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Introduction

Given an ideal I ⊂ S = K [X1, . . . ,Xn] there are two measures of the
computational complexity of finding the resolution of S/I :

0 1 2 3 4 5 6 7 . . .

0: 1 β1,1 β2,2 β3,3 β4,4 β5,5 β6,6 β7,7 . . .
1: - β1,2 β2,3 β3,4 β4,5 β5,6 β6,7 β7,8 . . .
2: - β1,3 β2,4 β3,5 β4,6 β5,7 β6,8 β7,9 . . .
3: - β1,4 β2,5 β3,6 β4,7 β5,8 β6,9 β7,10 . . .
4: - β1,5 β2,6 β3,7 β4,8 β5,9 β6,10 β7,11 . . .
5: - β1,6 β2,7 β3,8 β4,9 β5,10 β6,11 β7,12 . . .
6: - β1,7 β2,8 β3,9 β4,10 β5,11 β6,12 β7,13 . . .
7: - β1,8 β2,9 β3,10 β4,11 β5,12 β6,13 β7,14 . . .
8: - β1,9 β2,10 β3,11 β4,12 β5,13 β6,14 β7,15 . . .
· · · - · · · · · · · · · · · · · · · · · · · · · · · ·

projective dimension=”width” of the Betti table (last nonzero column);

regularity= ”height” of the Betti table (last non-zero row).
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Stillman’s Question

Question (Stillman)

Is there a bound, independent of n, on the projective dimension of ideals in
S = K [X1, . . . ,Xn] which are generated by N homogeneous polynomials of
given degrees d1, . . . , dN?

Remark

Hilbert’s Syzygy Theorem guarantees pd(S/I ) ≤ n, but we seek a bound
independent of n.
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Stillman’s Question

Known cases:

If I = (m1, . . . ,mN) is a monomial ideal, then pd(S/I ) ≤ N by the
Taylor resolution. Note that N does not work in general.

If I = (f , g , h) with f , g , h quadrics, then pd(S/I ) ≤ 4 by
Eisenbud-Huneke (unpublished). This bound is tight.

If I = (f , g , h) with f , g , h cubics, then pd(S/I ) ≤ 36 by Engheta.
The tight bound in this case is likely to be 5.

Alexandra Seceleanu (UNL) Bounding projective dimension and regularity Oct 15, 2011



A bound for ideals of quadrics

Two ideas in pursuing this question:

1 look at ideals generated in small degrees (quadrics, cubics)
2 limit the number of generators (three-generated ideals)

Theorem (Ananyan-Hochster, 2011)

Let S = K [x1, . . . , xn], let F1, . . . ,FN be polynomials of degree at most 2
and I = (F1, . . . ,FN). Then there is a function C (N) such that I is
contained in the K-subalgebra of S generated by a regular sequence of at
most C (N) forms of degree at most 2. Consequently the projective
dimension of S/I is at most C (N).

Remark

The asymptotic growth of C (N) is of order 2N2N .
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Three-generated ideals

Theorem (Burch-Kohn, 1968)

For any n ∈ N, there is a three-generated ideal I = (f , g , h) in a polynomial
ring S = K [x1, . . . , x2n] with pd(S/I ) = n.

Remark

Engheta computed the degrees of the three generators to be
n − 2, n − 2, 2n − 2
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Three-generated ideals

Theorem (Bruns, 1976)

Any resolution is the resolution of a three-generated ideal.

Remark (Nguyen, Niu, Sanyal, Torrance, Witt, Zhang)

Note that degrees of the generators of the brunsification of an ideal grow,
but can be controlled. e.g. brunsification of (X d

1 , . . . ,X d
n ) yields three

generators of degree at most d(n − 2)2.
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Y. Zhang’s Question

Question (Y. Zhang)

Assume I = (f1, . . . , fN) is an ideal of S = K [X1, . . . ,Xn]. Is it true that

pd(S/I ) ≤
∑N

i=0 deg fi?

