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Projective Monomial Curves in P3

S = {a, b, d}, 0 < a < b < d, gcd(a, b, d) = 1.

Let S be the affine semigroup generated by

α0 = (d, 0), α1 = (d − a, a), α2 = (d − b, b),α3 = (0, d).

• K[S] ∼= K[sd, sd−ata, sd−btb, td]

• C = Proj(K[S]) is a projective monomial curve
embedded in P3

K with homogeneous coordinate ring
K[S].

• {sd, td} is a system of parameters for K[S], and K[S] is
Cohen-Macaulay if and only if {sd, td} is a regular
sequence on K[S] if and only if td is a non-zero-divisor
in K[S]/sdK[S]. Informally we will say that C (or S )
is Cohen-Macaulay if K[S] is Cohen-Macaulay.
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Let R = K[X0, X1, X2, X3]. Define φ : R → K[s, t] by
φ(X0) = sd, φ(X1) = sd−ata, φ(X2) = sd−btb, φ(X3) = td,
so that K[S] ∼= R/p.

Gradings: The rings R and K[S] are graded by

1. S- (or N2- ) grading, degS(Xi) = αi, 0 ≤ i ≤ 3.

2. N-grading, deg(Xi) = 1.

The ideal p has a minimal set G of pure binomial
generators that are homogeneous in both the above
gradings. The set G is not necessarily unique, but |G | is
unique. In each S-degree there is at most one element of G

(and the degrees in which G is non-empty are unique).

Finding minimal generators of p is thus the same as finding
the S-degrees in which generators occur, and informally
such degrees will be referred to as the generators.
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Motivating Problems:

1. What fraction of all projective monomial curves of
degree d in P3 are Cohen-Macaulay.

2. How many minimal generators can p have for a given d

(both as an upper bound, and an asymptotic average,
as d → ∞)?

We study these questions by describing G in terms of
lattice elements on the boundary of certain convex hulls.
This leads to easy computer implementation, and is also a
theoretical tool.
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Where the lattices come from: Because they are
homogeneous in both gradings, the elements of G are one of
the following types (with two exceptions)

(1) Xa0
0 Xa3

3 − Xa1
1 Xa2

2 , ai > 0 “interior type one”

(2) Xa0
0 Xa2

2 − Xa1
1 Xa3

3 , ai > 0 “type two”

Lij = sublattice of Z2 generated by αi and αj , i < j.

Generators (1) have S-degree
a0α0 + a3α3 = a1α1 + a2α2 ∈ L03 ∩ L12 =: L .

Generators (2) have S-degree
a0α0 + a2α2 = a1α1 + a3α3 ∈ L02 ∩ L13 =: L ′.

Cij = real cone spanned by αi and αj .
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Graphical representation: Plot the S-degrees of the
generators (1) in an α1-α2 coordinate system. The
generators (1) are (some of the) elements of L on the
boundary of the convex hull of (L \⟨0, 0⟩) ∩ C12.

Plot the S-degrees of the generators (2) in an α0-α2

coordinate system. The generators (2) are (some of the)
elements of L ′ on the boundary of the convex hull of
(L ′\J0, 0K) ∩ C12.

We know a basis of L (in α1-α2 coordinates) and a
basis of L ′ (in the α0-α2 coordinates). By a suitable
integer change of coordinates, finding G is reduced to
finding the vertices of the convex hull of the non-zero
integer points in the first quadrant on or below a line
through the origin with rational slope r.
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Diagrams for S = {14, 57, 61}

⟨9, 1⟩ = 9α1 + α2 = 7α0 + 3α3 ⇒ X9
1X2 − X7

0X3
3 ∈ G

⟨−1, 27⟩ = −α1+27α2 = α0+25α3 ⇒ X27
2 −X0X1X

25
3 ∈ G

The last generator can be indentified with ⟨0, 27⟩.

