How do maximal Cohen-Macaulay modules behave over rings of infinite Cohen-Macaulay type?

Silvia Saccon

University of Arizona

Special Session on Commutative Algebra AMS Fall Central Section Meeting Lincoln, NE October 14, 2011

Outline

- Introduction
- 2 Preliminaries
 - Setup
 - The plan
- 3 The monoid $\mathfrak{C}(R)$
 - Structure of $\mathfrak{C}(R)$
 - Elasticity of $\mathfrak{C}(R)$

Introduction

Given

- a commutative ring R and
- a class C of R-modules closed under isomorphism, finite direct sums and direct summands,

what can we say about direct-sum behavior of modules in C?

The Krull-Remak-Schmidt property (KRS) holds for $\mathcal C$ if, whenever

$$M_1 \oplus M_2 \oplus \cdots \oplus M_r \cong N_1 \oplus N_2 \oplus \cdots \oplus N_s$$

for indecomposable M_i , $N_j \in \mathcal{C}$, then

- $M_i \cong N_i$ for all i (after re-indexing).

Introduction

Fact (Swan, 1970). The KRS property holds for the class of finitely generated modules over a **complete** local ring.

• There are examples of non-complete local rings for which direct-sum decompositions of finitely generated modules can be non-unique.

Question

How can we describe the direct-sum behavior of modules over **non-complete** local rings?

Setup

- (R, \mathfrak{m}, k) : one-dimensional analytically unramified local ring.
- Class of maximal Cohen-Macaulay *R*-modules.
 - ♦ In this context, a maximal Cohen-Macaulay (MCM) R-module is a non-zero finitely generated torsion-free R-module.

The plan

Goal: study direct-sum behavior of MCM modules.

Approach: describe the **monoid** $\mathfrak{C}(R)$.

⋄ $\mathfrak{C}(R)$: monoid of isomorphism classes of MCM R-modules (together with [0]) with operation $[M] + [N] = [M \oplus N]$.

Key: study the rank of modules.

- ♦ **Monoid:** commutative cancellative (additive) semigroup with identity 0. (We always assume $x + y = 0 \implies x = y = 0$.)
- \diamond **Rank:** The **rank of** M is the tuple (r_1, \ldots, r_s) , where $r_i := \dim_{R_{P_i}} M_{P_i}, P_i \in \mathsf{MinSpec}(R)$.

The monoid $\mathfrak{C}(R)$

• The natural map

$$R-\mathrm{mod} o \widehat{R}-\mathrm{mod}$$
, sending $M o \widehat{M}$, induces an embedding

$$\mathfrak{C}(R) \hookrightarrow \mathfrak{C}(\widehat{R})$$
, sending $[M] \to [\widehat{M}]$.

- $\mathfrak{C}(\widehat{R}) \cong \mathbb{N}^{(\Lambda)}$.
 - \diamond Λ : set of isomorphism classes of indecomposable MCM \widehat{R} -modules.
- $q := |\operatorname{MinSpec} \widehat{R}| |\operatorname{MinSpec} R|$, splitting number of R.

The monoid $\mathfrak{C}(R)$

Fact (Levy-Odenthal, 1996).

- (R, \mathfrak{m}) : one-dimensional analytically unramifed local ring.
- M: finitely generated \widehat{R} -module.

Then:

 $M \cong \widehat{N}$ for some R-module $N \iff \operatorname{rank}_P M = \operatorname{rank}_Q M$ whenever P, Q are minimal primes of \widehat{R} lying over the same minimal prime of R.

As a consequence:

$$\mathfrak{C}(R) \cong egin{cases} \mathbb{N}^{(\Lambda)} & ext{if } q = 0, \ \operatorname{Ker}(\mathcal{A}(R)) \cap \mathbb{N}^{(\Lambda)} & ext{if } q \geq 1. \end{cases}$$

Construction of A(R)

- P_1, \ldots, P_s : minimal prime ideals of R
- $Q_{i,1}, \ldots, Q_{i,t_i}$: minimal prime ideals of \widehat{R} lying over P_i .
- M: indecomposable MCM \widehat{R} -module of rank

$$(r_{1,1},\ldots,r_{1,t_1},\ldots,r_{s,1},\ldots,r_{s,t_s}), \qquad r_{i,j}={\sf rank}_{Q_{i,j}}(M).$$

• Set $\mathcal{A}(R)$ to be the $q \times |\Lambda|$ integer matrix, where the column indexed by [M] is

$$\begin{bmatrix} r_{1,1} - r_{1,2} & \cdots & r_{1,1} - r_{1,t_1} & \cdots & r_{s,1} - r_{s,2} & \cdots & r_{s,1} - r_{s,t_s} \end{bmatrix}^T$$
.

Structure of $\mathfrak{C}(R)$

Theorem (Baeth, Saccon)

- (R, \mathfrak{m}, k) : one-dimensional analytically unramified local ring.
- $q \ge 1$: splitting number of R.
- Λ : set of isomorphism classes of indecomposable MCM \widehat{R} -modules.
- Assume there is at least one $Q \in \mathsf{MinSpec}(\widehat{R})$ such that \widehat{R}/Q has infinite CM type.

