Generalizing the Borel condition

Chris Francisco
Oklahoma State University

Joint work with Jeff Mermin and Jay Schweig

Lincoln, NE October 2011

Let $S = k[x_1, \dots, x_n]$, k a field.

Let $S = k[x_1, \dots, x_n]$, k a field.

Let $S = k[x_1, \dots, x_n]$, k a field.

- ▶ given any monomial $m \in M$,
- ightharpoonup a variable x_i dividing m, and
- ▶ an index *i* < *j*,

Let $S = k[x_1, \dots, x_n]$, k a field.

- ▶ given any monomial $m \in M$,
- ightharpoonup a variable x_j dividing m, and
- ▶ an index *i* < *j*,

then
$$m \cdot \frac{x_i}{x_j} \in M$$
.

Let $S = k[x_1, \dots, x_n]$, k a field.

Definition: A monomial ideal $M \subset S$ is a Borel ideal if

- ▶ given any monomial $m \in M$,
- ightharpoonup a variable x_i dividing m, and
- ▶ an index *i* < *j*,

then $m \cdot \frac{x_i}{x_i} \in M$.

Also known as strongly stable or 0-Borel ideals.

Let Q be a naturally-labeled poset on $\{x_1, \ldots, x_n\}$. (So $x_i <_Q x_j$ implies i < j.)

Let Q be a naturally-labeled poset on $\{x_1, \ldots, x_n\}$. (So $x_i <_Q x_j$ implies i < j.)

- ▶ given any monomial $m \in M$,
- ightharpoonup a variable x_i dividing m, and

Let Q be a naturally-labeled poset on $\{x_1, \ldots, x_n\}$. (So $x_i <_Q x_j$ implies i < j.)

- ▶ given any monomial $m \in M$,
- ightharpoonup a variable x_i dividing m, and
- ▶ an index i < j</p>

Let Q be a naturally-labeled poset on $\{x_1, \ldots, x_n\}$. (So $x_i <_Q x_j$ implies i < j.)

- ▶ given any monomial $m \in M$,
- ightharpoonup a variable x_i dividing m, and
- ▶ an index i < j a variable $x_i <_Q x_j$,

Let Q be a naturally-labeled poset on $\{x_1, \ldots, x_n\}$. (So $x_i <_Q x_j$ implies i < j.)

- ▶ given any monomial $m \in M$,
- ▶ a variable x_i dividing m, and
- ▶ an index i < j a variable $x_i <_Q x_j$,

then
$$m \cdot \frac{x_i}{x_j} \in M$$
.

Let Q be the poset with relations $a <_Q b$ and $a <_Q c$.

Let Q be the poset with relations $a <_Q b$ and $a <_Q c$.

Let *Q* be the poset with relations $a <_Q b$ and $a <_Q c$.

Let I = Q(bc), the smallest Q-Borel ideal containing bc.

Let *Q* be the poset with relations $a <_Q b$ and $a <_Q c$.

Let I = Q(bc), the smallest Q-Borel ideal containing bc.

Monomials in *I*: *bc*,

Let *Q* be the poset with relations $a <_Q b$ and $a <_Q c$.

Let I = Q(bc), the smallest Q-Borel ideal containing bc.

Monomials in *I*: bc, ac ($b \rightarrow a$),

Let *Q* be the poset with relations $a <_Q b$ and $a <_Q c$.

Let I = Q(bc), the smallest Q-Borel ideal containing bc.

Monomials in *I*: bc, ac ($b \rightarrow a$), ab ($c \rightarrow a$),

Let *Q* be the poset with relations $a <_Q b$ and $a <_Q c$.

Let I = Q(bc), the smallest Q-Borel ideal containing bc.

Monomials in *I*: bc, ac $(b \rightarrow a)$, ab $(c \rightarrow a)$, a^2 $(b \rightarrow a, c \rightarrow a)$.

Let *Q* be the poset with relations $a <_Q b$ and $a <_Q c$.

Let I = Q(bc), the smallest Q-Borel ideal containing bc.

