Gorenstein algebras presented by quadrics

Uwe Nagel (joint work with Juan Migliore)

University of Kentucky

Lincoln, October 15, 2011

Basic restrictions

Lemma

Assume A contains a regular sequence of r quadrics. Then

(a)
$$h_2 \leq {r+1 \choose 2} - r = {r \choose 2}$$
.

(b) $e \le r$ and e = r if and only if A is a complete intersection of r quadrics. In this case

$$h = \begin{pmatrix} 1, r, \binom{r}{2}, \binom{r}{3}, \ldots, \binom{r}{r-3}, \binom{r}{r-2}, r, 1 \end{pmatrix}$$

(c) (Kunz) If e < r, then I has at least r + 2 minimal generators.

Set-up

$$R = k[x_1, \dots, x_r], \quad k$$
 a field $A = R/I = \bigoplus_{j=1}^{e} [A]_j$, a graded artinian Gorenstein algebra

Hilbert series of
$$H_A(z) := \sum_{j=0}^e \dim_k [A]_j z^j := \sum_{j=0}^e h_j z^j$$

h-vector or Hilbert function of A is $h = (h_0, h_1, \dots, h_e)$

Symmetry: $h_i = h_{e-i}$, e the socle degree

WLOG $[I]_1 = 0$, so $h_1 = r$, the codimension

Two scenarios:

- (A) I contains a regular sequence of r quadrics.
- (B) The minimal generators of *I* all have degree 2.

Question: What are the possible Hilbert functions of *A*, assuming condition (A) or (B)?

Constructions

Proposition

If A and B are artinian Gorenstein algebras presented by quadrics, then so is $A \otimes_k B$, and its Hilbert series is $H_A(z) \cdot H_B(z)$.

Corollary 1.

If $(h_0, ..., h_e)$ is the h-vector of a Gorenstein algebra presented by quadrics, then so is the h-vector

$$(h_0, h_0 + h_1, h_1 + h_2, \dots, h_{e-1} + h_e, h_e).$$

Example

(i) e = 2: (Sally) For each $r \ge 1$, h = (1, r, 1) is the h-vector of a Gorenstein algebra presented by quadrics.

(ii) e = 3: For each $r \ge 1$, h = (1, r, r, 1) is the h-vector of a Gorenstein algebra presented by quadrics.

Constructions

Corollary 2.

Fix $r \ge 2$. Then, for each e such that $2 \le e \le r$, there is an artinian Gorenstein algebra presented by quadrics of codimension $h_1 = r$ with socle degree e.

Recall: e = r iff I is a complete intersection

Corollary 3.

Fix $r \ge 2$. Then, for each e such that $4 \le e \le r - 2$, there are at least two artinian Gorenstein algebras presented by quadrics with socle degree e and $h_1 = r$ that have different values of h_2 .

When e = r - 1?

Injectivity conjecture

Injectivity Conjecture

Assume R/I is presented by quadrics, has socle degree $e \ge 3$, and char $k \ne 2$. Let $L \in R$ be a general linear form. Then the multiplication $\times L : [R/I]_1 \to [R/I]_2$ is injective.

Assumption on the characteristic is necessary: If $I = (x_1^2, \dots, x_r^2)$ and $\operatorname{char}(k) = 2$, then $L^2 \in I$ for every linear form L.

Socle Lemma (Huneke, Ulrich)

Let $M \neq 0$ be a finitely generated graded R-module. Assume char(k) = 0. Let $L \in [R]_1$ be a general linear form, and consider the exact sequence

$$0 \to K \to M(-1) \xrightarrow{L} M \to C \to 0.$$

If $K \neq 0$, then the initial degrees satisfy a(K) > a(Soc(C)).

Submaximal socle degree

Theorem

Assume that $e = r - 1 \ge 4$ and that I contains a regular sequence of r quadrics. Then:

- (a) h_2 must be either $\binom{r}{2} 2$, $\binom{r}{2} 1$ or $\binom{r}{2}$, and all of these possibilities do occur.
- (b) If R/I is presented by quadrics, then $h_2 = \binom{r}{2} 2$.
- (c) If $h_2 = \binom{r}{2} 2$, then R/I is presented by quadrics, and the entire Hilbert function of R/I is uniquely determined. It is

$$h_j = \binom{r-1}{j} + \binom{r-3}{j-1}.$$

(d) For $r \ge 7$, if $h_2 = {r \choose 2} - 1$ or ${r \choose 2}$, then the Hilbert function of R/I is not uniquely determined, at least if char k = 0.

For r = 6, $h = (1, 6, h_2, h_2, 6, 1)$

Injectivity conjecture

Proposition

Assume that char k = 0. Then, for any complete intersection $l = (Q_1, ..., Q_r)$ of quadrics, the Injectivity Conjecture is true.