The following constructions show this bound is (much) too small.
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McCullough’s ideals with large projective dimension

Fix integers m, n, d such that m ≥ 1, n ≥ 0 and d ≥ 2.

Let Z1, . . . ,Zp be the (m+d−2)!
(m−1)!(d−1)! monomials of degree d − 1 in

X1, . . . ,Xm.

Example

S = K [X1, . . . ,Xn,Y1,1, . . . ,Yp,n]

Im,n,d =

X
d
1 , . . . ,X

d
n ,

p∑
i=0

ZjYj,1, . . . ,

p∑
j=0

ZjYj,n


is generated by m + n degree d generators
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Large projective dimension

Theorem (McCullough,2011)

pd(R/Im,n,d) = m + np = m + n
(m + d − 2)!

(m − 1)!(d − 1)!
.

Proof sketch:

Show depth(R/Im,n,d) = 0 and apply Auslander-Buchsbaum.
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Example: I3,4,2

Example

S = K [X1, . . . ,Xm,Y1,1, . . . ,Y3,4]

I =
(
X

2
1 ,X

2
2 ,X

2
3 ,X1Y1,1 + X2Y2,1 + X3Y3,1,X1Y1,2 + X2Y2,2 + X3Y3,2,

X1Y1,3 + X2Y2,3 + X3Y3,3,X1Y1,4 + X2Y2,4 + X3Y3,4

)

I has 7 quadratic generators and pd(S/I ) = # variables = 15 > 7 · 2.

The answer to Zheng’s question is negative.
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A new family

Example (The ideal I = I2,(2,2,2))

A0 = {
(
0 0 0
0 0 0

)
},A1 = {

(
1 0 0
1 0 0

)
},A2 = {

(
1 1 0
1 1 0

)
},

A3 = {
(
1 1 2
1 1 0

)
,
(
1 1 1
1 1 1

)
,
(
1 1 0
1 1 2

)
}.

f = X

(
0 0 0
0 0 0

)
x
2
1,1x

5
1,2 + X

(
0 0 0
0 0 0

)
x
2
2,1x

5
2,2 + X

(
1 0 0
1 0 0

)
x
2
1,2x

3
1,3 + X

(
1 0 0
1 0 0

)
x
2
2,2x

3
2,3

+X

(
1 1 2
1 1 0

)
y( 1 1 2

1 1 0

) + X

(
1 1 1
1 1 1

)
y( 1 1 1

1 1 1

) + X

(
1 1 0
1 1 2

)
y( 1 1 0

1 1 2

)

= x
2
1,1x

5
1,2 + x

2
2,1x

5
2,2 + x1,1x2,1x

2
1,2x

3
1,3 + x1,1x2,1x

2
2,2x

3
2,3

+ x1,1x2,1x1,2x2,2x
2
1,3y

(
1 1 2
1 1 0

) + x1,1x2,1x1,2x2,2x1,3x2,3y
(
1 1 1
1 1 1

)
+ x1,1x2,1x1,2x2,2x

2
2,3y

(
1 1 0
1 1 2

).
Finally, the ideal I =

(
x7
1,1, x7

2,1, f
)

.

Alexandra Seceleanu (UNL) Bounding projective dimension and regularity Oct 15, 2011



Larger projective dimension

Fix g ≥ 2,mn ≥ 0,mn−1 ≥ 1,mi ≥ 2 for 1 ≤ i ≤ n − 2.

I = Ig ,(m1,...,mn−1)

Theorem (Beder, McCullough, Nuñez, S-, Snapp, Stone)

pd(R/I ) =
n−1∏
i=1

(
(mi + g − 1)!

(g − 1)!(mi )!
− g

)(
(mn + g − 1)!

(g − 1)!(mn)!

)
+ gn.

Proof: Count the variables: g × n X variables and |An|Y variables.
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Corollary (Beder,McCullough,Nuñez,S-, Snapp,Stone)

Over any field K and for any positive integer p, there exists an ideal I in a
polynomial ring R over K with three homogeneous generators in degree p2

such that pd(R/I ) ≥ pp−1.

