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Waring’s Problem in Number Theory

Begins with

i) Lagrange’s observation that every integer is a sum of ≤ 4 squares of

integers.

ii) Gauss’ observation that n ≡ 7(mod 8) is not a sum of three squares.

Waring asserts (and Hilbert proves) that:

there are integers g(j) such that every integer is a sum of ≤ g(j)

jth powers.

In particular, Waring asserts that g(3) = 9 etc. That is proved but, unlike

Gauss’ observation, only 23 and 239 need nine cubes.

Waring’s Second Problem: Find G(j), the least positive integers so that

every sufficiently large integer is a sum of ≤ G(j) jth powers.
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Are there analogs to Waring’s Problems in S = C[x1, . . . , xn] = ⊕∞

i=o
Si?

Yes-1, Lagrange analog. Let F ∈ S2, then

F = L2
1 + · · · + L2

k, k ≤ n.

Moreover, almost every F is a sum of n squares of linear forms. Those which

require fewer lie on a hypersurface in P(S2).

Yes-2, Hilbert analog. Let t = dimSd. There are linear forms L1, . . . , Lt such

that Ld
1, · · · , L

d
t are a basis for Sd.

Yes-3, Waring Cubes analog. Let S = C[x1, x2], P3 = P(S3).

i) the points of P3 of the form [L3] are the rational normal curve, C, in P3.

ii) The points [F ] not on C, but on its tangent envelope, require 3 cubes.

iii) The general point [F ] in P3, i.e. a point not on the tangent envelope, requires

2 cubes.
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Definition: Let F ∈ Sd, a Waring Decomposition of F is a way to represent

F = Ld

1 + · · · + Ld

s

such that no shorter such representation exists. In this case we say that the

(Waring) rank of F is s.

In 1995, J. Alexander and A. Hirschowitz solved the long outstanding prob-

lem of finding the Waring rank of a general form in Sd for any d and any n.

(roughly speaking, it is on the order of

dimSd/(n + 1) ).

However, it is hard to know when one has a general form! and, as we saw,

the Waring Rank of a specific form can be larger than the general rank.

There is a way to find the rank of any specific form, and this involves the

use of Macaulay’s Inverse System.
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Let F ∈ Sd, S = C[x1, . . . , xn] and let T = C[y1, · · · , yn]. We make S into a

graded T -module by

yi ◦ F = (∂/∂xi)(F )

and extend linearly.

Definition: Given F ∈ Sd, then

F⊥ = {∂ ∈ T | ∂F = 0}.

It is easy to see that F⊥ is a homogeneous ideal in T . Less obvious is the

fact that it is always a Gorenstein Artinian ideal in T .

Apolarity Lemma: F ∈ Sd and I = F⊥ ⊂ T . If we can find J ⊂ I where

J = ℘1 ∩ · · · ∩ ℘s is the ideal of a set of s distinct points in Pn−1, then

F = Ld

1 + · · · + Ld

s.
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So, it’s enough to find the smallest set of distinct points in Pn−1 whose

defining ideal is in F⊥.

There have been several attempts to calculate the Waring Rank of specific

forms. In particular, Landsberg-Teitler and Schreyer-Ranestad (among others)

have attempted to find the Waring rank of monomials (and succeeded for certain

monomials).

Theorem: (Catalisano, Carlini, G..) Let F = xb1
1 xb2

2 · · · xbn

n
. Then the Waring

rank of F is exactly

s = (b2 + 1)(b3 + 1) · · · (bn + 1).

By the Apolarity Lemma, it will be enough to show that

i) F⊥ contains an ideal of s distinct points; and

ii) F⊥ does not contain an ideal with fewer than s points.
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The first part is simple: It comes from the observation that

F⊥ = (yb1+1

1 , yb2+1

2 , · · · , ybn+1
n )

in the first instance, and that

F1 = yb2+1

2 − yb2+1

1 , · · · , Fn−1 = ybn+1
n

− ybn+1

1

is a regular sequence in T which defines a complete intersection of s distinct

points.

The more difficult (and interesting) part of the proof is left to Carlini.
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Apolarity Lemma

For a degree d form F ∈ Sd one can write

F =
s
∑

i=1

Ld
i

if and only if

there exists a set of s distinct points X ⊂ P(S1) such that

IX ⊂ F⊥.
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The case of monomials

Consider the monomial

M = x
b1

1 · . . . · xbn
n

where 1 ≤ b1 ≤ . . . ≤ bn and notice that

M⊥ = (yb1+1
1 , . . . , ybn+1

n ).

Thus we want to study the multiplicity of one dimensional

radical ideals I such that

I ⊂ (yb1+1
1 , . . . , ybn+1

n ).
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Ideal of points in (ya1

1 , . . . , yan
n )

So we study monomial ideals generated by powers of the

variables. Notice that (ya1

1 , . . . , yan
n ) contains the ideal

IX = (ya2

2 − y
a2

1 , . . . , yan
n − yan

1 )

and this is the ideal of a set of points X which is a complete

intersection consisting of Πn
2(ai) distinct points.

Of course we can find larger set of points, but can we find

smaller sets?
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Main Theorem

We proved the following

Theorem

Let n > 1 and K = (ya1

1 , . . . , yan
n ) be an ideal of T with

2 ≤ a1 ≤ . . . ≤ an. If I ⊂ K is a one dimensional radical ideal of

multiplicity s, then

s ≥
n
∏

i=2

ai .

