Graded Cohen-Macaulayness for commutative rings graded by arbitrary abelian groups

Brian Johnson

University Of Nebraska – Lincoln

14 October 2011

s-bjohns67@math.unl.edu
Introduction

Outline

- Notation
Introduction

Outline

- Notation
- Properties
Introduction

Outline

- Notation
- Properties
- Primary Decomposition
Introduction

Outline

- Notation
- Properties
- Primary Decomposition
- Height & Dimension
Graded Cohen-Macaulayness
Brian Johnson

Introduction Outline

- Notation
- Properties
- Primary Decomposition
- Height & Dimension
- Grade & Depth
Let G be an abelian group. A (commutative) ring R is \textit{G-graded} if there is a family of subgroups of R, $\{R_g\}_{g \in G}$, such that $R = \bigoplus_{g \in G} R_g$, and $R_g R_h \subseteq R_{g+h}$ for all $g, h \in G$.
Let G be an abelian group. A (commutative) ring R is **G-graded** if there is a family of subgroups of R, $\{R_g\}_{g \in G}$, such that $R = \bigoplus_{g \in G} R_g$, and $R_g R_h \subseteq R_{g+h}$ for all $g, h \in G$.

For a subgroup $H \leq G$, we set $R_H = \bigoplus_{h \in H} R_h$, which is a G- and H-graded subring of R. More generally,

$$R_{g+H} := \bigoplus_{h \in H} R_{g+h}$$

is a G-graded R_H-submodule of R.

Let G be an abelian group. A (commutative) ring R is G-graded if there is a family of subgroups of R, $\{R_g\}_{g \in G}$, such that $R = \bigoplus_{g \in G} R_g$, and $R_g R_h \subseteq R_{g+h}$ for all $g, h \in G$.

For a subgroup $H \leq G$, we set $R_H = \bigoplus_{h \in H} R_h$, which is a G- and H-graded subring of R. More generally,

$$R_{g+H} := \bigoplus_{h \in H} R_{g+h}$$

is a G-graded R_H-submodule of R.

Note: the previous definition defines a G/H-grading on the ring R, using the family $\{R_x\}_{x \in G/H}$.
One can define analogues of many usual properties. For example, a **G-field** is a ring in which every homogeneous element is a unit, and a **G-maximal** ideal is a homogeneous ideal I such that R/I is a G-field (but we omit the G whenever possible).
One can define analogues of many usual properties. For example, a \textit{G-field} is a ring in which every homogeneous element is a unit, and a \textit{G-maximal} ideal is a homogeneous ideal I such that R/I is a G-field (but we omit the G whenever possible).

\begin{proposition}
Let R be a G-graded ring and H a torsion-free subgroup of G. Then
\begin{enumerate}
 \item R is a domain if and only if R is a G/H-domain.
 \item R is reduced if and only if R is G/H-reduced.
\end{enumerate}
\end{proposition}
Theorem

Suppose \(R \) is a \(G \)-graded ring. If \(H \leq G \) is a finitely generated subgroup, the following are equivalent:

1. \(R \) is Noetherian.
2. \(R \) is \(G/H \)-Noetherian.
Introduction

A crucial property

Theorem

Suppose R is a G-graded ring. If $H \leq G$ is a finitely generated subgroup, the following are equivalent:

1. R is Noetherian.
2. R is G/H-Noetherian.

One more basic piece of notation is the following: If R is G-graded, M is a G-graded R-module, and N is a 0-graded R-submodule (i.e., not necessarily G-homogeneous) of M, we let N^{*G} denote the R-submodule of M generated by all the G-homogeneous elements contained in N.
Primary Decomposition

Let R be a G-graded ring and $N \subseteq M$ graded R-modules. Say N is G-irreducible if whenever $N = N_1 \cap N_2$ (N_1, N_2 graded) then $N_1 = N$ or $N_2 = N$.

Primary Decomposition

Let R be a G-graded ring and $N \subseteq M$ graded R-modules. Say N is G-irreducible if whenever $N = N_1 \cap N_2$ (N_1, N_2 graded) then $N_1 = N$ or $N_2 = N$.

Call N G-primary if for all homogeneous $r \in R$ the map $M/N \rightarrow M/N$ induced by multiplication by r is either injective or nilpotent.
Primary Decomposition

Let R be a G-graded ring and $N \subseteq M$ graded R-modules. Say N is \textit{G-irreducible} if whenever $N = N_1 \cap N_2$ (N_1, N_2 graded) then $N_1 = N$ or $N_2 = N$.

Call N \textit{G-primary} if for all homogeneous $r \in R$ the map $M/N \rightarrow M/N$ induced by multiplication by r is either injective or nilpotent.