Proof:
I = I2,(p+1,...,p+1︸ ︷︷ ︸

p−1 times

,0).

Corollary (Beder,McCullough,Nuñez,S-,Snapp,Stone)

Over any field K and for any positive integer p, there exists an ideal I in a
polynomial ring R over K with 2p + 1 homogeneous generators in degree
2p + 1 such that pd(R/I ) ≥ p2p.

Proof:
I = I2p,(2,2,2,...,2︸ ︷︷ ︸

p times

).
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I = I2,(4,1)

Betti Table:

0 1 2 3 4 5 6 7 8 9 10

total: 1 3 138 621 1303 1642 1352 740 261 54 5
0: 1 - - - - - - - - - -
1: - - - - - - - - - - -
2: - - - - - - - - - - -
3: - - - - - - - - - - -
4: - - - - - - - - - - -
5: - 3 - - - - - - - - -
6: - - - - - - - - - - -
7: - - - - - - - - - - -
8: - - - - - - - - - - -
9: - - - - - - - - - - -
10: - - 3 - - - - - - - -
11: - - 4 5 - - - - - - -
12: - - 26 110 213 256 211 120 45 10 1
13: - - 96 480 1064 1376 1140 620 216 44 4
14: - - 9 26 26 10 1 - - - -
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I = I2,(2,1,2)

Betti Table:
0 1 2 3 4 5 6

total: 1 3 75 247 320 188 42
0: 1 - - - - - -
1: - - - - - - -
2: - - - - - - -
3: - - - - - - -
4: - - - - - - -
5: - 3 - - - - -
6: - - - - - - -
7: - - - - - - -
8: - - - - - - -
9: - - - - - - -
10: - - 3 - - - -
11: - - - - - - -
12: - - - - - - -
13: - - 2 3 - - -
14: - - - - - - -
15: - - - - - - -
16: - - 3 6 3 - -
17: - - - - - - -
18: - - 1 4 5 2 -
19: - - 4 8 4 - -
20: - - 1 4 6 4 1

0 1 2 3 4 5 6

21: - - 2 8 10 4 -
22: - - 6 14 11 4 1
23: - - 2 8 12 8 2
24: - - 4 16 21 10 1
25: - - 8 20 18 8 2
26: - - 3 12 18 12 3
27: - - 6 24 32 16 2
28: - - 3 12 18 12 3
29: - - 4 16 24 16 4
30: - - 3 12 18 12 3
31: - - 4 16 24 16 4
32: - - 1 4 6 4 1
33: - - 4 16 24 16 4
34: - - 1 4 6 4 1
35: - - 2 8 12 8 2
36: - - 1 4 6 4 1
37: - - 2 8 12 8 2
38: - - 1 4 6 4 1
39: - - 2 8 12 8 2
40: - - - - - - -
41: - - 2 8 12 8 2
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Stilman’s Question - Regularity Version

Question (Stillman)

Is there a bound, independent of n, on the regularity of ideals in
S = K [X1, . . . ,Xn] which are generated by N homogeneous polynomials of
given degrees d1, . . . , dN?

Caviglia proved:

the regularity question⇔ the projective dimension question.

Caution: this does not mean the bounds will be the same.
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Caviglia’s subfamily

Let
Cd = (wd , xd ,wyd−1 + xzd−1) ⊂ S = K [w , x , y , z ]

Caviglia showed reg(S/Cd) = d2 − 1.

Cd is a subfamily of the new family: Cd = I2,(1,d−2)

Question

What is the asymptotic growth of reg(I2,(2,1,d))?
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Conjectures

Let
Cd = (wd , xd ,wyd−1 + xzd−1) ⊂ S = K [w , x , y , z ]

Caviglia showed reg(S/Cd) = d2 − 1.

Cd is a subfamily of the new family: Cd = I2,(1,d−2)

Conjecture

We believe reg(I2,(2,1,d)) exhibits cubic growth in d.

We believe reg(I2,(2,2,2,...,2︸ ︷︷ ︸
p times

,1,d)) grows asymptotically as dp+2.
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