass Class $\mathcal{B}_M(R)$ with respect to M if it satisfies the following:

1. the natural evaluation homomorphism $\xi_L^M : \operatorname{Hom}_R(M,L) \otimes_R M \to L$, defined by $\phi \otimes m \mapsto \phi(m)$, is an isomorphism; and

Bass Class

Definition

Let L and M be R-modules. We say that L is in the Bass Class $\mathcal{B}_M(R)$ with respect to M if it satisfies the following:

- 1. the natural evaluation homomorphism ξ_L^M : $\operatorname{Hom}_R(M,L)\otimes_R M\to L$, defined by $\phi\otimes m\mapsto \phi(m)$, is an isomorphism; and
- 2. one has $\operatorname{Ext}_R^i(M,L) = 0 = \operatorname{Tor}_i^R(M,\operatorname{Hom}_R(M,L))$ for all i>0.

Theorem

Theorem

Assume that R is complete and let T be a quasidualizing R-module. Then the maps

$$\mathcal{B}_{T^{\vee}}^{mr}(R) \xrightarrow{(-)^{\vee}} \mathcal{G}_{T}^{mr}(R)$$

are inverse bijections.

Corollary

Assume that R is complete and let T be a quasidualizing R-module. Then the following maps are inverse bijections

$$\mathcal{B}_{T^{\vee}}^{noeth}(R) \xrightarrow{(-)^{\vee}} \mathcal{G}_{T}^{artin}(R)$$

and

$$\mathcal{B}_{T}^{artin}(R) \xrightarrow{(-)^{\vee}} \mathcal{G}_{T^{\vee}}^{noeth}(R).$$