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Motivation: Borel ideals

Let S = k [x1, . . . , xn], k a field.

Definition: A monomial ideal M ⊂ S is a Borel ideal if

I given any monomial m ∈ M,
I a variable xj dividing m, and
I an index i < j ,

then m · xi

xj
∈ M.

Also known as strongly stable or 0-Borel ideals.
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Q-Borel example

Let Q be the poset with relations a <Q b and a <Q c.
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Let I = Q(bc), the smallest Q-Borel ideal containing bc.

Monomials in I: bc, ac (b → a), ab (c → a), a2 (b → a, c → a).

So I = (a2,ab,ac,bc).

This is not an ordinary Borel ideal because b2 /∈ I (c 6→ b).
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Extremal cases

Chain C of length n Antichain A
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I C-Borel ideals are the usual Borel ideals.
I Every monomial ideal is A-Borel.

Guiding idea: The closer Q is to C, the more a Q-Borel ideal
should behave like a Borel ideal.
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Associated primes of Q-Borel ideals

Borel ideals (Bayer-Stillman): If B is a Borel ideal, then any
associated prime of S/B is of the form (x1, x2, . . . , xi).

Q-Borel ideals: If I is a Q-Borel ideal, and p ∈ Ass(S/I), then p

is generated by an order ideal in Q.

Proof: Say m /∈ I but xjm ∈ I. Then for any xi <Q xj , xim ∈ I as
well.

Goal: Compute irredundant primary decomposition of Q-Borel
ideals from Q-Borel generators and poset structure of Q.

Special case: Principal Q-Borel ideals, I = Q(m).
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Principal Q-Borel ideals

Principal Q-Borel ideals are the products of monomial primes.

Theorem A: Suppose
I =

∏
p⊂S

pep ,

where the p are all monomial primes of S, and ep ≥ 0. Then

I =
⋂
p⊂S

pap ,

where
ap =

∑
p′⊂p

ep′ .

Get a primary decomposition consisting of powers of monomial
primes.
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Irredundant primary decomposition

For a monomial m′, let A(m′) = {xi : xi ≤Q xj for some xj | m′}.

In English: Variables below any element of supp(m′).

Theorem B: Let I = Q(m). Let p be a prime ideal. Then
p ∈ Ass(S/I) if and only if

I Gens(p) = A(m′) for some monomial m′ | m, and
I A(m′) is connected.

With Theorem A, this gives an irredundant primary
decomposition of I = Q(m).

Method: Compute all order ideals corresponding to divisors of
m. For the connected ones, use Theorem A to compute
exponents.



Irredundant primary decomposition

For a monomial m′, let A(m′) = {xi : xi ≤Q xj for some xj | m′}.

In English: Variables below any element of supp(m′).

Theorem B: Let I = Q(m). Let p be a prime ideal. Then
p ∈ Ass(S/I) if and only if

I Gens(p) = A(m′) for some monomial m′ | m, and
I A(m′) is connected.

With Theorem A, this gives an irredundant primary
decomposition of I = Q(m).

Method: Compute all order ideals corresponding to divisors of
m. For the connected ones, use Theorem A to compute
exponents.



Irredundant primary decomposition

For a monomial m′, let A(m′) = {xi : xi ≤Q xj for some xj | m′}.

In English: Variables below any element of supp(m′).

Theorem B: Let I = Q(m). Let p be a prime ideal. Then
p ∈ Ass(S/I) if and only if

I Gens(p) = A(m′) for some monomial m′ | m, and
I A(m′) is connected.

With Theorem A, this gives an irredundant primary
decomposition of I = Q(m).

Method: Compute all order ideals corresponding to divisors of
m. For the connected ones, use Theorem A to compute
exponents.



Irredundant primary decomposition

For a monomial m′, let A(m′) = {xi : xi ≤Q xj for some xj | m′}.

In English: Variables below any element of supp(m′).

Theorem B: Let I = Q(m). Let p be a prime ideal. Then
p ∈ Ass(S/I) if and only if

I Gens(p) = A(m′) for some monomial m′ | m, and
I A(m′) is connected.

With Theorem A, this gives an irredundant primary
decomposition of I = Q(m).

Method: Compute all order ideals corresponding to divisors of
m. For the connected ones, use Theorem A to compute
exponents.



Principal Q-Borel example
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td@@ ta

Poset Q:

I = Q(def ) = (d ,a)1(e,b, c)1(f , c,d ,a)1

Candidates for primes
I A(d)↔ (d ,a) connected Exponent: 1 from A(d)

I A(e)↔ (e,b, c) connected Exponent: 1 from A(e)

I A(f ) = A(df )↔ (f , c,d ,a) connected Exponent: 1 each
from A(f ), A(d)

I A(de)↔ (d ,a,e,b, c) not connected
I A(ef ) = A(def )↔ (f , c,d ,a,e,b) connected Exponent: 1

each from A(d), A(e), A(f )

I = (d ,a) ∩ (e,b, c) ∩ (f , c,d ,a)2 ∩ (f , c,d ,a,e,b)3
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Resolutions of principal Q-Borels

Theorem (Conca-Herzog): Principal Q-Borel ideals are
polymatroidal and thus have linear resolution.

Theorem: I = Q(m), Q maximal poset stabilizing I, and all
maximal elements of Q divide m. Then

pd(S/I) = n −#(connected components of Q) + 1.

Theorem: If I = Q(m), codim I = min
xi |m
|A(xi)|.

Under above hypotheses, recover part of a Herzog-Hibi result:

Corollary: I = Q(m) Cohen-Macaulay if and only if
I Q is the chain, m = xan

n (I = man ), or
I Q is the antichain (I is a principal ideal)
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“Close” to the chain C, but Y -Borel ideals may not be
componentwise linear.
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Minimal free resolution of Y -Borel ideal I

Basis: Throughout, m is a minimal generator, α a squarefree
monomial in k [x1, . . . , xt ] with maxα < max m.

Two forms of symbols:

I Eliahou-Kervaire: [m, α]

I homological degree degα
I multidegree mα

I Other symbols: [m, α · y rm ]

I homological degree 1 + degα
I multidegree mαy rm

I rm minimal such that m · y rm

z ∈ I.

Induction using Mayer-Vietoris.

If z divides no generator, ideal is Borel in k [x1, . . . , xt , y ].
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Y -Borel example

S = k [x1, x2, y , z], I = Y (x1, y2, z2)

= (x1, x2
2 , x2y , x2z, y2, z2).

total: 1 6 11 8 2
0: 1 1 . . . (Betti diagram of S/I)
1: . 5 10 6 1
2: . . 1 2 1

First syzygies

Eliahou-Kervaire symbols: [x2
2 , x1], [x2y , x1], [x2y , x2], [x2z, x1],

[x2z, x2], [y2, x1], [y2, x2], [z2, x1], [z2, x2]

Other symbols: [x2z,1 · y ]︸ ︷︷ ︸
usual EK symbol

, [z2,1 · y2] (multidegree y2z2)
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