The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differential posets

On the Interval Property in algebra and combinatorics

FABRIZIO ZANELLO
(MIT and Michigan Tech)

AMS Meeting of Lincoln, NE October 15, 2011

References

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differential posets

Many colleagues to acknowledge. Discussion will involve:

- FZ: Interval Conjectures for level Hilbert functions, J. Algebra **321** (2009), no. 10, 2705-2715;
- M. Boij, J. Migliore, R. Mirò-Roig, U. Nagel, FZ: On the shape of a pure O-sequence, Memoirs AMS, to appear (arXiv:1003.3825);
- T. Hà, E. Stokes, FZ: Pure O-sequences and matroid h-vectors, preprint (arXiv:1006.0325);
- R. Stanley, FZ: On the rank function of a differential poset, in preparation.

Statement

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differentia posets

We say that a class S of (possibly finite) integer sequences has the Interval Property if, when $h, h' \in S$ coincide in all entries but one, say

$$h = (h_0, \ldots, h_{i-1}, h_i, h_{i+1}, \ldots)$$

and

$$h' = (h_0, \ldots, h_{i-1}, h_i + \alpha, h_{i+1}, \ldots)$$

for some $\alpha \geq 1$, then

$$(h_0,\ldots,h_{i-1},h_i+\beta,h_{i+1},\ldots)$$

is also in S, for all $\beta = 1, 2, \dots, \alpha - 1$.

Statement

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differentia posets

We say that a class S of (possibly finite) integer sequences has the Interval Property if, when $h, h' \in S$ coincide in all entries but one, say

$$h = (h_0, \ldots, h_{i-1}, h_i, h_{i+1}, \ldots)$$

and

$$h'=(h_0,\ldots,h_{i-1},h_i+\alpha,h_{i+1},\ldots)$$

for some $\alpha \geq 1$, then

$$(h_0,\ldots,h_{i-1},h_i+\beta,h_{i+1},\ldots)$$

is also in S, for all $\beta = 1, 2, ..., \alpha - 1$.

The Interval Property

Level and Gorenstein algebras

O-sequence

Pure f-vectors

Differentia posets

- Hilbert functions of standard graded algebras: holds (Macaulay's theorem).
- f-vectors of simplicial complexes: holds (the Kruskal-Katona theorem).
- h-vectors of Cohen-Macaulay (or shellable) simplicial complexes: holds (Stanley's theorem).
- Matroid *h*-vectors: fails. Many examples: e.g. (1,4,4 and (1,4,6) are matroid *h*-vectors, (1,4,5) is not.

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differentia posets

- Hilbert functions of standard graded algebras: holds (Macaulay's theorem).
- f-vectors of simplicial complexes: holds (the Kruskal-Katona theorem).
- h-vectors of Cohen-Macaulay (or shellable) simplicial complexes: holds (Stanley's theorem).
- Matroid *h*-vectors: fails. Many examples: e.g. (1, 4, 4 and (1, 4, 6) are matroid *h*-vectors, (1, 4, 5) is not.

The Interval Property

Level and Gorenstein algebras

O-sequence:

Pure f-vectors

Differentia posets

- Hilbert functions of standard graded algebras: holds (Macaulay's theorem).
- f-vectors of simplicial complexes: holds (the Kruskal-Katona theorem).
- h-vectors of Cohen-Macaulay (or shellable) simplicial complexes: holds (Stanley's theorem).
- Matroid *h*-vectors: fails. Many examples: e.g. (1, 4, 4) and (1, 4, 6) are matroid *h*-vectors, (1, 4, 5) is not.

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differentia posets

- Hilbert functions of standard graded algebras: holds (Macaulay's theorem).
- f-vectors of simplicial complexes: holds (the Kruskal-Katona theorem).
- h-vectors of Cohen-Macaulay (or shellable) simplicial complexes: holds (Stanley's theorem).
- Matroid h-vectors: fails. Many examples: e.g. (1,4,4) and (1,4,6) are matroid h-vectors, (1,4,5) is not.

The Interval Property

Level and Gorenstein algebras

Pure O-sequence:

Pure f-vectors

Differentia posets

- Hilbert functions of standard graded algebras: holds (Macaulay's theorem).
- f-vectors of simplicial complexes: holds (the Kruskal-Katona theorem).
- h-vectors of Cohen-Macaulay (or shellable) simplicial complexes: holds (Stanley's theorem).
- Matroid h-vectors: fails. Many examples: e.g. (1,4,4) and (1,4,6) are matroid h-vectors, (1,4,5) is not.