Similarly, form the right diagram 12α0 + 5α2 = 16α1 + α3

so X12
0 X5

2 − X16
1 X3 ∈ G . In total there are 8 generators.
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Via the change of coordinates we end up with one rational
number r > 0 with continued fraction expansion
r = {q0, q1, · · · , qs} such that the minimal generators of p

correspond to (some of the) integer points on the convex
hulls of non-zero integer points above and below the line
through the origin with slope r. The number of such
integer points is N = 2 + q0 + · · · qs so p has at most N

minimal generators. The numerator and denominator of r

are at most d − 2 from which it follows, using known
properties of the quotients in the Euclidean algorithm
applied to the numerator and denominator of r, that

• The average value of N is expected to grow linearly in
log2(d), so that |G | should have an upper bound linear
in log2(d).

• N is at most equal to d so |G | is at most d (realized
only for S = {1, d − 1, d}).
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• The maximum number of segments is s + 2 which has a
bound linear in log(d). The expected average number
of segments also has an upper bound linear in log(d).

• We do not know what fraction |G | is of N so we don’t
have a non-trivial lower bound on the average value of
|G | or of the number of segments. The following plot
suggests that the number of average number of
generators may not be quite growing linearly in log(d)2
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What fraction of all monomial curves in P3 are
Cohen-Macaulay? First some motivational background.

• Bresinsky (1984) has observed that for fixed {a, b}, if d

is sufficiently large then {a, b, d} is Cohen-Macaulay.

• More generally I observed (1995), given any
{a1, a2, · · · , ap−1}, if d is sufficiently large then
S = {a1, a2, · · · , ap−1, d} is Cohen-Macaulay.

The above suggest that in some sense most monomial
curves are Cohen-Macaulay. However Les Reid and I have
proved (2005) that, for fixed d, the fraction of projective
monomial curves of degree d (of any embedding dimension)
that are not Cohen-Macaulay approaches 1.
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So what about P3? Our computational evidence is
convincing that, for fixed d, a positive fraction of monomial
curves of degree d in P3 are not Cohen-Macaulay. As d

increases, the fraction that are Cohen-Macaulay trends
downwards, reaching about 45% for degree near 100, and
dropping (on samples of curves) to about 30% when degree
is 100,000. But for degree near 1,300,000 the fraction that
are Cohen-Macaulay (in samples) is still about 30%. So
perhaps the fraction that are Cohen-Macaulay has
stabilized at about 30%.
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Miscellaneous remarks:

• S is Cohen-Maculay if and only if |G | ≤ 3 (Bresinsky
et al)

• If b − a = gcd(a, b) then {a, b, d} is Cohen-Macaulay.

• Let c = gcd(a, b) and ℓ, h be such that hb − ℓa = cd (h
as small as possible non-negative integer). If
ℓ − h + c ≤ 0 then {a, b, d} is Cohen-Macaulay
(however, for large d, ℓ − h + c is usually positive).
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This Mathematica notebook contains code run during my talk, and explanations of the
slides that I attempted to give verbally during the talk. The Patil-Li-R paper mentioned
on slide 1 will be referred to as [LPR]. References not in [LPR] are available on request
and may later be given on my web page. 

Slide 7 is a page from Davenport’s Higher Arithmetic. Let  be a line through the origin with
slope r>0. This picture indicates that the convex hull of integer points in the first quadrant on
or below  is given by the lower convergents of the real number r. Davenport was interested
in irrational r, but that does not matter. For example, suppose that r=7/4. Mathematica
conveniently gives the convergents of 7/4:
Convergents@7 ê 4D

:1, 2,
7

4
>

The lower convergents of 7/4 are 1=1/1 and 7/4. The vertices of the convex hull of integer
points below  are thus (1,1) and (4,7), together with (1,0). Similarly the
vertices of the convex hull of integer points in the first quadrant above  are (1,2) (corresponding
to the upper convergent 2=2/1), together with (0,1) and (4,7). The quotients in the continued
fraction expansion of r give the number of subdivisions of the opposite segment.
ContinuedFraction@7 ê 4D
81, 1, 3<