Monomials in *I*: bc, ac ($b \rightarrow a$), ab ($c \rightarrow a$), a^2 ($b \rightarrow a$, $c \rightarrow a$).

So
$$I = (a^2, ab, ac, bc)$$
.

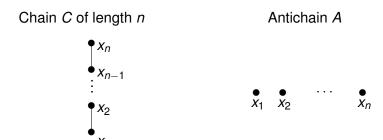
Let *Q* be the poset with relations $a <_Q b$ and $a <_Q c$.

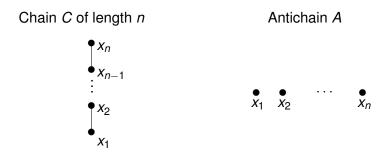
Let I = Q(bc), the smallest Q-Borel ideal containing bc.

Monomials in *I*: bc, ac $(b \rightarrow a)$, ab $(c \rightarrow a)$, a^2 $(b \rightarrow a, c \rightarrow a)$.

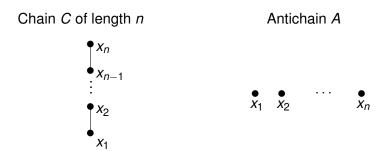
So $I = (a^2, ab, ac, bc)$.

This is not an ordinary Borel ideal because $b^2 \notin I$ ($c \nrightarrow b$).

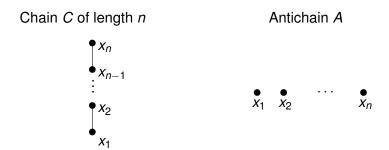




C-Borel ideals are the usual Borel ideals.



- C-Borel ideals are the usual Borel ideals.
- Every monomial ideal is A-Borel.



- C-Borel ideals are the usual Borel ideals.
- Every monomial ideal is A-Borel.

Guiding idea: The closer *Q* is to *C*, the more a *Q*-Borel ideal should behave like a Borel ideal.

Borel ideals (Bayer-Stillman): If B is a Borel ideal, then any associated prime of S/B is of the form $(x_1, x_2, ..., x_i)$.

Borel ideals (Bayer-Stillman): If B is a Borel ideal, then any associated prime of S/B is of the form $(x_1, x_2, ..., x_i)$.

Q-Borel ideals: If I is a Q-Borel ideal, and $\mathfrak{p} \in \mathsf{Ass}(S/I)$, then \mathfrak{p} is generated by an order ideal in Q.

Borel ideals (Bayer-Stillman): If B is a Borel ideal, then any associated prime of S/B is of the form $(x_1, x_2, ..., x_i)$.

Q-Borel ideals: If *I* is a *Q*-Borel ideal, and $\mathfrak{p} \in \mathsf{Ass}(S/I)$, then \mathfrak{p} is generated by an order ideal in *Q*.

Proof: Say $m \notin I$ but $x_j m \in I$. Then for any $x_i <_Q x_j$, $x_i m \in I$ as well. \square

Borel ideals (Bayer-Stillman): If B is a Borel ideal, then any associated prime of S/B is of the form $(x_1, x_2, ..., x_i)$.

Q-Borel ideals: If *I* is a *Q*-Borel ideal, and $\mathfrak{p} \in \mathsf{Ass}(S/I)$, then \mathfrak{p} is generated by an order ideal in *Q*.

Proof: Say $m \notin I$ but $x_j m \in I$. Then for any $x_i <_Q x_j$, $x_i m \in I$ as well. \square

Goal: Compute irredundant primary decomposition of Q-Borel ideals from Q-Borel generators and poset structure of Q.

Borel ideals (Bayer-Stillman): If B is a Borel ideal, then any associated prime of S/B is of the form $(x_1, x_2, ..., x_i)$.

Q-Borel ideals: If *I* is a *Q*-Borel ideal, and $\mathfrak{p} \in \mathsf{Ass}(S/I)$, then \mathfrak{p} is generated by an order ideal in *Q*.

