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Rees algebras

This is joint work with Kuei-Nuan Lin.

Let R be a Noetherian ring and I an ideal.

The Rees algebra of I is R(I) = R[It ] = ⊕
i≥0

I i t i ⊂ R[t ].

The Rees algebra is the algebraic realization of the
blowup of a variety along a subvariety.

It is an important tool in the birational study of
algebraic varieties, particularly in the study of
desingularization.

The Rees algebra facilitates the study of the
asymptotic behavior of I.

Integral Closure: R(I) = ⊕
i≥0

I i t i = R(I). So I = [R(I)]1.



An alternate description

We will consider the following construction for the Rees
algebra



An alternate description

We will consider the following construction for the Rees
algebra

Let I = (f1, . . . , fn), S = R[T1, . . . , Tn], where Ti are
indeterminates.



An alternate description

We will consider the following construction for the Rees
algebra

Let I = (f1, . . . , fn), S = R[T1, . . . , Tn], where Ti are
indeterminates.

There is a natural map φ : S −→ R(I) that sends Ti to
fi t .



An alternate description

We will consider the following construction for the Rees
algebra

Let I = (f1, . . . , fn), S = R[T1, . . . , Tn], where Ti are
indeterminates.

There is a natural map φ : S −→ R(I) that sends Ti to
fi t .

Then R(I) ≃ S/ ker φ.



An alternate description

We will consider the following construction for the Rees
algebra

Let I = (f1, . . . , fn), S = R[T1, . . . , Tn], where Ti are
indeterminates.

There is a natural map φ : S −→ R(I) that sends Ti to
fi t .

Then R(I) ≃ S/ ker φ. Let J = ker φ.



An alternate description

We will consider the following construction for the Rees
algebra

Let I = (f1, . . . , fn), S = R[T1, . . . , Tn], where Ti are
indeterminates.

There is a natural map φ : S −→ R(I) that sends Ti to
fi t .

Then R(I) ≃ S/ ker φ. Let J = ker φ.

Then J =
∞⊕

i=1
Ji is a graded ideal.



An alternate description

We will consider the following construction for the Rees
algebra

Let I = (f1, . . . , fn), S = R[T1, . . . , Tn], where Ti are
indeterminates.

There is a natural map φ : S −→ R(I) that sends Ti to
fi t .

Then R(I) ≃ S/ ker φ. Let J = ker φ.

Then J =
∞⊕

i=1
Ji is a graded ideal. A minimal

generating set of J is often referred to as the defining
equations of the Rees algebra.
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generated by
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Notice that f1f3 = f2f4 = x1x2x3x4 and that the degree
2 relation “comes” from the “even closed walk”, in this
case the square.
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The degree 2 case

Theorem (Villarreal)

Let k be a field and let
I = (f1, . . . , fn) ⊂ R = k [x1, . . . , xd ] be a square-free
monomial ideal generated in degree 2.

Let S = R[T1, . . . , Tn] and R(I) ≃ S/J.

Let Is denote the set of all non-decreasing
sequences of integers α = (i1, . . . , is) of length s.

Let fα = fi1 · · · fis ∈ I and Tα = Ti1 · · ·Tis ∈ S.

Then J = SJ1 + S(
∞⋃

i=2
Ps), where

Ps = {Tα − Tβ | fα = fβ, for some α, β ∈ Is}

= {Tα − Tβ | α, β form an even closed walk }
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A generating set for the defining ideal

Theorem (D. Taylor)

Let R be a polynomial ring over a field and I be a
monomial ideal.

Let f1, . . . , fn be a minimal monomial generating set of
I and let S = R[T1, . . . , Tn]. Let R(I) ≃ S/J.

Let Tα,β =
fβ

gcd(fα, fβ)
Tα −

fα
gcd(fα, fβ)

Tβ, where

α, β ∈ Is.

Then J = SJ1 + S · (
∞⋃

i=2
Ji), where

Js = {Tα,β | α, β ∈ Is}.
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A degree 3 example

Example (Villarreal)

Let R = k [x1, . . . , x7] and let I be the ideal of R
generated by f1 = x1x2x3, f2 = x2x4x5, f3 = x5x6x7,
f4 = x3x6x7.

Then the defining equations of R(I) are generated by

x3T3 − x5T4, x6x7T1 − x1x2T4, x6x7T2 − x2x4T3,

x4x5T1 − x1x3T2, x4T1T3 − x1T2T4.