For example, the quotient 3 corresponds to the three subsegments of (1,1)(4,7) given by the
intermediate integer points (2,3) and (3,5).
FromContinuedFraction@81, 1, 2<D
5
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The last paragraph of slide 4 is based on Theorems 2.7 and 2.9 of [LPR], and illustrated on slide 8 for
the curve {14,57,61}. The dots in the left figure are the elements of  in the first quadrant,
plotted in a1 - a2 coordinates. The boundary of the convex hull of H \<0,0>)›C12 has vertices
<61,0>, <9,1>, <2,7>,<0,61>. These vertices can be found by the change of coordinates indicated
in the last paragraph of slide 6, which we have programmed in Mathematica. In the right figure
the dots are the elements of ’ in the first quadrant plotted in a0 - a2 coordinates. In the right
figure the cone C12 is the cone generated by the lines labelled a1and a2. The boundary  of the 
convex hull of ( ’\[[0,0]])›C12 has vertices [[43,14]],[[12,5]],[[5,6]],[[1,20]],[[0,47]] (computed
by a similar integer change of coordinates).

From the figures on page 8 we see that the ideal of {14,57,61} has 8 minimal generators, of
S-degrees <25,0>,<9,1>,<2,7>,<0,27> (left diagram), and [[12,5]],[[5,6]],[[3,13]],[[1,20]] (right
diagram). These S-degrees are some of the elements of , respectively ’ on the above
convex hull boundaries. The calculation in the bottom half of slide 8 shows how to convert
one of these S-degrees, namely <9,1>,  into an actual ideal generator. The element <-1,27>
œ ›C23 also yields a minimal generator <0,27>, as also indicated on slide 8. This prevents
the lattice points <1,39> and <0,61> from being minimal ideal generators, according to the
above mentioned theorem from [LPR]. (We refer to this as “truncation”). Similarly 
<25,-5>œ ›C01yields a minimal generator of S-degree <25,0> and prevents <61,0> from 
being minimal (another type of truncation). <25,0> and <0,27> are the “two exceptions” referred 
to in slide 5.

In[1]:= << "C:\\Users\\Leslie Roberts\\Desktop\\Lincoln−11\\implementation.m"

In[2]:= cur = 814, 57, 61<
Out[2]= 814, 57, 61<



Because the minimal ideal generators are on the boundary of a convex hull, they occur on straight 
line segments. Our two basic programs are typeonevertices and typetwovertices.

In[3]:= typeonevertices@814, 57, 61<D
Out[3]= 88825, 0<, 89, 1<, 82, 7<, 80, 27<<, 81, 1, 1<<

The first coordinate of the result is the vertices of the segments, and the second coordinate
is the number of subdivisions of the segments (by elements of ). Here all the subdivisions
are 1, which means that the vertices are the only type one generators (including the two
exceptions on the axes). 

The next few lines work out with Mathematica some of the calculations on the bottom of slide 8.

In[4]:= 8α0, α1, α2, α3< = 8861, 0<, 861 − 14, 14<, 861 − 57, 57<, 80, 61<<
Out[4]= 8861, 0<, 847, 14<, 84, 57<, 80, 61<<

In[5]:= Solve@9 α1 + α2 m x α0 + y α3, 8x, y<D
Out[5]= 88x → 7, y → 3<<

Therefore 9 α1 + α2 m 7 α0 + 3 α3 so X1^9 X2 - X0 ^7 X3^3 œ . 

In[6]:= arcα2α3

Out[6]= 880, 61<, 8−1, 27<, 8−4, 47<<

In[7]:= Solve@−α1 + 27 α2 m x α0 + y α3, 8x, y<D
Out[7]= 88x → 1, y → 25<<

Therefore −α1 + 27 α2 m α0 + 25 α3 so X2 ^27- X0 ^7 X1 X3^3 œ . 

The complete convex hull boundaries are not in the explicit output of the basic functions,
but are left as global variables so one has access to them if desired. In the second
coordinate of the output of the next line, the 2 indicates one intermediate element
of  between <2,7> and <0,61>, namely <1,34>.