Thus, if X is set of s distinct points such that IX ⊂ K , then

s ≥
∏n

i=2 ai .
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Idea of the proof

We work out an example.

Let

K = (y2
1 , y3

2 , y4
3 )

and we look for ideal of points IX ⊂ K .

Clearly

IX = (y3
2 − y3

1 , y4
3 − y4

1 ) ⊂ (y2
1 , y3

2 , y4
3 ) = K

and X is a set of 12 distinct points.

We want to show that there is no set of less than 3 × 4 distinct

points such that IX ⊂ K .

7/20 E. Carlini The solution to the Waring problem for monomials - II



Idea of the proof

Radical (i.e. distinct points) is essential

Remark

Notice that

K = (y2
1 , y3

2 , y4
3 ) ⊃ (y2

1 , y3
2 )

where the latter is a one dimensional not radical ideal of

multiplicity 6.

Hence the result only holds for sets of distinct points.
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Idea of the proof

To bound the multiplicity of IX ⊂ K we bound its Hilbert function

as

HF

(

R

IX
, t

)

≤ |X|

for all t . We also notice that

IX + (y2
1 ) ⊂ K = (y2

1 , y3
2 , y4

3 )

and hence

HF

(

R

IX + (y2
1 )

, t

)

≥ HF

(

R

K
, t

)

.
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Idea of the proof

We now consider to cases depending on whether y1 is a

0-divisor in R
IX

.

If y1 is not a zero divisor in R
IX

. Hence

HF

(

R

IX + (y2
1 )

, t

)

= HF

(

R

IX
, t

)

− HF

(

R

IX
, t − 2

)

and we get the relation

HF

(

R

IX
, t

)

≥ HF

(

R

K
, t

)

+ HF

(

R

IX
, t − 2

)

using this expression we obtain the desired bound on |X|.
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Idea of the proof

K = (y2
1 , y3

2 , y4
3 ) is a complete intersection thus

0 1 2 3 4 5 6

HF (R/K , ·) = 1 3 5 6 5 3 1

Now we iterate the relation

HF

(

R

IX
, 6

)

≥ HF

(

R

K
, 6

)

+ HF

(

R

IX
, 4

)

HF

(

R

IX
, 6

)

≥ 1 + HF

(

R

K
, 4

)

+ HF

(

R

IX
, 2

)

HF

(

R

IX
, 6

)

≥ 1 + 5 + HF

(

R

IX
, 2

)
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Idea of the proof

As IX ⊂ (y2
1 , y3

2 , y4
3 ) and y1 is not a zero divisor in R

IX
, we have

HF

(

R

IX
, 2

)

= 6

and hence

HF

(

R

IX
, 6

)

≥ 1 + 5 + 6 = 12

which proves |X| ≥ 12.
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Idea of the proof

If y1 is a zero divisor in R
IX

.

Consider the ideal

IY = IX : (y1)

and notice that

IY ⊂ K : (y1) = (y1, y3
2 , y4

3 ).

As y1 is not a 0-divisor in R
IY

we can use the same argument of

the previous case and we get

|X| > |Y| ≥ 3 × 4.
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Consequences

The rank of any monomial.

Corollary

For integers m > 1 and 1 ≤ b1 ≤ . . . ≤ bm let M be the

monomial

x
b1

1 · . . . · xbm
m

then rk(M) =
∏m

i=2(bi + 1), i.e. M is the sum of
∏m

i=2(bi + 1)
power of linear forms and no fewer.
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Remark

After we posted our paper on the arXiv we received a draft from

W. Buczynska, J. Buczynski and Z. Teitler. This draft contains a

statement giving an expression for the rank of any monomial

coinciding with the one that we found.
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Consequences

On the generic form

Remark

We know in general the degree of the generic degree d form.

We want to compare the maximum rank of a degree d

monomial with the generic rank.

Do the monomials provide examples of forms having rank

higher than the generic form?
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In the case of three variables we showed that

Corollary

max{rk(M) : M ∈ Sd} ≃
3

2
rk(generic degree d form).

For more than three variables this is not true and the

monomials have smaller rank than the generic form.
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Consequences

Monomials as sums of powers.

Corollary

For integers 1 ≤ b1 ≤ . . . ≤ bm consider the monomial

M = x
b1

1 · . . . · xbn
n .

Then

M =

rk(M)
∑

j=1

γj

(

x1 + ǫj(2)x2 + . . . + ǫj(n)xn

)d

where ǫ1(i) . . . , ǫrk(M)(i) are the (bi + 1)-th roots of 1, each

repeated Πj 6=i,1(bi + 1) times, and the γj are scalars.
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Consequences

Remark

W. Buczynska, J. Buczynski and Z. Teitler found the same sum

of powers decomposition for monomials and they also

determined the coefficients γj .
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Consequences

An easy example

We consider the monomial M = x1x2x3.

In this case M⊥ = (y2
1 , y2

2 , y2
3 ) and we can use the complete

intersection defined by the ideal

(y2
2 − y2

1 , y2
3 − y2

1 )

defining the four points

[1 : 1 : 1], [1 : 1 : −1], [1 : −1 : 1], [1 : −1 : −1]

thus we have 24x1x2x3 =

(x1 + x2 + x3)
3−(x1+x2−x3)

3−(x1 − x2 + x3)
3+(x1−x2−x3)

3.

20/20 E. Carlini The solution to the Waring problem for monomials - II