The Interval Property

Level and Gorenstein algebras

Pure O-sequence

Pure f-vectors

- Interval Property first conjectured in combinatorial commutative algebra (FZ, J. Algebra, 2009), for the sets of Hilbert functions of graded artinian level and (in an obviously symmetric fashion) Gorenstein algebras.
- All known techniques (algebraic, combinatorial, homological) to study level/Gorenstein Hilbert functions seem to point in the direction of the Interval Property.
- A characterization of such Hilbert functions seems hopeless, and the Interval Property would provide a very natural, strong structural result.
- Some timid progress, but Property still wide open

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Interval Property first conjectured in combinatorial commutative algebra (FZ, J. Algebra, 2009), for the sets of Hilbert functions of graded artinian level and (in an obviously symmetric fashion) Gorenstein algebras.
- All known techniques (algebraic, combinatorial, homological) to study level/Gorenstein Hilbert functions seem to point in the direction of the Interval Property.
- A characterization of such Hilbert functions seems hopeless, and the Interval Property would provide a very natural, strong structural result.
- Some timid progress, but Property still wide open.

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Interval Property first conjectured in combinatorial commutative algebra (FZ, J. Algebra, 2009), for the sets of Hilbert functions of graded artinian level and (in an obviously symmetric fashion) Gorenstein algebras.
- All known techniques (algebraic, combinatorial, homological) to study level/Gorenstein Hilbert functions seem to point in the direction of the Interval Property.
- A characterization of such Hilbert functions seems hopeless, and the Interval Property would provide a very natural, strong structural result.
- Some timid progress, but Property still wide open.

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Interval Property first conjectured in combinatorial commutative algebra (FZ, J. Algebra, 2009), for the sets of Hilbert functions of graded artinian level and (in an obviously symmetric fashion) Gorenstein algebras.
- All known techniques (algebraic, combinatorial, homological) to study level/Gorenstein Hilbert functions seem to point in the direction of the Interval Property.
- A characterization of such Hilbert functions seems hopeless, and the Interval Property would provide a very natural, strong structural result.
- Some timid progress, but Property still wide open.

Property

Level and Gorenstein algebras

O-sequence:

Pure f-vectors

- A = R/I is a standard graded artinian algebra if $R = k[x_1, ..., x_r]$, $I \subset R$ is a homogeneous ideal, $\sqrt{I} = (x_1, ..., x_r)$, deg $(x_i) = 1$.
- The Hilbert function of A is $h(A) = (1, h_1, ..., h_e)$, with $h_i = \dim_k A_i$ (suppose $h_e \neq 0$, $h_{e+1} = 0$).
- The Socle of *A* is $soc(A) = 0 : (\overline{x_1}, ..., \overline{x_r}) \subset A$.
- The Socle-vector of A is $s(A) = (0, s_1, ..., s_e)$, where $s_i = \dim_k \operatorname{soc}(A)_i$.
- \blacksquare A is level (of type t) if s(A) = (0, ..., 0, t)
- *A* is Gorenstein if s(A) = (0, ..., 0, t = 1)

Property

Level and Gorenstein algebras

O-sequences

f-vectors

- A = R/I is a standard graded artinian algebra if $R = k[x_1, ..., x_r]$, $I \subset R$ is a homogeneous ideal, $\sqrt{I} = (x_1, ..., x_r)$, deg $(x_i) = 1$.
- The Hilbert function of A is $h(A) = (1, h_1, ..., h_e)$, with $h_i = \dim_k A_i$ (suppose $h_e \neq 0$, $h_{e+1} = 0$).
- The Socle of *A* is $soc(A) = 0 : (\overline{x_1}, ..., \overline{x_r}) \subset A$.
- The Socle-vector of A is $s(A) = (0, s_1, ..., s_e)$, where $s_i = \dim_k \operatorname{soc}(A)_i$.
- \blacksquare A is level (of type t) if s(A) = (0, ..., 0, t)
- *A* is Gorenstein if s(A) = (0, ..., 0, t = 1)

Property

Level and Gorenstein algebras

O-sequence:

Pure f-vectors

- A = R/I is a standard graded artinian algebra if $R = k[x_1, ..., x_r]$, $I \subset R$ is a homogeneous ideal, $\sqrt{I} = (x_1, ..., x_t)$, deg $(x_i) = 1$.
- The Hilbert function of A is $h(A) = (1, h_1, ..., h_e)$, with $h_i = \dim_k A_i$ (suppose $h_e \neq 0$, $h_{e+1} = 0$).
- The Socle of A is $soc(A) = 0 : (\overline{x_1}, ..., \overline{x_r}) \subset A$.
- The Socle-vector of A is $s(A) = (0, s_1, ..., s_e)$, where $s_i = \dim_k \operatorname{soc}(A)_i$.
- A is level (of type t) if s(A) = (0, ..., 0, t)
- **A** is Gorenstein if s(A) = (0, ..., 0, t = 1)

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- A = R/I is a standard graded artinian algebra if $R = k[x_1, ..., x_r]$, $I \subset R$ is a homogeneous ideal, $\sqrt{I} = (x_1, ..., x_r)$, deg $(x_i) = 1$.
- The Hilbert function of A is $h(A) = (1, h_1, ..., h_e)$, with $h_i = \dim_k A_i$ (suppose $h_e \neq 0$, $h_{e+1} = 0$).
- The Socle of A is $soc(A) = 0 : (\overline{x_1}, \dots, \overline{x_r}) \subset A$.
- The Socle-vector of A is $s(A) = (0, s_1, ..., s_e)$, where $s_i = \dim_k \operatorname{soc}(A)_i$.
- \blacksquare A is level (of type t) if s(A) = (0, ..., 0, t).
- \blacksquare A is Gorenstein if s(A) = (0, ..., 0, t = 1).