Proof: Say $m \notin I$ but $x_j m \in I$. Then for any $x_i <_Q x_j$, $x_i m \in I$ as well. \square

Goal: Compute irredundant primary decomposition of Q-Borel ideals from Q-Borel generators and poset structure of Q.

Special case: Principal *Q*-Borel ideals, I = Q(m).

Principal Q-Borel ideals

Principal *Q*-Borel ideals are the products of monomial primes.

Principal Q-Borel ideals

Principal *Q*-Borel ideals are the products of monomial primes.

Theorem A: Suppose

$$I = \prod_{\mathfrak{p} \subset \mathcal{S}} \mathfrak{p}^{e_{\mathfrak{p}}},$$

where the $\mathfrak p$ are all monomial primes of S, and $e_{\mathfrak p} \geq 0$. Then

$$\mathit{I} = \bigcap_{\mathfrak{p} \subset \mathcal{S}} \mathfrak{p}^{\mathit{a}_{\mathfrak{p}}},$$

where

$$a_{\mathfrak{p}} = \sum_{\mathfrak{p}'\subset \mathfrak{p}} e_{\mathfrak{p}'}.$$

Principal Q-Borel ideals

Principal *Q*-Borel ideals are the products of monomial primes.

Theorem A: Suppose

$$I = \prod_{\mathfrak{p} \subset \mathcal{S}} \mathfrak{p}^{e_{\mathfrak{p}}},$$

where the $\mathfrak p$ are all monomial primes of S, and $e_{\mathfrak p} \geq 0$. Then

$$I=\bigcap_{\mathfrak{p}\subset\mathcal{S}}\mathfrak{p}^{a_{\mathfrak{p}}},$$

where

$$a_{\mathfrak{p}} = \sum_{\mathfrak{p}'\subset \mathfrak{p}} e_{\mathfrak{p}'}.$$

Get a primary decomposition consisting of powers of monomial primes.

For a monomial m', let $A(m') = \{x_i : x_i \leq_Q x_j \text{ for some } x_j \mid m'\}$. In English: Variables below any element of supp(m').

For a monomial m', let $A(m') = \{x_i : x_i \leq_Q x_j \text{ for some } x_j \mid m'\}$. In English: Variables below any element of $\operatorname{supp}(m')$.

Theorem B: Let I = Q(m). Let \mathfrak{p} be a prime ideal. Then $\mathfrak{p} \in \mathsf{Ass}(S/I)$ if and only if

- ▶ Gens(\mathfrak{p}) = A(m') for some monomial $m' \mid m$, and
- ► A(m') is connected.

For a monomial m', let $A(m') = \{x_i : x_i \leq_Q x_j \text{ for some } x_j \mid m'\}$. In English: Variables below any element of supp(m').

Theorem B: Let I = Q(m). Let \mathfrak{p} be a prime ideal. Then $\mathfrak{p} \in \mathsf{Ass}(S/I)$ if and only if

- ▶ Gens(\mathfrak{p}) = A(m') for some monomial $m' \mid m$, and
- ightharpoonup A(m') is connected.

With Theorem A, this gives an irredundant primary decomposition of I = Q(m).

For a monomial m', let $A(m') = \{x_i : x_i \leq_Q x_j \text{ for some } x_j \mid m'\}$. In English: Variables below any element of supp(m').

Theorem B: Let I = Q(m). Let \mathfrak{p} be a prime ideal. Then $\mathfrak{p} \in \mathsf{Ass}(S/I)$ if and only if

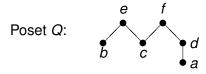
- ▶ Gens(\mathfrak{p}) = A(m') for some monomial $m' \mid m$, and
- ► A(m') is connected.

With Theorem A, this gives an irredundant primary decomposition of I = Q(m).

Method: Compute all order ideals corresponding to divisors of *m*. For the connected ones, use Theorem A to compute exponents.

