Rees algebras of square-free monomial ideals

Louiza Fouli

New Mexico State University

University of Nebraska AMS Central Section Meeting October 15, 2011

This is joint work with Kuei-Nuan Lin.

- This is joint work with Kuei-Nuan Lin.
- Let R be a Noetherian ring and I an ideal.

- This is joint work with Kuei-Nuan Lin.
- Let R be a Noetherian ring and I an ideal.
- The Rees algebra of I is $\mathcal{R}(I) = R[It] = \bigoplus_{i \geq 0} I^i t^i \subset R[t]$.

- This is joint work with Kuei-Nuan Lin.
- Let R be a Noetherian ring and I an ideal.
- The Rees algebra of I is $\mathcal{R}(I) = R[It] = \bigoplus_{i \geq 0} I^i t^i \subset R[t]$.
- The Rees algebra is the algebraic realization of the blowup of a variety along a subvariety.

- This is joint work with Kuei-Nuan Lin.
- Let R be a Noetherian ring and I an ideal.
- The Rees algebra of I is $\mathcal{R}(I) = R[It] = \bigoplus_{i \geq 0} I^i t^i \subset R[t]$.
- The Rees algebra is the algebraic realization of the blowup of a variety along a subvariety.
- It is an important tool in the birational study of algebraic varieties, particularly in the study of desingularization.

- This is joint work with Kuei-Nuan Lin.
- Let R be a Noetherian ring and I an ideal.
- The Rees algebra of I is $\mathcal{R}(I) = R[It] = \bigoplus_{i \geq 0} I^i t^i \subset R[t]$.
- The Rees algebra is the algebraic realization of the blowup of a variety along a subvariety.
- It is an important tool in the birational study of algebraic varieties, particularly in the study of desingularization.
- The Rees algebra facilitates the study of the asymptotic behavior of I.

- This is joint work with Kuei-Nuan Lin.
- Let R be a Noetherian ring and I an ideal.
- The Rees algebra of I is $\mathcal{R}(I) = R[It] = \bigoplus_{i \geq 0} I^i t^i \subset R[t]$.
- The Rees algebra is the algebraic realization of the blowup of a variety along a subvariety.
- It is an important tool in the birational study of algebraic varieties, particularly in the study of desingularization.
- The Rees algebra facilitates the study of the asymptotic behavior of I.
- Integral Closure: $\overline{\mathcal{R}(I)} = \bigoplus_{i \geq 0} \overline{I^i} t^i = \mathcal{R}(\overline{I}).$

- This is joint work with Kuei-Nuan Lin.
- Let R be a Noetherian ring and I an ideal.
- The Rees algebra of I is $\mathcal{R}(I) = R[It] = \bigoplus_{i \geq 0} I^i t^i \subset R[t]$.
- The Rees algebra is the algebraic realization of the blowup of a variety along a subvariety.
- It is an important tool in the birational study of algebraic varieties, particularly in the study of desingularization.
- The Rees algebra facilitates the study of the asymptotic behavior of I.
- Integral Closure: $\overline{\mathcal{R}(I)} = \bigoplus_{i \geq 0} \overline{I^i} t^i = \mathcal{R}(\overline{I})$. So $\overline{I} = [\overline{\mathcal{R}(I)}]_1$.

We will consider the following construction for the Rees algebra

• Let $I = (f_1, ..., f_n)$, $S = R[T_1, ..., T_n]$, where T_i are indeterminates.

- Let $I = (f_1, ..., f_n)$, $S = R[T_1, ..., T_n]$, where T_i are indeterminates.
- There is a natural map $\phi : S \longrightarrow \mathcal{R}(I)$ that sends T_i to $f_i t$.

- Let $I = (f_1, ..., f_n)$, $S = R[T_1, ..., T_n]$, where T_i are indeterminates.
- There is a natural map $\phi : S \longrightarrow \mathcal{R}(I)$ that sends T_i to $f_i t$.
- Then $\mathcal{R}(I) \simeq S/\ker \phi$.

- Let $I = (f_1, ..., f_n)$, $S = R[T_1, ..., T_n]$, where T_i are indeterminates.
- There is a natural map $\phi : S \longrightarrow \mathcal{R}(I)$ that sends T_i to $f_i t$.
- Then $\mathcal{R}(I) \simeq S/\ker \phi$. Let $J = \ker \phi$.