The Interval Property

Level and Gorenstein algebras

O-sequence:

f-vectors

- A = R/I is a standard graded artinian algebra if $R = k[x_1, ..., x_r]$, $I \subset R$ is a homogeneous ideal, $\sqrt{I} = (x_1, ..., x_r)$, deg $(x_i) = 1$.
- The Hilbert function of A is $h(A) = (1, h_1, ..., h_e)$, with $h_i = \dim_k A_i$ (suppose $h_e \neq 0$, $h_{e+1} = 0$).
- The Socle of A is $soc(A) = 0 : (\overline{x_1}, ..., \overline{x_r}) \subset A$.
- The Socle-vector of A is $s(A) = (0, s_1, ..., s_e)$, where $s_i = \dim_k \operatorname{soc}(A)_i$.
- \blacksquare A is level (of type t) if $s(A) = (0, \dots, 0, t)$.
- \blacksquare A is Gorenstein if s(A) = (0, ..., 0, t = 1).

The Interva Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- A = R/I is a standard graded artinian algebra if $R = k[x_1, ..., x_r]$, $I \subset R$ is a homogeneous ideal, $\sqrt{I} = (x_1, ..., x_r)$, deg $(x_i) = 1$.
- The Hilbert function of A is $h(A) = (1, h_1, ..., h_e)$, with $h_i = \dim_k A_i$ (suppose $h_e \neq 0$, $h_{e+1} = 0$).
- The Socle of A is $soc(A) = 0 : (\overline{x_1}, ..., \overline{x_r}) \subset A$.
- The Socle-vector of A is $s(A) = (0, s_1, ..., s_e)$, where $s_i = \dim_k \operatorname{soc}(A)_i$.
- \blacksquare A is level (of type t) if s(A) = (0, ..., 0, t).
- A is Gorenstein if s(A) = (0, ..., 0, t = 1).

The Interval Property

Level and Gorenstein algebras

Pure O-sequence

Pure f-vectors

Differentia posets Example 1.

$$A = k[x, y, z]/(x^3, y^3, z^3, xyz)$$

has Hilbert function h = (1, 3, 6, 6, 3) and socle-vector (0, 0, 0, 0, 3). Hence A is level of type 3.

■ Example 2.

$$A = \mathbb{C}[x, y, z]/(z^3, 2x^2z + 3yz^2, 2x^2y + 3y^2z, y^3, x^4)$$

Property

Level and

Gorenstein algebras

O-sequence

Pure f-vectors

Differentia posets Example 1.

$$A = k[x, y, z]/(x^3, y^3, z^3, xyz)$$

has Hilbert function h = (1, 3, 6, 6, 3) and socle-vector (0, 0, 0, 0, 3). Hence A is level of type 3.

■ Example 2.

$$A = \mathbb{C}[x, y, z]/(z^3, 2x^2z + 3yz^2, 2x^2y + 3y^2z, y^3, x^4)$$

The Interval Property

Level and Gorenstein algebras

Pure O-sequence

Pure f-vectors

Differentia posets ■ Example 1.

$$A = k[x, y, z]/(x^3, y^3, z^3, xyz)$$

has Hilbert function h = (1, 3, 6, 6, 3) and socle-vector (0, 0, 0, 0, 3). Hence A is level of type 3.

Example 2.

$$A = \mathbb{C}[x, y, z]/(z^3, 2x^2z + 3yz^2, 2x^2y + 3y^2z, y^3, x^4)$$

The Interval Property

Level and Gorenstein algebras

O-sequence

Pure f-vectors

Differentia posets ■ Example 1.

$$A = k[x, y, z]/(x^3, y^3, z^3, xyz)$$

has Hilbert function h = (1, 3, 6, 6, 3) and socle-vector (0, 0, 0, 0, 3). Hence A is level of type 3.

Example 2.

$$A = \mathbb{C}[x, y, z]/(z^3, 2x^2z + 3yz^2, 2x^2y + 3y^2z, y^3, x^4)$$

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Monomial order ideal: a nonempty, finite set X of (monic) monomials, such that whenever $M \in X$ and N divides M, then $N \in X$. (It's a special case of an order ideal in a poset.)
- The h-vector of X is its degree vector, $h = (1, h_1, \dots, h_e)$, counting the monomials of X in each degree.
- A pure *O*-sequence is the *h*-vector of a monomial order ideal *X* whose maximal (by divisibility) monomials all have the same degree.