Poset Q:

e
f
d
a



$$I = Q(def) = (d, a)^{1}(e, b, c)^{1}(f, c, d, a)^{1}$$

$$I = Q(def) = (d, a)^{1}(e, b, c)^{1}(f, c, d, a)^{1}$$

Candidates for primes

► $A(d) \leftrightarrow (d, a)$ connected Exponent: 1 from A(d)

$$I = Q(def) = (d, a)^{1}(e, b, c)^{1}(f, c, d, a)^{1}$$

- ► $A(d) \leftrightarrow (d, a)$ connected Exponent: 1 from A(d)
- ▶ $A(e) \leftrightarrow (e, b, c)$ connected Exponent: 1 from A(e)

$$I = Q(def) = (d, a)^{1}(e, b, c)^{1}(f, c, d, a)^{1}$$

- ▶ $A(d) \leftrightarrow (d, a)$ connected Exponent: 1 from A(d)
- ▶ $A(e) \leftrightarrow (e, b, c)$ connected Exponent: 1 from A(e)
- ▶ $A(f) = A(df) \leftrightarrow (f, c, d, a)$ connected Exponent: 1 each from A(f), A(d)

Poset
$$Q$$
:
$$\begin{array}{c}
e & f \\
b & c
\end{array}$$

$$I = Q(def) = (d, a)^{1}(e, b, c)^{1}(f, c, d, a)^{1}$$

- ► $A(d) \leftrightarrow (d, a)$ connected Exponent: 1 from A(d)
- ▶ $A(e) \leftrightarrow (e, b, c)$ connected Exponent: 1 from A(e)
- ▶ $A(f) = A(df) \leftrightarrow (f, c, d, a)$ connected Exponent: 1 each from A(f), A(d)
- ▶ $A(de) \leftrightarrow (d, a, e, b, c)$ not connected

Poset
$$Q$$
:
$$\begin{array}{c}
e & f \\
b & c
\end{array}$$

$$I = Q(def) = (d, a)^{1}(e, b, c)^{1}(f, c, d, a)^{1}$$

- ▶ $A(d) \leftrightarrow (d, a)$ connected Exponent: 1 from A(d)
- ▶ $A(e) \leftrightarrow (e, b, c)$ connected Exponent: 1 from A(e)
- ► $A(f) = A(df) \leftrightarrow (f, c, d, a)$ connected Exponent: 1 each from A(f), A(d)
- ▶ $A(de) \leftrightarrow (d, a, e, b, c)$ not connected
- ► $A(ef) = A(def) \leftrightarrow (f, c, d, a, e, b)$ connected Exponent: 1 each from A(d), A(e), A(f)

$$I = Q(def) = (d, a)^{1}(e, b, c)^{1}(f, c, d, a)^{1}$$

- ▶ $A(d) \leftrightarrow (d, a)$ connected Exponent: 1 from A(d)
- ▶ $A(e) \leftrightarrow (e, b, c)$ connected Exponent: 1 from A(e)
- ▶ $A(f) = A(df) \leftrightarrow (f, c, d, a)$ connected Exponent: 1 each from A(f), A(d)
- ▶ $A(de) \leftrightarrow (d, a, e, b, c)$ not connected
- ► $A(ef) = A(def) \leftrightarrow (f, c, d, a, e, b)$ connected Exponent: 1 each from A(d), A(e), A(f)

$$I = (d, a) \cap (e, b, c) \cap (f, c, d, a)^{2} \cap (f, c, d, a, e, b)^{3}$$

Theorem (Conca-Herzog): Principal *Q*-Borel ideals are polymatroidal and thus have linear resolution.

Theorem (Conca-Herzog): Principal *Q*-Borel ideals are polymatroidal and thus have linear resolution.

Theorem: I = Q(m), Q maximal poset stabilizing I, and all maximal elements of Q divide m. Then

pd(S/I) = n - #(connected components of Q) + 1.

Theorem (Conca-Herzog): Principal *Q*-Borel ideals are polymatroidal and thus have linear resolution.

Theorem: I = Q(m), Q maximal poset stabilizing I, and all maximal elements of Q divide m. Then

$$pd(S/I) = n - \#(connected components of Q) + 1.$$

Theorem: If
$$I = Q(m)$$
, codim $I = \min_{x_i \mid m} |A(x_i)|$.