If $N = \bigcap N_i$ is a primary decomposition, then the prime ideals P_i that occur as radicals of the $\text{Ann}(M/N_i)$ depend only on M and N.
Primary Decomposition

Let R be a G-graded ring and $N \subseteq M$ graded R-modules. Say N is G-irreducible if whenever $N = N_1 \cap N_2$ (N_1, N_2 graded) then $N_1 = N$ or $N_2 = N$.

Call N G-primary if for all homogeneous $r \in R$ the map $M/N \xrightarrow{r} M/N$ induced by multiplication by r is either injective or nilpotent.

If $N = \bigcap N_i$ is a primary decomposition, then the prime ideals P_i that occur as radicals of the $\text{Ann}(M/N_i)$ depend only on M and N.

If R is Noetherian, $P \in \text{Ass } R$ if and only if $P = (0 : f)$ for some homogeneous element $f \in R$. Also, the union of the associated primes of R is, in general, strictly contained in the collection of zerodivisors of R.
Dimension of a G-graded ring and height of a (G-homogeneous) ideal are defined in an expected way:
Dimension of a G-graded ring and height of a (G-homogeneous) ideal are defined in an expected way:

$$
\dim^G_R(R) := \sup\{ n \mid P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n \text{ is a chain of prime ideals of } R \}
$$
Dimension of a G-graded ring and height of a $(G$-homogeneous$)$ ideal are defined in an expected way:

- $\dim^G_R(R) := \sup \{ n \mid P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n \text{ is a chain of prime ideals of } R \}$

- $\text{ht}^G_R(I) := \min \{ \dim(R_P) \mid P \supseteq I \text{ and } P \text{ is prime} \}$
Results on Height

The following fact is a generalization of a result of Matijevic-Roberts (1973).

Let R be a G-graded ring, and suppose $H \leq G$ is a torsion-free subgroup. If $P \in \text{Spec}^{G/H}(R)$ and $P^* = P^*G$, then $\text{ht}^{G/H}(P/P^*) \leq \text{rank} H$.

This was extended to \mathbb{Z}^d-graded rings and sharpened by Uliczka (2009). A further generalization is:

Theorem

Let R be a G-graded ring and $H \leq G$ a torsion-free subgroup of finite rank, and set $P^* = P^*G$. If $P \in \text{Spec}^{G/H}(R)$, then $\text{ht}^{G/H}(P) = \text{ht}^{G/H}(P^*) + \text{ht}^{G/H}(P/P^*)$.

Results on Height

The following fact is a generalization of a result of Matijevic-Roberts (1973).

Let R be a G-graded ring, and suppose $H \leq G$ is a torsion-free subgroup. If $P \in \text{Spec}^{G/H}(R)$ and $P^* = P^G$, then $\text{ht}^{G/H}(P/P^*) \leq \text{rank } H$.

This was extended to \mathbb{Z}^d-graded rings and sharpened by Uliczka (2009). A further generalization is:

Theorem

Let R be a G-graded ring and $H \leq G$ a torsion-free subgroup of finite rank, and set $P^* = P^G$. If $P \in \text{Spec}^{G/H}(R)$, then

$$\text{ht}^{G/H}(P) = \text{ht}^{G/H}(P^*) + \text{ht}^{G/H}(P/P^*).$$
If we add the hypothesis that R is Noetherian to the previous setting and consider $P \in \text{Spec}(R)$ with $\text{ht}^{G/H}(P) = n$, we can show that there exists a chain

$$P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n = P$$

such that $P_i \in \text{Spec}(R)$ for $i = 1, \ldots, n$. I.e.,

$$\text{ht}^{G/H}(P) = \text{ht}(P).$$
Results on Height

If we add the hypothesis that R is Noetherian to the previous setting and consider $P \in \text{Spec}(R)$ with $\text{ht}^{G/H}(P) = n$, we can show that there exists a chain

$$P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n = P$$

such that $P_i \in \text{Spec}(R)$ for $i = 1, \ldots, n$. I.e.,

$$\text{ht}^{G/H}(P) = \text{ht}(P).$$

The next fact is somewhat unrelated, but is useful when discussing depth and grade.

