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Let S = Kk[xy,..., x|, k afield.

Definition: A monomial ideal M C S is a Borel ideal if

» given any monomial m € M,
» a variable x; dividing m, and
> anindex i < j,

thenm-ﬁeM.
Xj

Also known as strongly stable or 0-Borel ideals.
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Let Q be a naturally-labeled poset on {x, ..., Xn}.
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Q-Borel example

Let Q be the poset with relations a <q band a <q c.

b c

(

a

Let / = Q(bc), the smallest Q-Borel ideal containing bc.
Monomials in I: be, ac (b — a), ab (¢ — a), & (b — a, ¢ — a).
So | = (&2, ab, ac, bc).

This is not an ordinary Borel ideal because b® ¢ | (¢ /4 b).
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Extremal cases

Chain C of length n Antichain A
L
" Xn—1
IXZ X1 X2 - Xn
X4

» C-Borel ideals are the usual Borel ideals.
» Every monomial ideal is A-Borel.

Guiding idea: The closer Q is to C, the more a Q-Borel ideal
should behave like a Borel ideal.
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Associated primes of Q-Borel ideals

Borel ideals (Bayer-Stillman): If B is a Borel ideal, then any
associated prime of S/B is of the form (xq, Xz, .. ., X;).

Q-Borel ideals: If Iis a Q-Borel ideal, and p € Ass(S//), then p
is generated by an order ideal in Q.

Proof: Say m ¢ I'but x;m < I. Then for any x; <q X;, xxim € | as
well. [

Goal: Compute irredundant primary decomposition of Q-Borel
ideals from Q-Borel generators and poset structure of Q.

Special case: Principal Q-Borel ideals, / = Q(m).
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Principal Q-Borel ideals are the products of monomial primes.

Theorem A: Suppose

I=11».

pCS
where the p are all monomial primes of S, and e, > 0. Then

=%,

pCS

ap =) €y

p'Cp

where

Get a primary decomposition consisting of powers of monomial
primes.
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Irredundant primary decomposition

For a monomial n?, let A(m’) = {x; : x; <q X; for some x; | m'}.

In English: Variables below any element of supp(n).

Theorem B: Let I = Q(m). Let p be a prime ideal. Then
p € Ass(S/I) if and only if
» Gens(p) = A(m’) for some monomial m' | m, and
» A(m') is connected.

With Theorem A, this gives an irredundant primary
decomposition of [ = Q(m).

Method: Compute all order ideals corresponding to divisors of
m. For the connected ones, use Theorem A to compute
exponents.
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Poset Q:
b c d
a

I = Q(def) = (d,a)' (e, b,c)'(f,c,d,a)

Candidates for primes
» A(d) < (d, a) connected Exponent: 1 from A(d)
» A(e) < (e, b,c) connected Exponent: 1 from A(e)

» A(f) = A(df) < (f,c,d, a) connected Exponent: 1 each
from A(f), A(d)

» A(de) «~ (d, a, e, b, c) not connected

» A(ef) = A(def) < (f,c,d, a, e, b) connected Exponent: 1
each from A(d), A(e), A(f)

I=(d,a)n(e,b,c)n(f,c,d,a?n(f,c,d,a,e,b)?
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Resolutions of principal Q-Borels

Theorem (Conca-Herzog): Principal Q-Borel ideals are
polymatroidal and thus have linear resolution.

Theorem: I = Q(m), Q maximal poset stabilizing /, and all
maximal elements of Q divide m. Then

pd(S/l) = n — #(connected components of Q) + 1.

Theorem: If | = Q(m), codim | = mlin |A(X7)|-
Xi|m
Under above hypotheses, recover part of a Herzog-Hibi result:
Corollary: I = Q(m) Cohen-Macaulay if and only if
» Qis the chain, m = x2" (/ = m@), or
» Qs the antichain (/ is a principal ideal)



Y-Borel ideals

Let Y be the poset:



Y-Borel ideals

Let Y be the poset:

“Close” to the chain C, but Y-Borel ideals may not be
componentwise linear.
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Minimal free resolution of Y-Borel ideal /

Basis: Throughout, m is a minimal generator, « a squarefree
monomial in k[xq, ..., x¢] with maxa < maxm.

Two forms of symbols:

» Eliahou-Kervaire: [m, o]

» homological degree deg «
» multidegree ma

» Other symbols: [m, a - y'™]
» homological degree 1 + deg «
» multidegree may'™
> I minimal such that m- £~ € |.
Induction using Mayer-Vietoris.

If z divides no generator, ideal is Borel in k[xq, ..., X, ¥].
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S=k[x1,X%,y,2), | = Y(x1,y2,2%) = (X1, X2, Xoy , X2, ¥?, Z).

tota: 1 6 11 8 2

o: 1t 1 . . . (Betti diagram of S/I)
1: .5 10 6 1
2: o1 201

First syzygies

Eliahou-Kervaire symbols: [x2, x1], [x2y, X1], [Xoy, X2], [X22, x1],
[z, xa], v2, x4, V2, xal, [22, x41], [22, Xe]

Other symbols: : (multidegree y2z2)