In[8]:= 8arcα1α2, subdivisions12<
Out[8]= 88861, 0<, 89, 1<, 82, 7<, 80, 61<<, 81, 1, 2<<

In[9]:= H82, 7< + 80, 61<L ê 2

Out[9]= 81, 34<

In[10]:= typetwovertices@814, 57, 61<D
Out[10]= 88812, 5<, 85, 6<, 81, 20<<, 81, 2<<

The above line gives the vertices of the above mentioned type two generators. The 2 in the
second coordinate of the output indicates one intermediate generator between [[5,6]] and 
[[1,20]], namely [[3,13]]. Again the complete convex hull boundaries are left as global
variables. The vertices [[43,14]] on the a1 - ray and @@0, 47DD on the a2 - axis never 
correspond to type 2 generators, again according to [LPR].

In[11]:= 8arcα1α2x, subdivisionsx12<
Out[11]= 88843, 14<, 812, 5<, 85, 6<, 81, 20<, 80, 47<<, 81, 1, 2, 1<<

The next line is the type two generator calculation at the bottom of slide 8

In[12]:= Solve@12 α0 + 5 α2 m x α1 + y α3, 8x, y<D
Out[12]= 88x → 16, y → 1<<

The following example illustrates the assertion on slide 9 that the curve {1,d-1,d} has
d ideal generators, the maximum possible for a curve of degree d.
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In[13]:= cur1 = 81, 999, 1000<
Out[13]= 81, 999, 1000<

In[14]:= typeonevertices@cur1D
Out[14]= 888999, 0<, 81, 1<, 80, 999<<, 81, 1<<

The above is the three type one generators.

In[15]:= typetwovertices@cur1D
Out[15]= 888997, 2<, 81, 998<<, 8996<<

The above indicates one segment of type two generators, with 996 subdivisions, i.e. 997 generators.
We note that {997,2}-{1,998} is divisible by 996, with quotient {1,-1}. Below are a few more examples.

In[16]:= cur2 = 810^15 − 1, 10^16 + 17, 10^18<
Out[16]= 8999 999 999 999 999, 10 000 000 000 000 017, 1 000 000 000 000 000 000<

In[17]:= typeonevertices@cur2D
Out[17]= 888370 370 370 370 371, 0<, 817 000, 1000<, 80, 55 583 375 063 037<<, 81, 1<<

In[18]:= typetwovertices@cur2D
Out[18]= 888333 333 333 315 361, 37 037 037 038 037<, 810 009, 55 583 375 062 037<<, 818 546 338 024<<

cur2 has 18546338025 type two generators on one segment, so it is important not to list them all, but
instead to describe them by giving only the vertices. Note also that 18546338025 is a fairly small
fraction of d.

In[19]:= cur3 = 810^15 − 1 − 7^10, 10^16 + 17, 10^18<;

In[20]:= typeonevertices@cur3D
Out[20]= 8886 736 873 403, 0<, 86 361 619 297, 77 935 250<,

8357 553 601, 2 519 463 250<, 80, 2 672 058 750<<, 81, 16, 1<<
In[21]:= typetwovertices@cur3D

Out[21]= 888223 809 307, 152 595 500<<, 8<<

cur3 does  not have so many generators, namely 19 type one and one type 2.

In[22]:= cur4 = 810^30 − 1, 10^31 + 17 + 11^3, 10^32<;

In[23]:= typeonevertices@cur4D
Out[23]= 88814 727 540 500 736 377 025 036 824 412, 0<,

867 400, 50<, 80, 1 482 679 606 415 959 024 127 240 881<<, 81, 1<<
In[24]:= typetwovertices@cur4D

Out[24]= 88813 254 786 450 662 739 322 533 075 704, 1 472 754 050 073 637 702 503 681 931<,
849 466, 1 482 679 606 415 959 024 127 240 831<<, 8198 511 126 846 426 432 471 178<<

The last means one segment of type two generators, with 198511126846426432471178
subdivisions, i.e. 1+198511126846426432471178 type two generators.

In[25]:= fib@n_D := Fibonacci@nD

For the next example I list only segments, of which there are quite a few, but none with a very large number
of subdivisions, so the number of generators is fairly small compared to the degree. Note that the numbers of 
the two types of segments are about the same.