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Monomial order ideal: a nonempty, finite set X of (monic) monomials, such that whenever M ∈ X and N divides M, then N ∈ X. (It's a special case of an order ideal in a poset.)
- The h-vector of X is its degree vector, $h = (1, h_1, \dots, h_e)$, counting the monomials of X in each degree.
- A pure O-sequence is the h-vector of a monomial order ideal X whose maximal (by divisibility) monomials all have the same degree.

The Interval Property

Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Monomial order ideal: a nonempty, finite set X of (monic) monomials, such that whenever M ∈ X and N divides M, then N ∈ X. (It's a special case of an order ideal in a poset.)
- The h-vector of X is its degree vector, $h = (1, h_1, \dots, h_e)$, counting the monomials of X in each degree.
- A pure *O*-sequence is the *h*-vector of a monomial order ideal *X* whose maximal (by divisibility) monomials all have the same degree.

The Interval Property

Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Monomial order ideal: a nonempty, finite set X of (monic) monomials, such that whenever M ∈ X and N divides M, then N ∈ X. (It's a special case of an order ideal in a poset.)
- The h-vector of X is its degree vector, $h = (1, h_1, \dots, h_e)$, counting the monomials of X in each degree.
- A pure *O*-sequence is the *h*-vector of a monomial order ideal *X* whose maximal (by divisibility) monomials all have the same degree.

The Interval Property

Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differential posets

■ The pure monomial order ideal (inside k[x, y, z]) with maximal monomials xy^3z and x^2z^3 is:

$$X = \{xy^3z, x^2z^3; y^3z, xy^2z, xy^3, xz^3, x^2z^2;$$

$$y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z;$$
 $yz, y^2, xz, xy, z^2, x^2;$

$$z, y, x;$$
 1}

Property Level and

Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differential posets

■ The pure monomial order ideal (inside k[x, y, z]) with maximal monomials xy^3z and x^2z^3 is:

$$X = \{xy^3z, x^2z^3; y^3z, xy^2z, xy^3, xz^3, x^2z^2;$$

$$y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z;$$
 $yz, y^2, xz, xy, z^2, x^2$

$$z, y, x;$$
 1}

Property Level and

Pure

O-sequences

Pure f-vectors

Differentia posets

■ The pure monomial order ideal (inside k[x, y, z]) with maximal monomials xy^3z and x^2z^3 is:

$$X = \{xy^3z, x^2z^3; y^3z, xy^2z, xy^3, xz^3, x^2z^2;$$

$$y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z; yz, y^2, xz, xy, z^2, x^2$$

$$z, y, x;$$
 1}

Level and Gorenstein

Pure

O-sequences

f-vectors

Differential posets

■ The pure monomial order ideal (inside k[x, y, z]) with maximal monomials xy^3z and x^2z^3 is:

$$X = \{xy^3z, x^2z^3; y^3z, xy^2z, xy^3, xz^3, x^2z^2;$$

$$y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z;$$
 $yz, y^2, xz, xy, z^2, x^2;$

Property
Level and

Pure

O-sequences

Pure f-vectors

Differential posets

■ The pure monomial order ideal (inside k[x, y, z]) with maximal monomials xy^3z and x^2z^3 is:

$$X = \{xy^3z, x^2z^3; y^3z, xy^2z, xy^3, xz^3, x^2z^2;$$

$$y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z; \quad yz, y^2, xz, xy, z^2, x^2;$$

$$z, y, x;$$
 1}

Level and Gorenstein

Pure O-sequences

Pure f-vectors

Differentia posets

■ The pure monomial order ideal (inside k[x, y, z]) with maximal monomials xy^3z and x^2z^3 is:

$$X = \{ \mathbf{x}\mathbf{y^3}\mathbf{z}, \mathbf{x^2}\mathbf{z^3}; \quad y^3z, xy^2z, xy^3, xz^3, x^2z^2;$$

$$y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z;$$
 $yz, y^2, xz, xy, z^2, x^2;$

Level and Gorenstein

Pure O-sequences

Pure

Differential posets

■ The pure monomial order ideal (inside k[x, y, z]) with maximal monomials xy^3z and x^2z^3 is:

$$X = \{xy^3z, x^2z^3; y^3z, xy^2z, xy^3, xz^3, x^2z^2;$$

$$y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z;$$
 $yz, y^2, xz, xy, z^2, x^2;$

$$z, y, x;$$
 1}

Property

Level and Gorenstein algebras

Pure O-sequences

Pure

f-vectors

Differentia posets

■ The pure monomial order ideal (inside k[x, y, z]) with maximal monomials xy^3z and x^2z^3 is:

$$X = \{ \mathbf{x}\mathbf{y^3}\mathbf{z}, \mathbf{x^2}\mathbf{z^3}; \quad y^3z, xy^2z, xy^3, xz^3, x^2z^2;$$

$$y^2z, y^3, xyz, xy^2, xz^2, z^3, x^2z;$$
 $yz, y^2, xz, xy, z^2, x^2;$

$$z, y, x;$$
 1}

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Equivalently, via Macaulay's inverse systems, pure O-sequences coincide with Hilbert functions of artinian monomial level algebras.
- Also for pure *O*-sequences, the Interval Property in general is open. However, very recent counterexample of M. Varbaro and A. Constantinescu in 4 variables! Conjecture confirmed in some special cases, including for socle degree *e* ≤ 3 (as from the Memoir BMMNZ).
- A helpful application: it lead to a different approach to Stanley's matroid h-vector conjecture, and a solution in rank ≤ 3 (preprint with T. Hà and E. Stokes).