- Let $I = (f_1, ..., f_n)$, $S = R[T_1, ..., T_n]$, where T_i are indeterminates.
- There is a natural map $\phi : S \longrightarrow \mathcal{R}(I)$ that sends T_i to $f_i t$.
- Then $\mathcal{R}(I) \simeq S/\ker \phi$. Let $J = \ker \phi$.
- Then $J = \bigoplus_{i=1}^{\infty} J_i$ is a graded ideal.

- Let $I = (f_1, ..., f_n)$, $S = R[T_1, ..., T_n]$, where T_i are indeterminates.
- There is a natural map φ : S → R(I) that sends T_i to f_it.
- Then $\mathcal{R}(I) \simeq S/\ker \phi$. Let $J = \ker \phi$.
- Then $J = \bigoplus_{i=1}^{\infty} J_i$ is a graded ideal. A minimal generating set of J is often referred to as the defining equations of the Rees algebra.

Example

• Let $R = k[x_1, x_2, x_3, x_4]$ and $I = (x_1x_2, x_2x_3, x_3x_4, x_1x_4)$.

Example

- Let $R = k[x_1, x_2, x_3, x_4]$ and $I = (x_1x_2, x_2x_3, x_3x_4, x_1x_4)$.
- Then $\mathcal{R}(I) \simeq R[T_1, T_2, T_3, T_4]/J$ and J is minimally generated by

Example

- Let $R = k[x_1, x_2, x_3, x_4]$ and $I = (x_1x_2, x_2x_3, x_3x_4, x_1x_4)$.
- Then $\mathcal{R}(I) \simeq R[T_1, T_2, T_3, T_4]/J$ and J is minimally generated by

$$x_3T_1 - x_1T_2, x_4T_4 - x_2T_3, x_1T_3 - x_3T_4, x_4T_1 - x_2T_4, T_1T_3 - T_2T_4.$$

Example

- Let $R = k[x_1, x_2, x_3, x_4]$ and $I = (x_1x_2, x_2x_3, x_3x_4, x_1x_4)$.
- Then $\mathcal{R}(I) \simeq R[T_1, T_2, T_3, T_4]/J$ and J is minimally generated by

$$x_3 T_1 - x_1 T_2, x_4 T_4 - x_2 T_3, x_1 T_3 - x_3 T_4, x_4 T_1 - x_2 T_4, T_1 T_3 - T_2 T_4.$$

I is the edge ideal of a graph:

Example

- Let $R = k[x_1, x_2, x_3, x_4]$ and $I = (x_1x_2, x_2x_3, x_3x_4, x_1x_4)$.
- Then $\mathcal{R}(I) \simeq R[T_1, T_2, T_3, T_4]/J$ and J is minimally generated by

$$x_3 T_1 - x_1 T_2, x_4 T_4 - x_2 T_3, x_1 T_3 - x_3 T_4,$$

 $x_4 T_1 - x_2 T_4, T_1 T_3 - T_2 T_4.$

I is the edge ideal of a graph:

$$X_1$$
 X_2 X_3

Example

- Let $R = k[x_1, x_2, x_3, x_4]$ and $I = (x_1x_2, x_2x_3, x_3x_4, x_1x_4)$.
- Then $\mathcal{R}(I) \simeq R[T_1, T_2, T_3, T_4]/J$ and J is minimally generated by

$$x_3T_1 - x_1T_2, x_4T_4 - x_2T_3, x_1T_3 - x_3T_4, x_4T_1 - x_2T_4, T_1T_3 - T_2T_4.$$

I is the edge ideal of a graph:

$$X_1$$
 X_2 X_3

• Notice that $f_1f_3 = f_2f_4 = x_1x_2x_3x_4$ and that the degree 2 relation "comes" from the "even closed walk", in this case the square.

Theorem (Villarreal)

• Let k be a field and let $l = (f_1, \ldots, f_n) \subset R = k[x_1, \ldots, x_d]$ be a square-free monomial ideal generated in degree 2.

- Let k be a field and let $l = (f_1, \ldots, f_n) \subset R = k[x_1, \ldots, x_d]$ be a square-free monomial ideal generated in degree 2.
- Let $S = R[T_1, \ldots, T_n]$ and $\mathcal{R}(I) \simeq S/J$.

