Regularity of (n-2)-plane arrangements in \mathbb{P}^n with a complete bipartite incidence graph

Zach Teitler¹ Douglas A. Torrance²

¹Boise State University

²University of Idaho

October 16, 2011

Linear subspace arrangements

Let \mathbbm{k} be an algebraically closed field of characteristic 0. A **linear** subspace of \mathbb{P}^n is a variety V(I) where $I \subset R = \mathbbm{k}[x_0, \dots, x_n]$ is an ideal generated by linear forms. If a linear subspace has dimension d, then we may call it a d-plane.

Let ${\mathcal A}$ be an arrangement of linear subspaces. We define

$$V_{\mathcal{A}} = \bigcup_{X \in \mathcal{A}} X$$

$$I_{\mathcal{A}} = \bigcap_{X \in \mathcal{A}} I(X) = I(V_{\mathcal{A}})$$

Liaison Theory

Why study linear subspace arrangements?

Example

Let \mathcal{A} be a 2-plane arrangement in \mathbb{P}^4 . In this case, $V_{\mathcal{A}}$ is a surface. Given two hypersurfaces Y and Y', we may be able to construct a surface X which is **linked** to $V_{\mathcal{A}}$ by Y and Y', i.e., $V_{\mathcal{A}} \cup X = Y \cap Y'$.

The hope is to construct X satisfying certain invariants in the effort to classify surfaces in \mathbb{P}^4 .

To determine these invariants, it will be helpful to know something about the cohomology of the ideal sheaf $\widetilde{I_A}$.

Minimal graded free resolutions and graded Betti numbers

Given a graded ideal I, consider a minimal graded free resolution

$$0 \to F_p \xrightarrow{\varphi_p} F_{p-1} \xrightarrow{\varphi_{p-1}} \cdots \to F_1 \xrightarrow{\varphi_1} F_0 \xrightarrow{\varphi_0} I \to 0$$

For each i, F_i is a **graded free module**, i.e., $F_i \cong \bigoplus_i R(d_i)$

Definition

The **graded Betti numbers** of *I* are

$$\beta_{i,j} = \#$$
 of copies of $R(-j)$ in F_i

Betti tables

We may list all the graded Betti numbers of a minimal graded free resolution using a **Betti table**:

	0	1	 i	
: 1 2	$\beta_{0,1}$ $\beta_{0,2}$	$eta_{1,2} eta_{1,3}$	$\beta_{i,i+1}$ $\beta_{i,i+2}$	
: <i>j</i> :	$eta_{0,j}$	$\beta_{1,j+1}$	$\beta_{i,i+j}$	

Regularity

Definition 1

The (Castlenuovo-Mumford) regularity of a graded ideal I is

$$reg I = max{j : \beta_{i,i+j} \neq 0 \text{ for some } i}$$

Note that this is the index of the last row of the Betti table.

Definition 2

$$\operatorname{reg} I = \min\{j : h^{i}(\mathbb{P}^{n}, \tilde{I}(j-i)) = 0 \ \forall i > 0\}$$

What is known

Theorem (Derksen, Sidman (2002))

If A is a linear subspace arrangement, then

$$\operatorname{reg} I_{\mathcal{A}} \leq |\mathcal{A}|$$

This bound is sharp. For example, an arrangement of d skew lines intersecting a line L (which is not in the arrangement) in d distinct points will have a regularity of d. The Betti table for one such example with n=3, d=5 is below.

Incidence graphs

Suppose A is an (n-2)-plane arrangement in \mathbb{P}^n , $n \geq 3$. Note that if $X, Y \in A$ are distinct, then either $\operatorname{codim}(X \cap Y) = 3$ or $\operatorname{codim}(X \cap Y) = 4$.

Definition

The **incidence graph** of A is the graph $\Gamma(A)$ such that

- $V(\Gamma(A)) = A$
- $E(\Gamma(A)) = \{XY : \operatorname{codim}(X \cap Y) = 3\}$

Lines in \mathbb{P}^3

Two lines in \mathbb{P}^3 can either intersect in a point or not at all.

Note that the example we saw of d lines with regularity d above has incidence graph dK_1 , i.e., no edges.

What happens to the regularity when we impose more structure?

Complete bipartite graphs

Definition

A graph G = (V, E) is the **complete bipartite graph** $K_{a,b}$ if

- $V = V_1 \cup V_2$ where $|V_1| = a$ and $|V_2| = b$.
- If $u, v \in V_1$ or $u, v \in V_2$, then $uv \notin E$.
- If $u \in V_1$ and $v \in V_2$ or vice versa, then $uv \in E$.

Example

The complete bipartite graph $K_{2,3}$ is as follows:

Question

If $\Gamma(\mathcal{A}) = K_{a,b}$ with $a \leq b$, then what is reg $I_{\mathcal{A}}$?

Example 1

Using Macaulay 2, we can construct (n-2)-plane arrangements with the desired incidence graphs.

If n=3 and $\Gamma(\mathcal{A})=\mathcal{K}_{3,3}$, then $I_{\mathcal{A}}$ has the following Betti table:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline 2 & 1 & . \\ 3 & 1 & . \\ 4 & . & 1 \\ \end{array}$$

$$\text{reg } \textit{I}_{\mathcal{A}} = 4$$

Example 2

If n=3 and $\Gamma(\mathcal{A})=K_{5,10}$, then $I_{\mathcal{A}}$ has the following Betti table:

	0	1	2
2	1		
3			
4			
5			
6			
7			
8			
9			
10	6	10	4
	'		

$$\operatorname{\mathsf{reg}} I_{\mathcal{A}} = 10$$

The result

Theorem

If $\Gamma(A) = K_{a,b}$ with $a \le b$, then $\operatorname{reg} I_A \le \max\{a+1,b\}$, with equality when $a \ge 3$.

Sketch of proof. First, assume n=3 and $a\geq 3$. Then $\mathcal A$ consists of rulings of a quadric surface Q.

Sketch of proof, cont.

The result follows from computing cohomologies using the exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^3}(-2) \xrightarrow{\cdot Q} \widetilde{I_\mathcal{A}} \to \mathcal{I}_{\mathcal{V}_\mathcal{A} \cap \mathcal{Q}, \mathcal{Q}} \to 0$$

For a < 3, it can be shown that regularity is maximized when $V_{\mathcal{A}}$ lies on a quadric surface.

For n > 3, it can be shown that $V_{\mathcal{A}}$ is a cone over $V_{\mathcal{B}} \subset \mathbb{P}^{n-1}$ with $\Gamma(\mathcal{B}) = \Gamma(\mathcal{A})$, and the result follows inductively.

Thank you!

Ennic Bette