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Equivalently, via Macaulay's inverse systems, pure O-sequences coincide with Hilbert functions of artinian monomial level algebras.
- Also for pure O-sequences, the Interval Property in general is open. However, very recent counterexample of M. Varbaro and A. Constantinescu in 4 variables! Conjecture confirmed in some special cases, including for socie degree e ≤ 3 (as from the Memoir BMMNZ).
- A helpful application: it lead to a different approach to Stanley's matroid h-vector conjecture, and a solution in rank ≤ 3 (preprint with T. Hà and E. Stokes).

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Equivalently, via Macaulay's inverse systems, pure
 O-sequences coincide with Hilbert functions of artinian monomial level algebras.
- Also for pure O-sequences, the Interval Property in general is open. However, very recent counterexample of M. Varbaro and A. Constantinescu in 4 variables! Conjecture confirmed in some special cases, including for socle degree e ≤ 3 (as from the Memoir BMMNZ).
- A helpful application: it lead to a different approach to Stanley's matroid h-vector conjecture, and a solution in rank ≤ 3 (preprint with T. Hà and E. Stokes).

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- Equivalently, via Macaulay's inverse systems, pure O-sequences coincide with Hilbert functions of artinian monomial level algebras.
- Also for pure O-sequences, the Interval Property in general is open. However, very recent counterexample of M. Varbaro and A. Constantinescu in 4 variables! Conjecture confirmed in some special cases, including for socle degree e < 3 (as from the Memoir BMMNZ).</p>
- A helpful application: it lead to a different approach to Stanley's matroid h-vector conjecture, and a solution in rank ≤ 3 (preprint with T. Hà and E. Stokes).

The Interval Property

Gorenstein algebras

O-sequences

Pure f-vectors

- A collection Δ of subsets of $V = \{v_1, \dots, v_n\}$ is a simplicial complex if, for each $F \in \Delta$ and $G \subseteq F$, we have $G \in \Delta$. (Again, another order ideal!)
- The elements of ∆ are faces, and the maximal faces (under inclusion) are facets.
- The *f*-vector of Δ is the vector $f(\Delta) = (1, f_0, \dots, f_{d-1})$ where f_i is the number of cardinality i + 1 faces of Δ .
- A pure *f*-vector is the *f*-vector of a simplicial complex having all facets of the same cardinality.
- Equivalently, a pure f-vector is a squarefree pure O-sequence.
- Precious little is known about the Interval Property for pure *f*-vectors.

The Interval Property

Level and Gorenstein algebras

Pure
O-sequences

Pure f-vectors

- A collection Δ of subsets of $V = \{v_1, \dots, v_n\}$ is a simplicial complex if, for each $F \in \Delta$ and $G \subseteq F$, we have $G \in \Delta$. (Again, another order ideal!)
- The elements of Δ are faces, and the maximal faces (under inclusion) are facets.
- The *f*-vector of Δ is the vector $f(\Delta) = (1, f_0, \dots, f_{d-1})$, where f_i is the number of cardinality i+1 faces of Δ .
- A pure *f*-vector is the *f*-vector of a simplicial complex having all facets of the same cardinality.
- Equivalently, a pure f-vector is a squarefree pure O-sequence.
- Precious little is known about the Interval Property for pure *f*-vectors.

The Interval Property

Level and Gorenstein algebras

Pure
O-sequences

Pure f-vectors

- A collection Δ of subsets of $V = \{v_1, \dots, v_n\}$ is a simplicial complex if, for each $F \in \Delta$ and $G \subseteq F$, we have $G \in \Delta$. (Again, another order ideal!)
- The elements of Δ are faces, and the maximal faces (under inclusion) are facets.
- The *f*-vector of Δ is the vector $f(\Delta) = (1, f_0, \dots, f_{d-1})$, where f_i is the number of cardinality i + 1 faces of Δ .
- A pure f-vector is the f-vector of a simplicial complex having all facets of the same cardinality.
- Equivalently, a pure f-vector is a squarefree pure O-sequence.
- Precious little is known about the Interval Property for pure f-vectors.

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- A collection Δ of subsets of $V = \{v_1, \dots, v_n\}$ is a simplicial complex if, for each $F \in \Delta$ and $G \subseteq F$, we have $G \in \Delta$. (Again, another order ideal!)
- The elements of Δ are faces, and the maximal faces (under inclusion) are facets.
- The *f*-vector of Δ is the vector $f(\Delta) = (1, f_0, \dots, f_{d-1})$, where f_i is the number of cardinality i + 1 faces of Δ .
- A pure f-vector is the f-vector of a simplicial complex having all facets of the same cardinality.
- Equivalently, a pure f-vector is a squarefree pure O-sequence.
- Precious little is known about the Interval Property for pure f-vectors.

