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Introduction

Let (R,m, k) be a local noetherian ring with completion R̂ and let
E = ER(k) be the injective hull of the residue field.

Definition
Given an R-module M, the Matlis dual is M∨ = HomR(M,E ).
We say that M is Matlis reflexive if the natural biduality map
δ : M → M∨∨ is an isomorphism.

Fact
Assume that R is complete. If A is an artinian R-module, then A∨

is noetherian. If N is a noetherian R-module, then N∨ is artinian.
The modules A and N are Matlis reflexive.
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Semidualizing Modules

Definition
An R-module C is semidualizing if it satisfies the following:

1. C is noetherian, i.e. finitely generated;

2. R
χR
C−−→ HomR(C ,C ) is an isomorphism; and

3. ExtiR(C ,C ) = 0 for all i > 0.

Example

The R-module R is always semidualizing.
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Quasidualizing Modules

Definition
An R-module T is quasidualizing if it satisfies the following:

1. T is artinian;

2. R̂
χR̂
T−−→ HomR(T ,T ) is an isomorphism; and

3. ExtiR(T ,T ) = 0 for all i > 0.

Example

E is a quasidualizing R-module.

Example

If R is complete, then T is a quasidualizing R-module if and only if
T∨ is a semidualizing R-module.
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Hom-tensor adjointness

Fact
Let A, B, and C be R-modules. Then the natural map

ψ : HomR(A⊗R B,C )→ HomR(A,HomR(B,C ))

is an isomorphism. This map is called Hom-tensor adjointness.

Hom-tensor adjointness explains the first and second steps in the
following sequence:

HomR(T∨,T∨) ∼= HomR(T∨ ⊗R T ,E )
∼= HomR(T ,HomR(T∨,E ))
∼= HomR(T ,T ).
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M-reflexive modules

Definition
Let M be an R-module. Then an R-module L is derived
M-reflexive if it satisfies the following:

1. the natural biduality map δML : L→ HomR(HomR(L,M),M)
defined by l 7→ [φ 7→ φ(l)] is an isomorphism; and

2. one has ExtiR(L,M) = 0 = ExtiR(HomR(L,M),M) for all
i > 0.

Remark
We write GartinM (R) to denote the class of all artinian derived
M-reflexive R-modules, GnoethM (R) to denote the class of all
noetherian derived M-reflexive R-modules, and Gmr

M (R) to denote
the class of all Matlis reflexive M-reflexive R-modules.
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Auslander Class

Remark
When M = C is a semidualizing R-module, the class GnoethM (R) is
the class of totally C -reflexive R-modules, sometimes denoted
GC (R).

Definition
Let L and M be R-modules. We say that L is in the Auslander
class AM(R) with respect to M if it satisfies the following:

1. the natural homomorphism γML : L→ HomR(M,M ⊗R L),
defined by l 7→ ψl where ψl(m) = m ⊗ l , is an isomorphism;
and

2. one has TorRi (M, L) = 0 = ExtiR(M,M ⊗R L) for all i > 0.
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Theorem

Lemma (–,Leamer, Sather-Wagstaff)

Let A and M be R-modules such that A is artinian and M is Matlis
reflexive. Then A⊗R M is Matlis reflexive.

Theorem
Assume that R is complete and let T be a quasidualizing
R-module. Then there exists an equality of classes

Gmr
T∨(R) = Amr

T (R).
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Sketch of Proof

Let M be a Matlis reflexive R-module. We will show that
M ∈ Gmr

T∨(R) if and only if M ∈ Amr
T (R).

We have the following commutative diagram:

M
δT

∨
M - HomR(HomR(M,T∨),T∨)

HomR(T ,T ⊗R M)

γTM

?
HomR(HomR(M,T∨)⊗R T ,E )

∼=

?

HomR(T , (T ⊗R M)∨∨)

HomR(T , δT⊗RM) ∼=

? ∼=- HomR(T , (HomR(M,T∨))∨)

∼=

?
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Sketch of Proof cont.

Let P be a projective resolution of M.

Hom-tensor adjointness
explains the second step in the following sequence:

ExtiR(M,T∨) ∼= H−i (HomR(P,T∨))
∼= H−i (HomR(P ⊗R T ,E ))
∼= HomR(Hi (P ⊗R T ),E )

∼= HomR(TorRi (M,T ),E ).

The third step follows from the fact that E is injective and
homology commutes with exact functors. Since the Matlis dual of
a module is zero if and only if the module is zero, we conclude that
ExtiR(M,T∨) = 0 if and only if TorRi (M,T ) = 0.
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Sketch of Proof cont.

Hom-tensor adjointness explains the first step in the following
sequence:

ExtiR(HomR(M,T∨),T∨) ∼= ExtiR((M ⊗R T )∨,T∨)

∼= ExtiR(T∨∨, (M ⊗R T )∨∨)

∼= ExtiR(T ,M ⊗R T ).

The second step follows from the fact that T∨ is Matlis reflexive
and a manifestation of Hom-tensor adjointness. The third step
follows from the fact that T and M ⊗R T are Matlis reflexive.
Thus ExtiR(HomR(M,T∨),T∨) = 0 if and only if
ExtiR(T ,M ⊗R T ) = 0 concluding our proof.
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Corollary

Corollary

Assume R is complete and let T be a quasidualizing R-module.
Then we have the following equalities:

1. GartinT (R) = Aartin
T∨ (R);

2. GnoethT∨ (R) = Anoeth
T (R);

3. GnoethT (R) = Anoeth
T∨ (R); and

4. GartinT∨ (R) = Aartin
T (R).
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Bass Class

Definition
Let L and M be R-modules. We say that L is in the Bass Class
BM(R) with respect to M if it satisfies the following:

1. the natural evaluation homomorphism
ξML : HomR(M, L)⊗R M → L, defined by φ⊗m 7→ φ(m), is
an isomorphism; and

2. one has ExtiR(M, L) = 0 = TorRi (M,HomR(M, L)) for all
i > 0.
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Theorem

Theorem
Assume that R is complete and let T be a quasidualizing
R-module. Then the maps

Bmr
T∨(R)

(−)∨
-

�
(−)∨

Gmr
T (R)

are inverse bijections.
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�
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