- If R is a Noetherian graded ring, then for any $p \in \text{Spec} R$, $\text{ht}_R(p) = \text{ht}_R[p][t]$.
In order to define grade in this setting, we’ll use Čech cohomology. Suppose R is a G-graded ring, and $I = (f_1, \ldots, f_n) = (f)$ is a homogeneous ideal. Define

$$\text{grade}^G_I(R) := \min\{i \mid H^i_f(R) \neq 0\}.$$
Grade and Depth

In order to define grade in this setting, we’ll use Čech cohomology. Suppose R is a G-graded ring, and $I = (f_1, \ldots, f_n) = (f)$ is a homogeneous ideal. Define

$$\text{grade}^G_I(R) := \min \{ i \mid H^i_f(R) \neq 0 \}.$$

Then depth is defined in the usual way. If (R, m) is a G-graded local Noetherian ring, we set

$$\text{depth}^G(R) := \text{grade}_m(R),$$

and say that R is G-Cohen-Macaulay (or just Cohen-Macaulay) if

$$\text{depth}(R) = \text{dim}(R).$$
Setting $S = R[t](mR[t])$ and $\tilde{m} = mR[t](mR[t])$, we then have that (S, \tilde{m}) is a graded local ring with the same dimension as R.
Grade and Depth
A useful construction

Setting $S = R[t](mR[t])$ and $\tilde{m} = mR[t](mR[t])$, we then have that (S, \tilde{m}) is a graded local ring with the same dimension as R.

In fact, since the extension $R \to S$ is faithfully flat, $\text{depth } R = \text{depth } S$, so that R is Cohen-Macaulay if and only if S is, the advantage being:
Setting $S = R[t](mR[t])$ and $\tilde{m} = mR[t](mR[t])$, we then have that (S, \tilde{m}) is a graded local ring with the same dimension as R.

In fact, since the extension $R \to S$ is faithfully flat, depth $R = \text{depth } S$, so that R is Cohen-Macaulay if and only if S is, the advantage being:

If R is a G-graded ring and I is a finitely generated homogeneous ideal, there exist $d \geq 1$ and t_1, \ldots, t_d with $\deg t_i = g_i$ for $g_i \in G$, $i = 1, \ldots, d$, such that $IR[t_1, \ldots, t_d]$ contains a homogeneous $R[t_1, \ldots, t_d]$-regular sequence of length $\text{grade}_I(R)$.
Main Theorem

Theorem (Main Theorem)

Let R be a Noetherian G-graded ring, and suppose $H \leq G$ is a finitely generated torsion-free subgroup. TFAE:

1. R is Cohen-Macaulay.
2. R is G/H-Cohen-Macaulay.

Sketch of proof. For $(2) \Rightarrow (1)$, if $P \in \text{Spec}(R)$, then $P \in \text{Spec}(G/H)(R)$, and we can write $P = (x)$ for a G-homogeneous sequence x. Then use $H^i x(R)_P = 0$ if and only if $H^i x(R)(P) = 0$.
Main Theorem

Theorem (Main Theorem)

Let R be a Noetherian G-graded ring, and suppose $H \leq G$ is a finitely generated torsion-free subgroup. TFAE:

1. R is Cohen-Macaulay.
2. R is G/H-Cohen-Macaulay.

Sketch of proof. For $(2) \Rightarrow (1)$, if $P \in \text{Spec}(R)$, then $P \in \text{Spec}^{G/H}(R)$, and we can write $P = (x)$ for a G-homogeneous sequence x. Then use

$$H^i_x(R)_P = 0 \text{ if and only if } H^i_x(R)_P = 0.$$
Main Theorem

Proof sketch cont.

For \((1) \Rightarrow (2)\), the bulk of the work is contained in a lemma which states:
For $(1) \Rightarrow (2)$, the bulk of the work is contained in a lemma which states:

- If $P \in \text{Spec}^{G/H}(R)$, and $P^* = P^*G$, then $R_{(P)}$ is G/H-CM if and only if $R_{(P^*)}$ is G/H-CM.
Main Theorem
Proof sketch cont.

For (1) ⇒ (2), the bulk of the work is contained in a lemma which states:

- If $P \in \text{Spec}^{G/H}(R)$, and $P^* = P^*^G$, then $R(P)$ is G/H-CM if and only if $R(P^*)$ is G/H-CM.

The lemma allows us to assume that (R, m) is local and Cohen-Macaulay, and it suffices to show that $R(m)$ is G/H-CM.
Main Theorem
Proof sketch cont.

For $(1) \Rightarrow (2)$, the bulk of the work is contained in a lemma which states:

- If $P \in \text{Spec}^{G/H}(R)$, and $P^* = P^G$, then R_P is G/H-CM if and only if $R_{(P^*)}$ is G/H-CM.

The lemma allows us to assume that (R, m) is local and Cohen-Macaulay, and it suffices to show that R_m is G/H-CM.

That $\dim(R) = \dim_{R_m}^{G/H}(R_m)$ follows from

$ht(m) = ht_{R_m}^{G/H}(m)$, and so we only need to show $\text{grade}_m(R) = \text{grade}_{mR_m}^{G/H}(R_m)$.