The Interval Property

Gorenstein algebras

Pure O-sequences

Pure f-vectors

- A collection Δ of subsets of $V = \{v_1, \dots, v_n\}$ is a simplicial complex if, for each $F \in \Delta$ and $G \subseteq F$, we have $G \in \Delta$. (Again, another order ideal!)
- The elements of Δ are faces, and the maximal faces (under inclusion) are facets.
- The *f*-vector of Δ is the vector $f(\Delta) = (1, f_0, \dots, f_{d-1})$, where f_i is the number of cardinality i + 1 faces of Δ .
- A pure f-vector is the f-vector of a simplicial complex having all facets of the same cardinality.
- Equivalently, a pure f-vector is a squarefree pure O-sequence.
- Precious little is known about the Interval Property for pure f-vectors.

The Interval Property

Gorenstein algebras

Pure O-sequences

Pure f-vectors

- A collection Δ of subsets of $V = \{v_1, \dots, v_n\}$ is a simplicial complex if, for each $F \in \Delta$ and $G \subseteq F$, we have $G \in \Delta$. (Again, another order ideal!)
- The elements of Δ are faces, and the maximal faces (under inclusion) are facets.
- The *f*-vector of Δ is the vector $f(\Delta) = (1, f_0, \dots, f_{d-1})$, where f_i is the number of cardinality i + 1 faces of Δ .
- A pure f-vector is the f-vector of a simplicial complex having all facets of the same cardinality.
- Equivalently, a pure f-vector is a squarefree pure O-sequence.
- Precious little is known about the Interval Property for pure f-vectors.

The Interval

Level and Gorenstein algebras

O-sequence

Pure f-vectors

Differential posets

What about the Interval Property properly in enumerative combinatorics?

We just recently looked at the rank functions of *r*-differential posets, which also appear hopeless to characterize (work in preparation with R. Stanley).

- Fix $r \ge 1$, and let $P = \bigcup_{n \ge 0} P_n$ be a locally finite, graded poset with a unique element of rank zero. P is r-differential if:
 - (i) two distinct elements $x, y \in P$ cover k common elements if and only they are covered by k common elements; and
 - (ii) x ∈ P covers m elements if and only if it is covered by m + r elements.
- The rank function of *P* is

$$1, p_1 = r, p_2, \dots, p_n, \dots, |P_n|.$$

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

- What about the Interval Property properly in enumerative combinatorics?
 We just recently looked at the rank functions of r-differential posets, which also appear hopeless to characterize (work in preparation with R. Stanley).
- Fix $r \ge 1$, and let $P = \bigcup_{n \ge 0} P_n$ be a locally finite, graded poset with a unique element of rank zero. P is r-differential if:
 - (i) two distinct elements $x, y \in P$ cover k common elements if and only they are covered by k common elements; and
 - (ii) x ∈ P covers m elements if and only if it is covered by m+r elements.
- The rank function of *P* is

$$1, p_1 = r, p_2, \ldots, p_n, \ldots,$$
 where $p_n = |P_n|$.

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differential posets

- What about the Interval Property properly in enumerative combinatorics?
 We just recently looked at the rank functions of r-differential posets, which also appear hopeless to characterize (work in preparation with R. Stanley).
- Fix $r \ge 1$, and let $P = \bigcup_{n \ge 0} P_n$ be a locally finite, graded poset with a unique element of rank zero. P is r-differential if:
 - (i) two distinct elements $x, y \in P$ cover k common elements if and only they are covered by k common elements; and
 - (ii) x ∈ P covers m elements if and only if it is covered by m + r elements.
- The rank function of *P* is

$$1, p_1 = r, p_2, \ldots, p_n, \ldots,$$

where $p_n = |P_n|$.

The Interval Property

Level and Gorenstein algebras

O-sequences

Pure f-vectors

Differential posets

What about the Interval Property properly in enumerative combinatorics?
 We just recently looked at the rank functions of r-differential posets, which also appear hopeless to characterize (work in preparation with R. Stanley).

- Fix $r \ge 1$, and let $P = \bigcup_{n \ge 0} P_n$ be a locally finite, graded poset with a unique element of rank zero. P is r-differential if:
 - (i) two distinct elements $x, y \in P$ cover k common elements if and only they are covered by k common elements; and
 - (ii) x ∈ P covers m elements if and only if it is covered by m + r elements.
- The rank function of *P* is

$$1, p_1 = r, p_2, \ldots, p_n, \ldots,$$
 where $p_n = |P_n|$.

The Interval Property

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differential posets

What about the Interval Property properly in enumerative combinatorics?
 We just recently looked at the rank functions of r-differential posets, which also appear hopeless to characterize (work in preparation with R. Stanley).