- Let k be a field and let $l = (f_1, \ldots, f_n) \subset R = k[x_1, \ldots, x_d]$ be a square-free monomial ideal generated in degree 2.
- Let $S = R[T_1, \ldots, T_n]$ and $\mathcal{R}(I) \simeq S/J$.
- Let \mathcal{I}_s denote the set of all non-decreasing sequences of integers $\alpha = (i_1, \dots, i_s)$ of length s.

- Let k be a field and let $l = (f_1, \ldots, f_n) \subset R = k[x_1, \ldots, x_d]$ be a square-free monomial ideal generated in degree 2.
- Let $S = R[T_1, \ldots, T_n]$ and $\mathcal{R}(I) \simeq S/J$.
- Let \mathcal{I}_s denote the set of all non-decreasing sequences of integers $\alpha = (i_1, \dots, i_s)$ of length s.
- Let $f_{\alpha} = f_{i_1} \cdots f_{i_s} \in I$ and $T_{\alpha} = T_{i_1} \cdots T_{i_s} \in S$.

- Let k be a field and let $l = (f_1, \ldots, f_n) \subset R = k[x_1, \ldots, x_d]$ be a square-free monomial ideal generated in degree 2.
- Let $S = R[T_1, \ldots, T_n]$ and $\mathcal{R}(I) \simeq S/J$.
- Let \mathcal{I}_s denote the set of all non-decreasing sequences of integers $\alpha = (i_1, \dots, i_s)$ of length s.
- Let $f_{\alpha} = f_{i_1} \cdots f_{i_s} \in I$ and $T_{\alpha} = T_{i_1} \cdots T_{i_s} \in S$.
- Then $J = SJ_1 + S(\bigcup_{i=2}^{\infty} P_s)$, where

$$P_s = \{T_{\alpha} - T_{\beta} \mid f_{\alpha} = f_{\beta}, \text{ for some } \alpha, \beta \in \mathcal{I}_s\}$$

- Let k be a field and let $l = (f_1, \ldots, f_n) \subset R = k[x_1, \ldots, x_d]$ be a square-free monomial ideal generated in degree 2.
- Let $S = R[T_1, \ldots, T_n]$ and $\mathcal{R}(I) \simeq S/J$.
- Let \mathcal{I}_s denote the set of all non-decreasing sequences of integers $\alpha = (i_1, \dots, i_s)$ of length s.
- Let $f_{\alpha} = f_{i_1} \cdots f_{i_s} \in I$ and $T_{\alpha} = T_{i_1} \cdots T_{i_s} \in S$.
- Then $J = SJ_1 + S(\bigcup_{i=2}^{\infty} P_s)$, where

$$P_s = \{T_{\alpha} - T_{\beta} \mid f_{\alpha} = f_{\beta}, \text{ for some } \alpha, \beta \in \mathcal{I}_s\}$$

= $\{T_{\alpha} - T_{\beta} \mid \alpha, \beta \text{ form an even closed walk} \}$

Theorem (D. Taylor)

• Let R be a polynomial ring over a field and I be a monomial ideal.

- Let R be a polynomial ring over a field and I be a monomial ideal.
- Let $f_1, ..., f_n$ be a minimal monomial generating set of I and let $S = R[T_1, ..., T_n]$.

- Let R be a polynomial ring over a field and I be a monomial ideal.
- Let f_1, \ldots, f_n be a minimal monomial generating set of I and let $S = R[T_1, \ldots, T_n]$. Let $\mathcal{R}(I) \simeq S/J$.

- Let R be a polynomial ring over a field and I be a monomial ideal.
- Let f_1, \ldots, f_n be a minimal monomial generating set of I and let $S = R[T_1, \ldots, T_n]$. Let $\mathcal{R}(I) \simeq S/J$.
- $\begin{array}{l} \bullet \;\; \textit{Let} \; \textit{T}_{\alpha,\beta} = \frac{\textit{f}_{\beta}}{\gcd(\textit{f}_{\alpha},\textit{f}_{\beta})} \textit{T}_{\alpha} \frac{\textit{f}_{\alpha}}{\gcd(\textit{f}_{\alpha},\textit{f}_{\beta})} \textit{T}_{\beta} \textit{, where} \\ \alpha,\beta \in \mathcal{I}_{\mathtt{S}}. \end{array}$