Notice that other than the linear relations there is also
a relation in degree 2.
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The Generator Graph

Construction

Let R = k [x1, . . . , xd ] be a polynomial ring over a field
k.

Let I be a square-free monomial ideal in R generated
in the same degree.

Let f1, . . . , fn be a minimal monomial generating set of
I.
We construct the following graph G̃(I):

For each fi monomial generator of I we associate a
vertex yi .

When gcd(fi , fj) 6= 1, then we connect the vertices yi

and yj and create the edge {yi , yj}.

We call the graph G̃(I) the generator graph of I.
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Recall that R = k [x1, . . . , x7] and I be the ideal of R
generated by f1 = x1x2x3, f2 = x2x4x5, f3 = x5x6x7,
f4 = x3x6x7.

We construct the generator graph of I:
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f4 = x3x6x7

f1 = x1x2x3

f3 = x5x6x7

f2 = x2x4x5

Recall that the defining equations of R(I) are
generated by J1 and x4T1T3 − x1T2T4.

Let α = (1, 3) and β = (2, 4). Then
Tα,β = x4T1T3 − x1T2T4 ∈ J.
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Results

Theorem (F-K.N. Lin)

Let G be the generator graph of I, where I is a
square-free monomial ideal generated in the same
degree.

We assume that the connected components of G are
all subgraphs of G with at most 4 vertices.

Then the defining ideal of R(I) is generated by J1 and
binomials Tα,β that correspond to the squares of G.

Remark
By Taylor’s Theorem we know that Tα,β ∈ J.

We show that for all α, β ∈ Is, where s ≥ 3 then
Tα,β ∈ J1 ∪ J2.
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Ideals of linear type

Let R be a Noetherian ring and I an ideal of R.

The ideal I is said to be of linear type if the defining
ideal J of the Rees algebra of I is generated in
degree one.In other words, R(I) ≃ S/J and J = J1S.

Theorem (Villarreal)

Let I be the edge ideal of a connected graph G.
Then I is of linear type if and only if G is the graph of a
tree or contains a unique odd cycle.
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Classes of ideals of linear type

A tree is a graph with no cycles.
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A forest is a disjoint union of trees.

Theorem (F-K.N. Lin)

Let I be a square-free monomial ideal generated in
the same degree.

Suppose that the generator graph of I is a forest or a
disjoint union of odd cycles.

Then I is of linear type.
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Example

Let R = k [x1, . . . , x15] and let I be generated by
f1 = x1x2x3x4, f2 = x1x5x6x7, f3 = x2x8x9x10,
f4 = x5x6x11x12, f5 = x7x13x14x15.

We create the generator graph of I:

b b
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b
b

f1 = x1x2x3x4

f2 = x1x5x6x7

f3 = x2x8x9x10

f4 = x5x6x11x12 f5 = x7x13x14x15

Then by the previous Theorem, I is of linear type as
its generator graph is the graph of a tree.
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Suppose the generator graph G is the graph of a tree.

Let us assume that s = 2 and let α = (a1, a2) and
β = (b1, b2). Then fα = fa1fa2 and fβ = fb1fb2.

We consider the following scenario:

b b

b b

yb1 yb2

ya1 ya2

Then gcd(fα, fβ) =
gcd(fa1 , fb1) gcd(fa2 , fb2)

C
for some

C ∈ R.

Then it is straightforward to see that

Tα,β =
fb2CTa2

gcd(fa2 , fb2)
[Ta1,b1] +

fa1CTb1

gcd(fa1 , fb1)
[Ta2,b2] ∈ J1
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Ideals of fiber type

Let R be a Noetherian local ring with residue field k
and let I be an ideal of R.

The ring F(I) = R(I) ⊗R k is called the special fiber
ring of I. Notice that F(I) ≃ k [T1, . . . , Tn]/H, for some
ideal H, where n = µ(I).

When R(I) ≃ S/(J1, H) then I is called an ideal of
fiber type.

Edge ideals of graphs are ideals of fiber type.When I
is the edge ideal of a square, the degree 2 relation is
given by T1T3 − T2T4 ∈ H.

In the degree 3 Example of Villarreal, the generator
graph was a square and the degree 2 relation was
x4T1T3 − x1T2T4 6∈ H. Hence I is not of fiber type.


