

BOUNDS ON THE FIRST HILBERT COEFFICIENT

Krishna Hanumanthu, Craig Huneke

University of Kansas

AMS Meeting
University of Nebraska
October 2011

CONVENTIONS

SET-UP

- (R, \mathfrak{m}, k) : a Noetherian local ring with maximal ideal \mathfrak{m} , residue field k and $d = \dim R$.
- I and J will always be ideals.
- For a finitely generated R -module M , we denote the length of M by $\lambda(M)$, and the minimal number of generators of M by $\mu(M)$.
- The integral closure of an ideal I is denoted \bar{I} .

HILBERT COEFFICIENTS

Let I be an \mathfrak{m} -primary ideal. For large n , we can write

$$\lambda(R/I^{n+1}) =$$

$$e_0(I) \binom{n+d}{d} - e_1(I) \binom{n+d-1}{d-1} + \dots + (-1)^d e_d(I)$$

where $e_i(I)$ are all integers with $e_0(I) > 0$.

HILBERT COEFFICIENTS

Let I be an \mathfrak{m} -primary ideal. For large n , we can write

$$\lambda(R/I^{n+1}) =$$

$$e_0(I) \binom{n+d}{d} - e_1(I) \binom{n+d-1}{d-1} + \dots + (-1)^d e_d(I)$$

where $e_i(I)$ are all integers with $e_0(I) > 0$.

Srinivas and Trivedi proved that if R is Cohen-Macaulay, then

$$|e_i(S)| \leq (9e^5)i!$$

where e is the multiplicity of S .

Srinivas and Trivedi also prove that $\lambda(S/\mathfrak{m}^n) = P_S(n)$ if $n \geq (12e^3)(d-1)!$, where $P_S(n)$ denotes the Hilbert polynomial. In particular, there are only finitely many possible Hilbert functions which can occur for Cohen-Macaulay rings of fixed dimension and multiplicity.

We study bounds on e_1 .

Let I be \mathfrak{m} -primary. A key result is due to Elias, who proved that

$$e_1(I) \leq \binom{e_0(I) - k}{2}$$

if $I \subset \mathfrak{m}^k$ and the integral closure of I is not the integral closure of \mathfrak{m}^k .

Our work is some improvements on this bound.

Lech: If (R, \mathfrak{m}) is a regular local ring of dimension d , and I is \mathfrak{m} -primary, then

$$e(I) \leq d! \lambda(R/I).$$

Conjecture: If (R, \mathfrak{m}) is a regular local ring of dimension d , and I is \mathfrak{m} -primary, then

$$e(I) + \frac{d(d-1)}{2} e(I)^{\frac{d-1}{d}} \leq d! \lambda(R/I).$$

ONE-DIMENSIONAL CASE

THEOREM

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension one, and let $I \subset R$ be an \mathfrak{m} -primary ideal. Suppose that there exist distinct integrally closed ideals J_1, \dots, J_{k-1} such that $\mathfrak{m} \supsetneq J_{k-1} \supseteq J_{k-2} \supseteq \dots \supseteq J_1 \supsetneq \bar{I}$. Then $e_1(I) \leq \binom{e_0(I) - k}{2}$.

THEOREM

Let (R, \mathfrak{m}, k) be a one-dimensional analytically unramified local domain with infinite residue field k and integral closure S . Set $t = \dim_k(S/\text{Jac}(S))$, where $\text{Jac}(S)$ is the Jacobson radical of S . Let I be an integrally closed ideal of R . Then there exists a chain of distinct integrally closed ideals, $\mathfrak{m} \supset J_{n-1} \supset \dots \supset J_0 = I$ where $n = \lfloor \frac{\lambda(R/I) - 1}{t} \rfloor$.

COROLLARY

Let (R, \mathfrak{m}, k) be a one-dimensional analytically irreducible Cohen-Macaulay local domain with algebraically closed residue field k . Let I be an \mathfrak{m} -primary ideal of R . Then

$$e_1(I) \leq \binom{e_0(I) - \lambda(R/\bar{I}) + 1}{2}.$$

EXAMPLES

EXAMPLE

$R = K[[x, y]]/(xy(x - y))$ and $I_k = (x^{k+1}, y)$, $k \geq 1$. In this example, one can prove that $e_0(I_k) = k + 3$, and $e_1(I_k) = 2$. Moreover, the ideals I_k are integrally closed for every k . Therefore we have a chain of distinct integrally closed ideals, $\mathfrak{m} \supset I_1 \supset I_2 \supset \dots \supset I_{k+1}$. Applying our Theorem yields $e_1(I) < \binom{e_0(I) - k}{2}$, but this cannot be improved.

EXAMPLE

Consider the ring $R = k[[t^7, t^8, t^9, t^{10}]]$ and the ideal $I = (t^9, t^{10}, t^{15})$. Then our bound gives $e_1(I) \leq 15$. The actual value is 9.

A DEFINITION, ONE-DIMENSIONAL CASE

We need a definition for our main result.

DEFINITION

Let (R, \mathfrak{m}, k) be a one-dimensional analytically unramified local domain with infinite residue field k . Set S equal to the integral closure of R . We define the *essential rank* of R to be $t = \dim_k(S/\text{Jac}(S))$, where $\text{Jac}(S)$ is the Jacobson radical of S .

Let (R, \mathfrak{m}, k) be an analytically unramified Cohen-Macaulay local domain with an infinite residue field k . Let I be an \mathfrak{m} -primary ideal of R , with integral closure \bar{I} . Let d be the dimension of R . Choose a minimal reduction y, x_2, \dots, x_d of I . This sequence is a regular sequence since R is Cohen-Macaulay. Set $T = R[\frac{x_2}{y}, \dots, \frac{x_d}{y}]$. Then $T \cong R[T_2, \dots, T_d]/(yT_2 - x_2, \dots, yT_d - x_d)$. It follows that the extension of \mathfrak{m} to T is a height one prime ideal; set $A = T_{\mathfrak{m}T}$. Observe that A is a one-dimensional analytically unramified domain with an infinite residue field.

GENERAL DEFINITION

DEFINITION

Let (R, \mathfrak{m}, k) be an analytically unramified Cohen-Macaulay local domain with an infinite residue field k . Let y, x_1, \dots, x_d be a regular sequence in R . We define *the essential rank* of (y, x_2, \dots, x_d) to be the essential rank of the one-dimensional ring A constructed above. Let I be an \mathfrak{m} -primary ideal of R . Define the *essential rank* of I to be the minimum of essential ranks of minimal reductions of I .

MAIN THEOREM

THEOREM

Let (R, \mathfrak{m}, k) be an analytically unramified Cohen-Macaulay local domain with infinite residue field k . Let I be an \mathfrak{m} -primary ideal of R , with integral closure \bar{I} . Let t denote the essential rank of I . Then $e_1(I) \leq \binom{e_0(I) - n}{2}$ where $n = \lfloor \frac{\lambda(R/\bar{I}) - 1}{t} \rfloor$.

COROLLARY

Let (R, \mathfrak{m}, k) be a Cohen-Macaulay local ring of dimension d and let I be an \mathfrak{m} -primary ideal contained in \mathfrak{m}^k . Then

$$e_1(I) \leq \binom{e_0(I) - k}{2}.$$