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@ Let R be a Noetherian ring and | an ideal.

@ The Rees algebra of | is R(I) = R[It] = @ I't' C R[t].
i>0

@ The Rees algebra is the algebraic realization of the
blowup of a variety along a subvariety.

@ Itis an important tool in the birational study of
algebraic varieties, particularly in the study of
desingularization.

@ The Rees algebra facilitates the study of the
asymptotic behavior of I.

@ Integral Closure: R(1) = @it = R(I). So 1 = [R(1)].

i>0
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We will consider the following construction for the Rees
algebra
@ Letl =(fy,...,fy), S =R[Ty,...,Ty], where T; are
indeterminates.
@ There is a natural map ¢ : S — R(l) that sends T; to
fit.
@ Then R(l) ~ S/ ker ¢. Let J = ker ¢.

@ Then J = @ J; is a graded ideal. A minimal

i=1
generating set of J is often referred to as the defining
equations of the Rees algebra.
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Example in degree 2

@ Let R = K[Xy, X2, X3, Xq] @and | = (Xy1X2, X2X3, X3X4, X1X4).
® Then R(l) ~ R[Ty, T2, T3, T4]/J and J is minimally
generated by
X3T1 — X1 T2, X4 T4 — X2T3, X1 T3 — X3Ty,
X4T1 = X2T47 T1T3 = T2T4.

@ | is the edge ideal of a graph:
X1 X2

X4 X3

@ Notice that f;f; = fof4; = X1XoX3X4 and that the degree
2 relation “comes” from the “even closed walk”, in this
case the square.
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The degree 2 case

Theorem (Villarreal)

@ Let k be afield and let
| = (f1,...,fn) C R =K][Xq,...,Xq] be a square-free
monomial ideal generated in degree 2.

® LetS =R[Ty,...,Toland R(l) ~ S/J.

@ Let Z; denote the set of all non-decreasing
sequences of integers a = (i, . . .,Is) of length s.

@ Letf, =f, ---f,eland T, =T --- T, €S.

oo

@ ThenJ =SJ; + S(U Ps), where

i=2

Ps = {T,—Ts|f, =13 forsome o, € Zs}
= {T,—Tsz| a,p form an even closed walk }

>
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A generating set for the defining ideal

Theorem (D. Taylor)

@ Let R be a polynomial ring over a field and | be a
monomial ideal.

@ Letfy,...,f, be a minimal monomial generating set of
land let S = R[T4,...,Ty]. Let R(l) ~ S/J.
f f,
0 letT,3 = 0 T3, where

T —
ged(fa, fs) ¢ ged(fa, fs)
a, B € Is.

® ThenJ =SJ; +S - (U Ji), where
i=2
Js ={Tup | a,p €L}
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A degree 3 example

Example (Villarreal)

@ LetR =K][xy,...,X7] and let | be the ideal of R
generated by f; = X1XoX3, fo = XoX4Xs, f3 = X5XgX7,
f4 = X3XpX7.

@ Then the defining equations of R(l) are generated by

X3T3 — X5T4a,XeX7T1 — X1 X2 T4, XeX7 T2 — XoXa T3,
XaX5T1 — X1XaT2, X4 T1 T3 — X1 T2 T4,

@ Notice that other than the linear relations there is also
a relation in degree 2.

ot
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The Generator Graph

@ Let R =K][xy,...,Xq] be a polynomial ring over a field
K.

@ Let | be a square-free monomial ideal in R generated
in the same degree.

@ Letfy, ..., f, be a minimal monomial generating set of
l.
We construct the following graph G(1):

@ For each fi monomial generator of | we associate a
vertex ;.

@ When gcd(f;, fj) # 1, then we connect the vertices y;
and y; and create the edge {yi, y;}.

@ We call the graph CN;(I) the generator graph of I.
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Degree 3 Example revisited

@ Recall that R = K[xy,...,%7] and | be the ideal of R
generated by f; = X1XoX3, fo = XoX4Xs, f3 = X5XgX7,
f4 = X3XpX7.

@ We construct the generator graph of I:

fi = X1XoX3 fo = XoXaX5

fa = X3XgX7 f3 = X5XgX7

@ Recall that the defining equations of R(l) are
generated by J; and x4 T1 Tz — X1 ToTy.

@ Leta=(1,3)and 3 = (2,4). Then
Ta,ﬁ = X4T1T3 — X1T2T4 e J.
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Theorem (F-K.N. Lin)

@ Let G be the generator graph of I, where | is a
square-free monomial ideal generated in the same
degree.

@ We assume that the connected components of G are
all subgraphs of G with at most 4 vertices.

@ Then the defining ideal of R(l) is generated by J; and
binomials T, s that correspond to the squares of G.

>

@ By Taylor's Theorem we know that T, 5 € J.

@ We show that for all o, 5 € Zs, where s > 3 then
Ta,ﬁ € JiUd,.
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Ideals of linear type

@ Let R be a Noetherian ring and | an ideal of R.

@ The ideal | is said to be of linear type if the defining
ideal J of the Rees algebra of | is generated in
degree one.In other words, R(l) ~S/J and J = J;S.

Theorem (Villarreal)

Let | be the edge ideal of a connected graph G.
Then | is of linear type if and only if G is the graph of a
tree or contains a unique odd cycle.
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@ Atree is a graph with no cycles.

@ A forest is a disjoint union of trees.

Theorem (F-K.N. Lin)

@ Let | be a square-free monomial ideal generated in
the same degree.

@ Suppose that the generator graph of | is a forest or a
disjoint union of odd cycles.

@ Then | is of linear type.
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Example

@ Let R =K|[xy,...,X;5] and let | be generated by
f1 = X1XaX3X4, f2 = X1X5X6X7, f3 = X2XgXgX10,
f4 = XsXeX11X12, f5 = X7X13X14X15.

@ We create the generator graph of I:

fa = XsXeX11X12 fs = X7X13X14X15
fo = X1X5XeX7
f1 = X1X2X3X4 f3 = X2XgXoX10

@ Then by the previous Theorem, | is of linear type as
its generator graph is the graph of a tree.
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Sketch of the Proof

@ Suppose the generator graph G is the graph of a tree.

@ Letus assume thats = 2 and let « = (a;,a,) and
B = (b1,bz). Then f, = f,,fa, and fg = fy Ty, .
@ We consider the following scenario:

yal yaz
Yb, I—I Yb,

_ ng(fal ) fbl) ng(faz ) sz)

@ Then gcd(f,,fs) = C for some
C eR.
@ Then it is straightforward to see that
fp,CTa fa,CTp
Ta :#Tll—i_#-rzze‘]
’ ng(fazﬁ sz)[ b ] ng(fap fbl)[ a2 ] '
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@ Let R be a Noetherian local ring with residue field k
and let | be an ideal of R.

@ The ring F(I) = R(l) ®r K is called the special fiber
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Ideals of fiber type

@ Let R be a Noetherian local ring with residue field k
and let | be an ideal of R.

@ The ring F(I) = R(l) ®r K is called the special fiber
ring of I. Notice that (1) ~ k[Ty, ..., T,]/H, for some
ideal H, where n = y(1).

® When R(l) ~ S/(J1,H) then | is called an ideal of
fiber type.

@ Edge ideals of graphs are ideals of fiber type.When |
is the edge ideal of a square, the degree 2 relation is
given by T, T3 — T,T4 € H.

@ In the degree 3 Example of Villarreal, the generator
graph was a square and the degree 2 relation was
X4T1T3 — X1 T,T4 € H. Hence | is not of fiber type.