- Let R be a polynomial ring over a field and I be a monomial ideal.
- Let $f_1, ..., f_n$ be a minimal monomial generating set of I and let $S = R[T_1, ..., T_n]$. Let $\mathcal{R}(I) \simeq S/J$.
- $\begin{array}{l} \bullet \;\; \textit{Let} \; \textit{T}_{\alpha,\beta} = \frac{\textit{f}_{\beta}}{\gcd(\textit{f}_{\alpha},\textit{f}_{\beta})} \textit{T}_{\alpha} \frac{\textit{f}_{\alpha}}{\gcd(\textit{f}_{\alpha},\textit{f}_{\beta})} \textit{T}_{\beta} \textit{, where} \\ \alpha,\beta \in \mathcal{I}_{\texttt{S}}. \end{array}$
- Then $J = SJ_1 + S \cdot (\bigcup_{i=2}^{\infty} J_i)$, where $J_s = \{T_{\alpha,\beta} \mid \alpha, \beta \in \mathcal{I}_s\}$.

A degree 3 example

Example (Villarreal)

• Let $R = k[x_1, ..., x_7]$ and let I be the ideal of R generated by $f_1 = x_1x_2x_3$, $f_2 = x_2x_4x_5$, $f_3 = x_5x_6x_7$, $f_4 = x_3x_6x_7$.

A degree 3 example

Example (Villarreal)

- Let $R = k[x_1, ..., x_7]$ and let I be the ideal of R generated by $f_1 = x_1x_2x_3$, $f_2 = x_2x_4x_5$, $f_3 = x_5x_6x_7$, $f_4 = x_3x_6x_7$.
- ullet Then the defining equations of $\mathcal{R}(I)$ are generated by

$$\begin{aligned} x_3 T_3 - x_5 T_4, x_6 x_7 T_1 - x_1 x_2 T_4, x_6 x_7 T_2 - x_2 x_4 T_3, \\ x_4 x_5 T_1 - x_1 x_3 T_2, \underbrace{x_4 T_1 T_3 - x_1 T_2 T_4}. \end{aligned}$$

A degree 3 example

Example (Villarreal)

- Let $R = k[x_1, ..., x_7]$ and let I be the ideal of R generated by $f_1 = x_1x_2x_3$, $f_2 = x_2x_4x_5$, $f_3 = x_5x_6x_7$, $f_4 = x_3x_6x_7$.
- ullet Then the defining equations of $\mathcal{R}(I)$ are generated by

$$\begin{aligned} x_3 T_3 - x_5 T_4, x_6 x_7 T_1 - x_1 x_2 T_4, x_6 x_7 T_2 - x_2 x_4 T_3, \\ x_4 x_5 T_1 - x_1 x_3 T_2, \underbrace{x_4 T_1 T_3 - x_1 T_2 T_4}. \end{aligned}$$

• Notice that other than the linear relations there is also a relation in degree 2.

Construction

• Let $R = k[x_1, ..., x_d]$ be a polynomial ring over a field k.

- Let $R = k[x_1, ..., x_d]$ be a polynomial ring over a field k.
- Let I be a square-free monomial ideal in R generated in the same degree.

- Let R = k[x₁,...,x_d] be a polynomial ring over a field k.
- Let I be a square-free monomial ideal in R generated in the same degree.
- Let f₁,..., f_n be a minimal monomial generating set of I.

Construction

- Let $R = k[x_1, ..., x_d]$ be a polynomial ring over a field k.
- Let I be a square-free monomial ideal in R generated in the same degree.
- Let f₁,..., f_n be a minimal monomial generating set of I.

We construct the following graph G(I):

- Let $R = k[x_1, ..., x_d]$ be a polynomial ring over a field k.
- Let I be a square-free monomial ideal in R generated in the same degree.
- Let f₁,..., f_n be a minimal monomial generating set of I.
 We construct the following graph G(I):
- For each f_i monomial generator of I we associate a vertex y_i.

- Let R = k[x₁,..., x_d] be a polynomial ring over a field k.
- Let I be a square-free monomial ideal in R generated in the same degree.
- Let f₁,..., f_n be a minimal monomial generating set of I.
 We construct the following graph G(I):
- For each f_i monomial generator of I we associate a vertex y_i.
- When $gcd(f_i, f_j) \neq 1$, then we connect the vertices y_i and y_j and create the edge $\{y_i, y_j\}$.