WLP Conjecture

Assume that char k=0. Then every artinian Gorenstein algebra presented by quadrics and of socle degree $e \ge 3$ has the Weak Lefschetz Property (WLP), that is, for some linear form L, the multiplication

$$\times L: [A]_i \rightarrow [A]_{i+1}$$

has maximal rank for all *i* (i.e. is injective or surjective).

Note: The Gorenstein assumption can not be dropped. For example, if the ideal I is generated by squares of r+1 general linear forms in an even number of variables, r, then R/I does not have the WLP (Migliore, Miró-Roig, N., 2010).

Injectivity conjecture

Corollary

Any complete intersection of at most 4 quadrics has the WLP, provided char k = 0.

Corollary

Let I be a complete intersection of $r \ge 5$ quadrics, and assume char k = 0. Then, for a general linear form L, the multiplication $\times L : [R/I]_2 \to [R/I]_3$ has at most a 1-dimensional kernel.

For r = 5, the *h*-vector is (1, 5, 10, 10, 5, 1).

Persistence

Proposition

Assume that A is an artinian Gorenstein algebra for which the multiplication by a general linear form on A from degree 1 to degree 2 is an isomorphism (so $h_2 = r$). Then $h_i = r$ for all i = 1, 2, ..., e - 1.

Furthermore, if A is presented by quadrics then e = 3.

Corollary

Let A be an artinian Gorenstein algebra presented by quadrics. Assume that $r \geq 3$ and that the Injectivity Conjecture is true for A. Then the following are equivalent:

- (a) $h_2 = r$;
- (b) e = 3;
- (c) The h-vector is (1, r, r, 1).

Injectivity conjecture

Lemma

Assume that R/I is presented by quadrics and that the Injectivity Conjecture is true for R/I. Let $Q_1, \ldots, Q_{h-1} \in R$ be h-1 general quadrics, where $h:=\dim_k[R/I]_2$, and consider the ideal $J=(I,Q_1,\ldots,Q_{h-1})$. Then R/J is Gorenstein with Hilbert function (1,r,1).

Idea of Proof: To show $[\operatorname{Soc} R/J]_1 = 0$, that is, for each $\ell \in [R]_1$, $\ell \cdot [R]_1$ is not in (I, Q_1, \dots, Q_{h-1}) . Let $\Lambda = \{\text{hyperplanes in } \mathbb{P}([R]_2) \text{ containing } \mathbb{P}([I]_2)\}$ $\Sigma = \{\text{linear subvarieties } \mathbb{P}(\ell \cdot [R]_1) \mid \ell \in [R]_1\}$

 $\mathbb{I} = \{(A, H) \in \Sigma \times \Lambda \mid A \subset H\}$

Consider the projections $\mathbb{I} \subset \Sigma \times \Lambda$

$$\phi_1 \swarrow \qquad \searrow \phi_2 \\ \Sigma \qquad \qquad \bigwedge$$

The Injectivity Conjecture provides dim $\mathbb{I} = h - 2$, whereas dim $\Lambda = h - 1$.

Persistence

Theorem

Let A be presented by quadrics and of socle degree $e \ge 4$. Assume that $h_2 = r < 4e - 6$ and char k = 0. Then multiplication by a general linear form on A from degree 1 to degree 2 must be an isomorphism.

Proof uses the theory of generic initial ideals.

Note: h = (1, 21, 21, 20, 21, 21, 1) is the h-vector of a Gorenstein algebra.

Small codimension

Proposition

For $r \le 5$, the following are the only h-vectors of artinian Gorenstein algebras presented by quadrics.

r	h-vectors
2	(1,2,1)
3	(1,3,1),(1,3,3,1)
	(1, 4, 1), (1, 4, 4, 1), (1, 4, 6, 4, 1)
5	(1,5,1), (1,5,5,1), (1,5,8,5,1), (1,5,10,10,5,1)

Small codimension

Proposition

For r = 6, the following are h-vectors of artinian Gorenstein algebras presented by quadrics and of socle degree e.

```
e h-vectors

2 (1,6,1)

3 (1,6,6,1)

4 (1,6,h_2,6,1), where h_2 \in \{10,11\}

5 (1,6,13,13,6,1)

6 (1,6,15,20,15,6,1)
```

Remark

- (i) $h_2 \le 12$, $h_2 \ne 6$.
- (ii) If char k > 0 is small, then $h_2 = 12$ is possible.

Theorem (Davis, Okun, 2001)

If *I* is a squarefree, monomial Gorenstein ideal generated by quadrics with *h*-vector $(1, r, h_2, r, 1)$, then $h_2 \ge 2r - 2$.