Log-Concavity of Asymptotic Multigraded Hilbert Series

Gregory G. Smith

arXiv:1109.4135

15 October 2011

Motivation

For a graded module *M* over a standard graded polynomial ring, the Hilbert series of the Veronese

submodule
$$M^{(r)} := \bigoplus_{w \in \mathbb{Z}} M_{rw}$$
 has the form $\frac{F^{(r)}(t)}{(1-t)^n}$.

Beck-Stapledon (2010):

$$\lim_{r\to\infty}\frac{F^{(r)}(t)}{r^{n-1}}=\frac{F(1)}{(n-1)!}\sum\langle n_i^{-1}\rangle t^{i+1}$$

where the Eulerian number $\binom{n-1}{i}$ counts the permutations of $\{1, ..., n-1\}$ with i ascents.

QUESTION: What happens for other gradings?

Multivariate Power Series

Let $A := [\mathbf{a}_1 \cdots \mathbf{a}_n]$ be an integer $(d \times n)$ -matrix of rank d such that the only non-negative vector in the kernel is the zero vector.

Equivalently, the rational function $1/\prod_{j}(1-\mathbf{t}^{a_{j}})$ has a unique expansion as a power series.

Let Φ_r operate on $F(\mathbf{t}) \in \mathbb{Z}[\mathbf{t}^{\pm 1}]$ as follows:

$$\frac{\textit{\textbf{F}}(\textit{\textbf{t}})}{\prod_{\textit{\textbf{j}}} (\textit{\textbf{1}-\textbf{\textbf{t}}}^{\textit{\textbf{a}}_{\textit{\textbf{j}}}})} = \sum \textit{\textbf{c}}_{\textit{\textbf{w}}} \textit{\textbf{t}}^{\textit{\textbf{w}}} \Rightarrow \sum \textit{\textbf{c}}_{\textit{\textbf{r}} \textit{\textbf{w}}} \textit{\textbf{t}}^{\textit{\textbf{w}}} = \frac{\Phi_{\textit{\textbf{r}}}[\textit{\textbf{\textbf{F}}}(\textit{\textbf{t}})]}{\prod_{\textit{\textbf{j}}} (\textit{\textbf{1}-\textbf{\textbf{t}}}^{\textit{\textbf{a}}_{\textit{\textbf{j}}}})}$$

Some Polyhedral Geometry

Let $\alpha: \mathbb{R}^n \to \mathbb{R}^d$ be the linear map determined by A.

The zonotope Z is $\alpha([0,1]^n)$.

For each $\mathbf{u} \in \mathbb{Z}^d$, we set $P(\mathbf{u}) := \alpha^{-1}(\mathbf{u}) \cap [0,1]^n$.

We say that α is degenerate if there exists $\mathbf{u} \in \mathbb{Z}^d$ in the boundary of \mathbf{Z} such that $\dim \mathbf{P}(\mathbf{u}) = \mathbf{n} - \mathbf{d}$.

 $\operatorname{vol}_{n-d} P(\mathbf{u})$ equals (n-d)! times the volume of $P(\mathbf{u}) + \mathbf{x} \subseteq \alpha^{-1}(\mathbf{0})$ w/r/t the lattice $\alpha^{-1}(\mathbf{0}) \cap \mathbb{Z}^n$.

Description of the Limit

Let m be the gcd of the d-minors of A.

THEOREM (McCabe-Smith): If $F(t) \in \mathbb{Z}[t^{\pm 1}]$ and α is non-degenerate, then we have

$$\limsup_{r\to\infty} \frac{\Phi_r[F(\mathbf{t})]}{r^{n-d}} = \frac{F(\mathbf{1})}{(n-d)!} K_A(\mathbf{t})$$

where
$$K_{A}(\mathbf{t}) = \sum_{\mathbf{u} \in \operatorname{int}(Z) \cap \mathbb{Z}^d} \operatorname{vol}_{n-d}(P(\mathbf{u})) \mathbf{t}^{\mathbf{u}}$$
.

The coefficients of $K_A(\mathbf{t})$ are log-concave, quasi-concave, and sum to $m^{n-d}(n-d)!$.

If A is totally unimodular, then $K_A(t) \in \mathbb{Z}[t^{\pm 1}]$.

An Explicit Example

If $A = \begin{bmatrix} 1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$ then we have m = 1 and

$$\Phi_{r}[1] = {r-1 \choose 3}t_{1}t_{2}^{2} + [2{r+2 \choose 3} + {r+1 \choose 2} - 2{r \choose 1}]t_{1}t_{2} + [2{r \choose 3} + {r-1 \choose 2}]t_{2}^{2} + [{r+2 \choose 3} + {r-1 \choose 2} - 2]t_{2} + {r-1 \choose 1}t_{1} + 1$$

so
$$\lim_{r\to\infty} \frac{\Phi_r[1]}{r^3} = \frac{1}{3!}(t_1t_2^2 + 2t_1t_2 + 2t_2^2 + t_2).$$

$$P(1,2) = \text{conv} \begin{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \\ P(1,1) = \text{conv} \begin{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Multigraded Hilbert Series

Let $S := \mathbb{C}[x_1,...,x_n]$ have the grading induced by setting $\deg(x_i) := \mathbf{a}_i \in \mathbb{Z}^d$.

For a finitely generated \mathbb{Z}^d -graded S-module M, the Hilbert series has the form $\frac{F(\mathbf{t})}{\prod_i (\mathbf{1} - \mathbf{t}^{\mathbf{a}_i})}$.

Applying Φ_r to $F(\mathbf{t})$ corresponds to computing the Hilbert series of the r-th Veronese submodule.

The Theorem implies that there exists a unique asymptotic numerator depending only on the multidegree of M and the matrix A.

Stochastic Matrices

By rescaling the matrix associated to the linear operator Φ_r , one obtains a stochastic matrix $\mathbf{C}(r)$ with the following *amazing* properties:

- ► the stationary vector is $\frac{K_A(\mathbf{t})}{(n-d)!}$.
- ► the eigenvalues are r^{-j} for $0 \le j \le n-d$ with explicit eigenvectors independent of r.
- ightharpoonup C(r) C(s) = C(rs).

QUESTION: Do these matrices correspond to a known Markov chain?