In[30]:= fib@510D êê N

Out[30]= 1.71479 × 10106

In[26]:= cur6 = 81 + fib@54D, fib@500D, 3 + fib@510D<;
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In[27]:= typeonevertices@cur6D@@2DD
Out[27]= 81, 1, 1, 1, 1, 15, 3, 21, 1, 6, 2, 3, 2, 1, 1, 2, 2, 1, 3, 131, 2, 2, 1, 1, 3,

3, 1, 4, 3, 1, 2, 2, 1, 1, 5, 2, 9, 1, 2, 3, 2, 1, 7, 6, 15, 1, 1, 3, 1, 2, 1, 1<
In[28]:= typetwovertices@cur6D@@2DD

Out[28]= 85, 3, 4, 4, 3, 1, 12, 1, 6, 2, 2, 1, 5, 4, 2, 7, 1, 1, 9, 5, 2, 1, 1, 1,
1, 1, 1, 2, 1, 5, 1, 47, 4, 4, 2, 2, 1, 9, 8, 18, 1, 1, 1, 2, 4, 1, 2, 1, 2, 4<

In[29]:= 8Length@%%D, Length@%D<
Out[29]= 852, 50<

Properties of continued fractions suggest that the average number of segments and the number of elements
of  ( ’) on the two convex hulls is not very large. This is sketched on slides 9 and 10. The suggested growth
rates of log (d), respectively log 2 HdL, seem to be reasonably consistent with computer experiments, and we
think we have actually proved this for d prime. The ideal generators are only some of the elements of  ( ’)
on these convex hulls so we have upper bounds on the average number of ideal generators, or segments of
ideal generators. However the growth rate of the average number of ideal generators seems to be less than
 log 2 HdL, as indicated in the graph on slide 11. The graph in slide 11 is prepared using all projective monomial
 curves in P 3 of degrees 25 and 100, and a “random” sample of 1000 curves of degrees 1000, 5000, 10000,
 100000,1000000, and 10000000 (log is natural log). It is even possible that average number of segments of
 ideal generators of curves of degree d remains bounded as dØ¶, but the average number of generators
 seems to keep growing as d increases, although fairly slowly.

One of our motivating problems is what fraction of all projective monomial curves of degree d in  P 3 
is Cohen-Macaulay. Some observations on this are in slides 12,13,14. In addition to the observations
on these slides we have proved that Cohen-Macaulay is equivalent to no type two generators. 

Fun stuff, related to the observation on slide 14 that b-a=1 implies Cohen-Macaulay. It seems that the 
larger the difference between a and b the more likely the curve {a,b,d} is to be not Cohen-Macaulay.
All curves of degree 101 are plotted as {a,b} in the diagram below, in red if Cohen-Macaulay and
blue if not.

In[31]:= << "C:\\Users\\Leslie Roberts\\Desktop\\Lincoln−11\\convexhull3.m"

In[32]:= c101 = curves1@101D;

In[33]:= cm101 = combCM@c101D;

The above selects the Cohen-Macaulay curves of degree 101. Running time less than 10 seconds.

In[34]:= ncm101 = Complement@c101, cm101D;

In[35]:= cm101 = Map@Drop@Ó, −1D &, cm101D;

In[36]:= ncm101 = Map@Drop@Ó, −1D &, ncm101D;

The previous two lines drop the last coordinate, which is always 101.

In[37]:= ListPlot@cm101, PlotStyle → RGBColor@1, 0, 0DD;

In[38]:= ListPlot@ncm101, PlotStyle → RGBColor@0, 0, 1DD;
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In[39]:= Show@%37, %38, AspectRatio → AutomaticD

Out[39]=

20 40 60 80 100
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The above is a plot of {a,b}, for all curves {a,b,101}, red if Cohen-Macaulay, blue if not. In
general we have proved Cohen-Macaulay for the bottom edge, and non-Cohen Macaulay for the
upper left corner {1,100,101} and a few scattered general types elsewhere. The rest of the
diagram is a mystery.
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