Then $\mathfrak{C}(R) \cong \operatorname{Ker}(\mathcal{A}(R)) \cap \mathbb{N}^{(\Lambda)}$, where

$$\mathcal{A}(R) = [\mathcal{T} \mid \mathcal{W} \mid \mathcal{V} \mid \mathcal{U}].$$

Structure of $\mathfrak{C}(R)$

Theorem (Part 2)

• Assume either q=1 or there is $P\in \mathsf{MinSpec}(R)$ such that \widehat{R}/Q has infinite CM type for all $Q\in \mathsf{MinSpec}(\widehat{R})$ lying over P.

Then A(R) contains $|k| \cdot |\mathbb{N}|$ copies of an enumeration of $\mathbb{Z}^{(q)}$.

Factorizations

Let H be an atomic monoid, and let $h \in H$, $h \neq 0$.

• The **set of lengths of** *h* is

$$\mathsf{L}(h) := \{ n \mid h = a_1 + \dots + a_n \text{ for atoms } a_i \in H \}.$$

• Elasticity of $h \in H$:

$$\rho(h) := \frac{\sup \mathsf{L}(h)}{\inf \mathsf{L}(h)}.$$

• Elasticity of H:

$$\rho(H) := \sup \{ \rho(h) \mid h \in H \setminus \{0\} \}.$$

• H is fully elastic if

$$\mathcal{R}(H) = \mathbb{Q} \cap [1, \rho(H)],$$

where $\mathcal{R}(H) := \{ \rho(h) \mid h \in H \setminus \{0\} \}.$

Elasticity of $\mathfrak{C}(R)$

Theorem (Baeth, Saccon)

- (R, \mathfrak{m}, k) : one-dimensional analytically unramified local ring.
- q: splitting number of R.
- Assume there is at least one $Q \in \mathsf{MinSpec}(\widehat{R})$ such that \widehat{R}/Q has infinite CM type.
- If q = 0, then $\mathfrak{C}(R)$ is free, and $\rho(\mathfrak{C}(R)) = 1$.
- ② If $q \ge 1$, then $\rho(\mathfrak{C}(R)) = \infty$.

Elasticity of $\mathfrak{C}(R)$

Sketch of proof.

- Assume $q \ge 1$.
- ullet There exist indecomposable MCM \widehat{R} -modules A and B of rank

rank
$$A = (0, 1, 0, \dots, 0)$$
 and rank $B = (1, 0, 1, \dots, 1)$.

• Fix positive integers n and m > n. There exist indecomposable MCM \widehat{R} -modules $C_{m,n}$ and $D_{m,n}$ of rank

rank
$$C_{m,n} = (m + n, m, m + n, ..., m + n),$$

rank $D_{m,n} = (m, m + n, m, ..., m).$

• Consider the following \widehat{R} -modules:

$$A \oplus B$$
, $C_{m,n} \oplus D_{m,n}$, $A^{(n)} \oplus C_{m,n}$, $B^{(n)} \oplus D_{m,n}$.

Elasticity of $\mathfrak{C}(R)$

Sketch of proof (continued).

• Levy-Odenthal \Longrightarrow there exist indecomposable MCM *R*-modules *X*, *Y*, *Z* and *W* such that

$$\widehat{X} \cong A \oplus B,$$
 $\widehat{Y} \cong C_{m,n} \oplus D_{m,n},$ $\widehat{Z} \cong A^{(n)} \oplus C_{m,n},$ $\widehat{W} \cong B^{(n)} \oplus D_{m,n}.$

• By faithfully flat descent of isomorphism:

$$X^{(n)} \oplus Y \cong Z \oplus W$$
.

• Thus
$$\rho(\mathfrak{C}(R)) = \infty$$
.

More results on $\mathfrak{C}(R)$

Theorem (Baeth, Saccon)

- (R, \mathfrak{m}, k) : one-dimensional analytically unramified local ring
- $q \ge 1$: splitting number of R.
- Assume there is at least one $Q \in \mathsf{MinSpec}(\widehat{R})$ such that \widehat{R}/Q has infinite CM type.
- Assume either q=1 or there is $P\in \mathsf{MinSpec}(R)$ such that \widehat{R}/Q has infinite CM type for all $Q\in \mathsf{MinSpec}(\widehat{R})$ lying over P.

Given an arbitrary non-empty finite set $L \subseteq \{2,3,\ldots\}$, there exists a MCM R-module M such that M is the direct sum of I indecomposable MCM R-modules $\iff I \in L$.

More results on $\mathfrak{C}(R)$

Corollary

Under the same hypotheses, $\mathfrak{C}(R)$ has infinite elasticity and, in addition, is fully elastic.

Recall: H is fully elastic if $\mathcal{R}(H) = \mathbb{Q} \cap [1, \infty)$, where $\mathcal{R}(H) := \{\rho(h) \mid h \in H \setminus \{0\}\}$.