- Let R = k[x₁,..., x_d] be a polynomial ring over a field k.
- Let I be a square-free monomial ideal in R generated in the same degree.
- Let f₁,..., f_n be a minimal monomial generating set of I.
 We construct the following graph G(I):
- For each f_i monomial generator of I we associate a vertex y_i.
- When $gcd(f_i, f_j) \neq 1$, then we connect the vertices y_i and y_i and create the edge $\{y_i, y_i\}$.
- We call the graph $\widetilde{G}(I)$ the generator graph of I.

Example

• Recall that $R = k[x_1, ..., x_7]$ and I be the ideal of R generated by $f_1 = x_1x_2x_3$, $f_2 = x_2x_4x_5$, $f_3 = x_5x_6x_7$, $f_4 = x_3x_6x_7$.

- Recall that $R = k[x_1, ..., x_7]$ and I be the ideal of R generated by $f_1 = x_1x_2x_3$, $f_2 = x_2x_4x_5$, $f_3 = x_5x_6x_7$, $f_4 = x_3x_6x_7$.
- We construct the generator graph of *I*:

- Recall that $R = k[x_1, ..., x_7]$ and I be the ideal of R generated by $f_1 = x_1x_2x_3$, $f_2 = x_2x_4x_5$, $f_3 = x_5x_6x_7$, $f_4 = x_3x_6x_7$.
- We construct the generator graph of *I*:

$$f_1 = x_1x_2x_3 \bullet \qquad \bullet f_2 = x_2x_4x_5$$

$$f_4 = x_3x_6x_7 \bullet \qquad \bullet f_3 = x_5x_6x_7$$

- Recall that $R = k[x_1, ..., x_7]$ and I be the ideal of R generated by $f_1 = x_1x_2x_3$, $f_2 = x_2x_4x_5$, $f_3 = x_5x_6x_7$, $f_4 = x_3x_6x_7$.
- We construct the generator graph of *I*:

$$f_1 = x_1 x_2 x_3$$
 $f_2 = x_2 x_4 x_5$
 $f_4 = x_3 x_6 x_7$
 $f_3 = x_5 x_6 x_7$

Example

- Recall that $R = k[x_1, ..., x_7]$ and I be the ideal of R generated by $f_1 = x_1x_2x_3$, $f_2 = x_2x_4x_5$, $f_3 = x_5x_6x_7$, $f_4 = x_3x_6x_7$.
- We construct the generator graph of *I*:

$$f_1 = x_1 x_2 x_3$$
 $f_2 = x_2 x_4 x_5$
 $f_4 = x_3 x_6 x_7$
 $f_3 = x_5 x_6 x_7$

• Recall that the defining equations of $\mathcal{R}(I)$ are generated by J_1 and $x_4T_1T_3 - x_1T_2T_4$.

- Recall that $R = k[x_1, ..., x_7]$ and I be the ideal of R generated by $f_1 = x_1x_2x_3$, $f_2 = x_2x_4x_5$, $f_3 = x_5x_6x_7$, $f_4 = x_3x_6x_7$.
- We construct the generator graph of *I*:

$$f_1 = x_1 x_2 x_3$$
 $f_2 = x_2 x_4 x_5$
 $f_4 = x_3 x_6 x_7$
 $f_3 = x_5 x_6 x_7$

- Recall that the defining equations of $\mathcal{R}(I)$ are generated by J_1 and $x_4T_1T_3 x_1T_2T_4$.
- Let $\alpha = (1,3)$ and $\beta = (2,4)$. Then $T_{\alpha,\beta} = x_4 T_1 T_3 x_1 T_2 T_4 \in J$.

Theorem (F-K.N. Lin)

 Let G be the generator graph of I, where I is a square-free monomial ideal generated in the same degree.

Theorem (F-K.N. Lin)

- Let G be the generator graph of I, where I is a square-free monomial ideal generated in the same degree.
- We assume that the connected components of G are all subgraphs of G with at most 4 vertices.

Theorem (F-K.N. Lin)

- Let G be the generator graph of I, where I is a square-free monomial ideal generated in the same degree.
- We assume that the connected components of G are all subgraphs of G with at most 4 vertices.
- Then the defining ideal of $\mathcal{R}(I)$ is generated by J_1 and binomials $T_{\alpha,\beta}$ that correspond to the squares of G.