- Fix $r \ge 1$, and let $P = \bigcup_{n \ge 0} P_n$ be a locally finite, graded poset with a unique element of rank zero. P is r-differential if:
 - (i) two distinct elements $x, y \in P$ cover k common elements if and only they are covered by k common elements; and
 - (ii) $x \in P$ covers m elements if and only if it is covered by m+r elements.
- The rank function of *P* is

$$1, p_1 = r, p_2, \ldots, p_n, \ldots,$$
 where $p_n = |P_n|$.

The Interval Property

Level and Gorenstein algebras

O-sequences

Pure f-vectors

- What about the Interval Property properly in enumerative combinatorics?
 We just recently looked at the rank functions of r-differential posets, which also appear hopeless to characterize (work in preparation with R. Stanley).
- Fix $r \ge 1$, and let $P = \bigcup_{n \ge 0} P_n$ be a locally finite, graded poset with a unique element of rank zero. P is r-differential if:
 - (i) two distinct elements $x, y \in P$ cover k common elements if and only they are covered by k common elements; and
 - (ii) $x \in P$ covers m elements if and only if it is covered by m + r elements.
- The rank function of P is

$$1, p_1 = r, p_2, \ldots, p_n, \ldots,$$
 where $p_n = |P_n|$.

Level and Gorenstein algebras

O-sequences

Pure f-vectors

- r-differential posets were introduced by R. Stanley (JAMS, 1988), as a class of graded posets with many remarkable combinatorial and algebraic properties.
- Famous examples include the Young lattice of integer partitions and the Fibonacci *r*-differential posets.
- The Interval Property fails in general:

$$1, 4, 14, p_3 = 60, p_4 = 254, p_5, p_6, \dots$$
 and

$$p_4, 4, 17, p_3 = 60, p_4 = 254, p_5, p_6, \dots, \text{ where}$$

$$p_i = 4p_{i-1} + p_{i-2}$$
 for $i \ge 5$, are admissible;

$$1, 4, 16, p_3 = 60, p_4 = 254, p_5, p_6, \dots$$
 is not

- Do we have the Interval Property in some interesting subcases? Especially, for 1-differential posets?
- P. Byrnes (U. of Minnesota) has computed all rank functions of 1-differential posets up to rank nine. Such sequences seem to clearly suggest that, at leas for the initial ranks, the Interval Property does hold.

Level and Gorenstein algebras

O-sequences

Pure f-vectors

- r-differential posets were introduced by R. Stanley (JAMS, 1988), as a class of graded posets with many remarkable combinatorial and algebraic properties.
- Famous examples include the Young lattice of integer partitions and the Fibonacci *r*-differential posets.
- The Interval Property fails in general:

$$1, 4, 14, p_3 = 60, p_4 = 254, p_5, p_6, \dots$$
 and $1, 4, 17, p_3 = 60, p_4 = 254, p_5, p_6, \dots$, where $p_i = 4p_i$, $p_4 + p_5$ for $i > 5$, are admissible:

1, 4, 16,
$$p_3 = 60$$
, $p_4 = 254$, p_5 , p_6 , ... is not

- Do we have the Interval Property in some interesting subcases? Especially, for 1-differential posets?
- P. Byrnes (U. of Minnesota) has computed all rank functions of 1-differential posets up to rank nine. Such sequences seem to clearly suggest that, at least for the initial ranks, the Interval Property does hold.

Level and Gorenstein algebras

O-sequences

f-vectors

- r-differential posets were introduced by R. Stanley (JAMS, 1988), as a class of graded posets with many remarkable combinatorial and algebraic properties.
- Famous examples include the Young lattice of integer partitions and the Fibonacci *r*-differential posets.
- The Interval Property fails in general:

1, 4, 14,
$$p_3=60$$
, $p_4=254$, p_5 , p_6 , ... and 1, 4, 17, $p_3=60$, $p_4=254$, p_5 , p_6 , ..., where $p_i=4p_{i-1}+p_{i-2}$ for $i\geq 5$, are admissible;

- $1, 4, 16, p_3 = 60, p_4 = 254, p_5, p_6, \dots$ is not
- Do we have the Interval Property in some interesting subcases? Especially, for 1-differential posets?
- P. Byrnes (U. of Minnesota) has computed all rank functions of 1-differential posets up to rank nine. Such sequences seem to clearly suggest that, at leas for the initial ranks, the Interval Property does hold.

Level and Gorenstein algebras

O-sequences

Pure f-vectors

- r-differential posets were introduced by R. Stanley (JAMS, 1988), as a class of graded posets with many remarkable combinatorial and algebraic properties.
- Famous examples include the Young lattice of integer partitions and the Fibonacci *r*-differential posets.
- The Interval Property fails in general:

$$1, 4, 14, p_3 = 60, p_4 = 254, p_5, p_6, \dots$$
 and

$$1,4,17, p_3=60, p_4=254, p_5, p_6, \ldots,$$
 where

$$p_i = 4p_{i-1} + p_{i-2}$$
 for $i \ge 5$, are admissible;

$$1, 4, 16, p_3 = 60, p_4 = 254, p_5, p_6, \dots$$
 is not.

