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algebras is a special case of a derived equivalence.

Question: Are the conjectures preserved under any derived equivalence of
Noetherian rings?

Goal: To show that the answer is yes for the Generalized AR Conjecture.
This gives 1/2 of Wei's result as a special case.

Remark: This has also been shown independently by S. Pan and J. Wei.
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Definition A nonempty subcategory C C T is thick if it is a triangulated
subcategory closed under direct summands. If B C T is any class of
objects, Thick(B) is smallest thick subcategory of T containing B.

Example In D?(R), Thick(R) consists of the perfect complexes, i.e., all
complexes that are quasi-isomorphic to bounded complexes of projective
modules.

Lemma (Thick-Perp)

For any classes B,C C T:
Q B and B+ are thick, and
@ B L Cifand only if Thick(B) L Thick(C).
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Using the triangle
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and the ‘Thick-Perp’ Lemma one can show

Proposition

M L M and M L Thick(R) iff. Ext(QM, QM) = 0 = Extk(QM, R) for
all i > 0.

This gives the following:

The Gen. AR Conj. holds for R if and only if D?(Gen. AR Conj.) holds for
R.
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Gorenstein rings and stable derived categories

The stable derived category of R is:

_ _DA(R)
Di(R) = Thick(R)

If R and S are stably derived equivalent Gorenstein rings, then the Gen.
AR Conj. holds for R is and only if it holds for S.
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