Theorem (F-K.N. Lin)

- Let G be the generator graph of I, where I is a square-free monomial ideal generated in the same degree.
- We assume that the connected components of G are all subgraphs of G with at most 4 vertices.
- Then the defining ideal of $\mathcal{R}(I)$ is generated by J_1 and binomials $T_{\alpha,\beta}$ that correspond to the squares of G.

Remark

• By Taylor's Theorem we know that $T_{\alpha,\beta} \in J$.

Theorem (F-K.N. Lin)

- Let G be the generator graph of I, where I is a square-free monomial ideal generated in the same degree.
- We assume that the connected components of G are all subgraphs of G with at most 4 vertices.
- Then the defining ideal of $\mathcal{R}(I)$ is generated by J_1 and binomials $T_{\alpha,\beta}$ that correspond to the squares of G.

Remark

- By Taylor's Theorem we know that $T_{\alpha,\beta} \in J$.
- We show that for all $\alpha, \beta \in \mathcal{I}_s$, where $s \geq 3$ then $T_{\alpha,\beta} \in J_1 \cup J_2$.

Let R be a Noetherian ring and I an ideal of R.

- Let R be a Noetherian ring and I an ideal of R.
- The ideal I is said to be of linear type if the defining ideal J of the Rees algebra of I is generated in degree one.

- Let R be a Noetherian ring and I an ideal of R.
- The ideal I is said to be of linear type if the defining ideal J of the Rees algebra of I is generated in degree one. In other words, $\mathcal{R}(I) \simeq S/J$ and $J = J_1 S$.

- Let R be a Noetherian ring and I an ideal of R.
- The ideal I is said to be of linear type if the defining ideal J of the Rees algebra of I is generated in degree one. In other words, R(I) ≃ S/J and J = J₁S.

Theorem (Villarreal)

Let I be the edge ideal of a connected graph G.

- Let R be a Noetherian ring and I an ideal of R.
- The ideal I is said to be of linear type if the defining ideal J of the Rees algebra of I is generated in degree one. In other words, R(I) ≃ S/J and J = J₁S.

Theorem (Villarreal)

Let I be the edge ideal of a connected graph G. Then I is of linear type if and only if G is the graph of a tree or contains a unique odd cycle.

A tree is a graph with no cycles.

A tree is a graph with no cycles.

A tree is a graph with no cycles.

A forest is a disjoint union of trees.

A tree is a graph with no cycles.

A forest is a disjoint union of trees.

Theorem (F-K.N. Lin)

 Let I be a square-free monomial ideal generated in the same degree.

A tree is a graph with no cycles.

A forest is a disjoint union of trees.

Theorem (F-K.N. Lin)

- Let I be a square-free monomial ideal generated in the same degree.
- Suppose that the generator graph of I is a forest or a disjoint union of odd cycles.

A tree is a graph with no cycles.

A forest is a disjoint union of trees.

Theorem (F-K.N. Lin)

- Let I be a square-free monomial ideal generated in the same degree.
- Suppose that the generator graph of I is a forest or a disjoint union of odd cycles.
- Then I is of linear type.

Example

• Let $R = k[x_1, ..., x_{15}]$ and let I be generated by $f_1 = x_1x_2x_3x_4$, $f_2 = x_1x_5x_6x_7$, $f_3 = x_2x_8x_9x_{10}$, $f_4 = x_5x_6x_{11}x_{12}$, $f_5 = x_7x_{13}x_{14}x_{15}$.

- Let $R = k[x_1, ..., x_{15}]$ and let I be generated by $f_1 = x_1x_2x_3x_4$, $f_2 = x_1x_5x_6x_7$, $f_3 = x_2x_8x_9x_{10}$, $f_4 = x_5x_6x_{11}x_{12}$, $f_5 = x_7x_{13}x_{14}x_{15}$.
- We create the generator graph of I:

- Let $R = k[x_1, ..., x_{15}]$ and let I be generated by $f_1 = x_1x_2x_3x_4$, $f_2 = x_1x_5x_6x_7$, $f_3 = x_2x_8x_9x_{10}$, $f_4 = x_5x_6x_{11}x_{12}$, $f_5 = x_7x_{13}x_{14}x_{15}$.
- We create the generator graph of I:

$$f_4 = x_5 x_6 x_{11} x_{12} \bullet f_5 = x_7 x_{13} x_{14} x_{15}$$

 $f_2 = x_1 x_5 x_6 x_7 \bullet$
 $f_1 = x_1 x_2 x_3 x_4 \bullet \bullet f_3 = x_2 x_8 x_9 x_{10}$

- Let $R = k[x_1, ..., x_{15}]$ and let I be generated by $f_1 = x_1x_2x_3x_4$, $f_2 = x_1x_5x_6x_7$, $f_3 = x_2x_8x_9x_{10}$, $f_4 = x_5x_6x_{11}x_{12}$, $f_5 = x_7x_{13}x_{14}x_{15}$.
- We create the generator graph of I:

$$f_4 = x_5 x_6 x_{11} x_{12}$$

 $f_5 = x_7 x_{13} x_{14} x_{15}$
 $f_2 = x_1 x_5 x_6 x_7$
 $f_1 = x_1 x_2 x_3 x_4$
 $f_3 = x_2 x_8 x_9 x_{10}$

Example

- Let $R = k[x_1, ..., x_{15}]$ and let I be generated by $f_1 = x_1x_2x_3x_4$, $f_2 = x_1x_5x_6x_7$, $f_3 = x_2x_8x_9x_{10}$, $f_4 = x_5x_6x_{11}x_{12}$, $f_5 = x_7x_{13}x_{14}x_{15}$.
- We create the generator graph of I:

$$f_4 = x_5 x_6 x_{11} x_{12}$$

 $f_5 = x_7 x_{13} x_{14} x_{15}$
 $f_2 = x_1 x_5 x_6 x_7$
 $f_1 = x_1 x_2 x_3 x_4$ $f_3 = x_2 x_8 x_9 x_{10}$

 Then by the previous Theorem, I is of linear type as its generator graph is the graph of a tree.

Sketch of the Proof

• Suppose the generator graph G is the graph of a tree.

Sketch of the Proof

- Suppose the generator graph G is the graph of a tree.
- Let us assume that s = 2 and let $\alpha = (a_1, a_2)$ and $\beta = (b_1, b_2)$.

- Suppose the generator graph G is the graph of a tree.
- Let us assume that s=2 and let $\alpha=(a_1,a_2)$ and $\beta=(b_1,b_2)$. Then $f_{\alpha}=f_{a_1}f_{a_2}$ and $f_{\beta}=f_{b_1}f_{b_2}$.

- Suppose the generator graph G is the graph of a tree.
- Let us assume that s=2 and let $\alpha=(a_1,a_2)$ and $\beta=(b_1,b_2)$. Then $f_{\alpha}=f_{a_1}f_{a_2}$ and $f_{\beta}=f_{b_1}f_{b_2}$.
- We consider the following scenario:

- Suppose the generator graph G is the graph of a tree.
- Let us assume that s=2 and let $\alpha=(a_1,a_2)$ and $\beta=(b_1,b_2)$. Then $f_{\alpha}=f_{a_1}f_{a_2}$ and $f_{\beta}=f_{b_1}f_{b_2}$.
- We consider the following scenario:

$$y_{a_1}$$
 y_{a_2} y_{b_2}

- Suppose the generator graph G is the graph of a tree.
- Let us assume that s=2 and let $\alpha=(a_1,a_2)$ and $\beta=(b_1,b_2)$. Then $f_{\alpha}=f_{a_1}f_{a_2}$ and $f_{\beta}=f_{b_1}f_{b_2}$.
- We consider the following scenario:

$$y_{a_1}$$
 y_{a_2}
 y_{b_1}

• Then $\gcd(f_{\alpha}, f_{\beta}) = \frac{\gcd(f_{a_1}, f_{b_1})\gcd(f_{a_2}, f_{b_2})}{C}$ for some $C \in R$.