- Do we have the Interval Property in some interesting subcases? Especially, for 1-differential posets?
- P. Byrnes (U. of Minnesota) has computed all rank functions of 1-differential posets up to rank nine.
 Such sequences seem to clearly suggest that, at least for the initial ranks, the Interval Property does hold.

Level and Gorenstein algebras

Pure O-sequences

Pure f-vectors

Differential posets

r-differential posets were introduced by R. Stanley (JAMS, 1988), as a class of graded posets with many remarkable combinatorial and algebraic properties.

Famous examples include the Young lattice of integer partitions and the Fibonacci r-differential posets.

■ The Interval Property fails in general:

1, 4, 14,
$$p_3 = 60$$
, $p_4 = 254$, p_5 , p_6 , ... and 1, 4, 17, $p_3 = 60$, $p_4 = 254$, p_5 , p_6 , ..., where $p_i = 4p_{i-1} + p_{i-2}$ for $i \ge 5$, are admissible; 1, 4, 16, $p_3 = 60$, $p_4 = 254$, p_5 , p_6 , ... is not.

- Do we have the Interval Property in some interesting subcases? Especially, for 1-differential posets?
- P. Byrnes (U. of Minnesota) has computed all rank functions of 1-differential posets up to rank nine. Such sequences seem to clearly suggest that, at leas for the initial ranks, the Interval Property does hold.

Level and Gorenstein algebras

O-sequences

Pure f-vectors

- r-differential posets were introduced by R. Stanley (JAMS, 1988), as a class of graded posets with many remarkable combinatorial and algebraic properties.
- Famous examples include the Young lattice of integer partitions and the Fibonacci *r*-differential posets.
- The Interval Property fails in general:

$$1, 4, 14, p_3 = 60, p_4 = 254, p_5, p_6, \dots$$
 and

$$1, 4, 17, p_3 = 60, p_4 = 254, p_5, p_6, \dots, \text{ where }$$

$$p_i = 4p_i$$
 p_i for $i > 5$ are admissible:

$$p_i = 4p_{i-1} + p_{i-2}$$
 for $i \ge 5$, are admissible;

$$1, 4, 16, p_3 = 60, p_4 = 254, p_5, p_6, \dots$$
 is not.

- Do we have the Interval Property in some interesting subcases? Especially, for 1-differential posets?
- P. Byrnes (U. of Minnesota) has computed all rank functions of 1-differential posets up to rank nine. Such sequences seem to clearly suggest that, at leas for the initial ranks, the Interval Property does hold.

Level and Gorenstein algebras

O-sequences

Pure f-vectors

Differential posets

- r-differential posets were introduced by R. Stanley (JAMS, 1988), as a class of graded posets with many remarkable combinatorial and algebraic properties.
- Famous examples include the Young lattice of integer partitions and the Fibonacci *r*-differential posets.
- The Interval Property fails in general:

$$1, 4, 14, p_3 = 60, p_4 = 254, p_5, p_6, \dots$$
 and

$$1, 4, 17, p_3 = 60, p_4 = 254, p_5, p_6, \dots, \text{ where }$$

$$p_i = 4p_{i-1} + p_{i-2}$$
 for $i > 5$, are admissible;

$$p_{l} = 4p_{l-1} + p_{l-2}$$
 for $l \ge 3$, are admissible,

$$1, 4, 16, p_3 = 60, p_4 = 254, p_5, p_6, \dots$$
 is not.

- Do we have the Interval Property in some interesting subcases? Especially, for 1-differential posets?
- P. Byrnes (U. of Minnesota) has computed all rank functions of 1-differential posets up to rank nine.

Such sequences seem to clearly suggest that, at least for the initial ranks, the Interval Property does hold.

Level and Gorensteir algebras

O-sequences

Pure f-vectors

- r-differential posets were introduced by R. Stanley (JAMS, 1988), as a class of graded posets with many remarkable combinatorial and algebraic properties.
- Famous examples include the Young lattice of integer partitions and the Fibonacci *r*-differential posets.
- The Interval Property fails in general: 1, 4, 14, $p_3 = 60$, $p_4 = 254$, p_5 , p_6 , ... and 1, 4, 17, $p_3 = 60$, $p_4 = 254$, p_5 , p_6 , ..., where $p_i = 4p_{i-1} + p_{i-2}$ for i > 5, are admissible;
 - $1, 4, 16, p_3 = 60, p_4 = 254, p_5, p_6, \dots$ is not.
- Do we have the Interval Property in some interesting subcases? Especially, for 1-differential posets?
- P. Byrnes (U. of Minnesota) has computed all rank functions of 1-differential posets up to rank nine. Such sequences seem to clearly suggest that, at least for the initial ranks, the Interval Property does hold.