- Suppose the generator graph G is the graph of a tree.
- Let us assume that s=2 and let $\alpha=(a_1,a_2)$ and $\beta=(b_1,b_2)$. Then $f_{\alpha}=f_{a_1}f_{a_2}$ and $f_{\beta}=f_{b_1}f_{b_2}$.
- We consider the following scenario:

$$y_{a_1}$$
 y_{b_2}
 y_{b_2}

- Then $\gcd(f_{\alpha}, f_{\beta}) = \frac{\gcd(f_{a_1}, f_{b_1})\gcd(f_{a_2}, f_{b_2})}{C}$ for some $C \in R$.
- Then it is straightforward to see that

$$T_{lpha,eta} = rac{f_{b_2} C T_{a_2}}{\gcd(f_{a_2},f_{b_2})} [T_{a_1,b_1}] + rac{f_{a_1} C T_{b_1}}{\gcd(f_{a_1},f_{b_1})} [T_{a_2,b_2}] \in J_1$$

 Let R be a Noetherian local ring with residue field k and let I be an ideal of R.

- Let R be a Noetherian local ring with residue field k and let I be an ideal of R.
- The ring $\mathcal{F}(I) = \mathcal{R}(I) \otimes_R k$ is called the special fiber ring of I.

- Let R be a Noetherian local ring with residue field k and let I be an ideal of R.
- The ring $\mathcal{F}(I) = \mathcal{R}(I) \otimes_{R} k$ is called the special fiber ring of I. Notice that $\mathcal{F}(I) \simeq k[T_1, \ldots, T_n]/H$, for some ideal H, where $n = \mu(I)$.

- Let R be a Noetherian local ring with residue field k and let I be an ideal of R.
- The ring $\mathcal{F}(I) = \mathcal{R}(I) \otimes_R k$ is called the special fiber ring of I. Notice that $\mathcal{F}(I) \simeq k[T_1, \dots, T_n]/H$, for some ideal H, where $n = \mu(I)$.
- When R(I) ≃ S/(J₁, H) then I is called an ideal of fiber type.

- Let R be a Noetherian local ring with residue field k and let I be an ideal of R.
- The ring $\mathcal{F}(I) = \mathcal{R}(I) \otimes_R k$ is called the special fiber ring of I. Notice that $\mathcal{F}(I) \simeq k[T_1, \dots, T_n]/H$, for some ideal H, where $n = \mu(I)$.
- When R(I) ≃ S/(J₁, H) then I is called an ideal of fiber type.
- Edge ideals of graphs are ideals of fiber type.

- Let R be a Noetherian local ring with residue field k and let I be an ideal of R.
- The ring $\mathcal{F}(I) = \mathcal{R}(I) \otimes_R k$ is called the special fiber ring of I. Notice that $\mathcal{F}(I) \simeq k[T_1, \dots, T_n]/H$, for some ideal H, where $n = \mu(I)$.
- When R(I) ≃ S/(J₁, H) then I is called an ideal of fiber type.
- Edge ideals of graphs are ideals of fiber type. When I is the edge ideal of a square, the degree 2 relation is given by $T_1T_3 T_2T_4 \in H$.

- Let R be a Noetherian local ring with residue field k and let I be an ideal of R.
- The ring $\mathcal{F}(I) = \mathcal{R}(I) \otimes_R k$ is called the special fiber ring of I. Notice that $\mathcal{F}(I) \simeq k[T_1, \dots, T_n]/H$, for some ideal H, where $n = \mu(I)$.
- When R(I) ≃ S/(J₁, H) then I is called an ideal of fiber type.
- Edge ideals of graphs are ideals of fiber type. When I is the edge ideal of a square, the degree 2 relation is given by $T_1T_3 T_2T_4 \in H$.
- In the degree 3 Example of Villarreal, the generator graph was a square and the degree 2 relation was x₄T₁T₃ − x₁T₂T₄ ∉ H.

- Let R be a Noetherian local ring with residue field k and let I be an ideal of R.
- The ring $\mathcal{F}(I) = \mathcal{R}(I) \otimes_R k$ is called the special fiber ring of I. Notice that $\mathcal{F}(I) \simeq k[T_1, \dots, T_n]/H$, for some ideal H, where $n = \mu(I)$.
- When R(I) ≃ S/(J₁, H) then I is called an ideal of fiber type.
- Edge ideals of graphs are ideals of fiber type. When I is the edge ideal of a square, the degree 2 relation is given by $T_1T_3 T_2T_4 \in H$.
- In the degree 3 Example of Villarreal, the generator graph was a square and the degree 2 relation was x₄T₁T₃ − x₁T₂T₄ ∉ H. Hence I is not of fiber type.