Theorem (Conca-Herzog): Principal *Q*-Borel ideals are polymatroidal and thus have linear resolution.

Theorem: I = Q(m), Q maximal poset stabilizing I, and all maximal elements of Q divide m. Then

$$pd(S/I) = n - \#(connected components of Q) + 1.$$

Theorem: If
$$I = Q(m)$$
, codim $I = \min_{x_i \mid m} |A(x_i)|$.

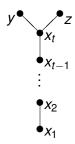
Under above hypotheses, recover part of a Herzog-Hibi result:

Corollary: I = Q(m) Cohen-Macaulay if and only if

- ▶ *Q* is the chain, $m = x_n^{a_n}$ ($I = \mathfrak{m}^{a_n}$), or
- Q is the antichain (I is a principal ideal)

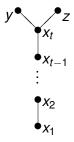
Y-Borel ideals

Let *Y* be the poset:



Y-Borel ideals

Let *Y* be the poset:



"Close" to the chain *C*, but *Y*-Borel ideals may not be componentwise linear.

Basis: Throughout, m is a minimal generator, α a squarefree monomial in $k[x_1, \ldots, x_t]$ with max $\alpha < \max m$.

Basis: Throughout, m is a minimal generator, α a squarefree monomial in $k[x_1, \ldots, x_t]$ with max $\alpha < \max m$.

Two forms of symbols:

▶ Eliahou-Kervaire: $[m, \alpha]$

Basis: Throughout, m is a minimal generator, α a squarefree monomial in $k[x_1, \ldots, x_t]$ with max $\alpha < \max m$.

Two forms of symbols:

- ▶ Eliahou-Kervaire: $[m, \alpha]$
 - homological degree $\deg \alpha$
 - multidegree $m\alpha$

Basis: Throughout, m is a minimal generator, α a squarefree monomial in $k[x_1, \ldots, x_t]$ with max $\alpha < \max m$.

Two forms of symbols:

- ▶ Eliahou-Kervaire: $[m, \alpha]$
 - homological degree deg α
 - ▶ multidegree ma
- ▶ Other symbols: $[m, \alpha \cdot y^{r_m}]$

Basis: Throughout, m is a minimal generator, α a squarefree monomial in $k[x_1, \ldots, x_t]$ with max $\alpha < \max m$.

Two forms of symbols:

- ▶ Eliahou-Kervaire: $[m, \alpha]$
 - homological degree deg α
 - multidegree mα
- ▶ Other symbols: $[m, \alpha \cdot y^{r_m}]$
 - homological degree 1 + deg α
 - ▶ multidegree mαy^{rm}
 - r_m minimal such that $m \cdot \frac{y^{r_m}}{z} \in I$.

Basis: Throughout, m is a minimal generator, α a squarefree monomial in $k[x_1, \ldots, x_t]$ with max $\alpha < \max m$.

Two forms of symbols:

- ▶ Eliahou-Kervaire: $[m, \alpha]$
 - homological degree deg α
 - multidegree mα
- ▶ Other symbols: $[m, \alpha \cdot y^{r_m}]$
 - homological degree 1 + deg α
 - ▶ multidegree may rm
 - ▶ r_m minimal such that $m \cdot \frac{y^{r_m}}{z} \in I$.

Induction using Mayer-Vietoris.

If z divides no generator, ideal is Borel in $k[x_1, \ldots, x_t, y]$.

$$S = k[x_1, x_2, y, z], I = Y(x_1, y^2, z^2)$$

$$S = k[x_1, x_2, y, z], I = Y(x_1, y^2, z^2) = (x_1, x_2^2, x_2y, x_2z, y^2, z^2).$$

$$S = k[x_1, x_2, y, z], I = Y(x_1, y^2, z^2) = (x_1, x_2^2, x_2y, x_2z, y^2, z^2).$$
total: 1 6 11 8 2
0: 1 1 . . . (Betti diagram of S/I)
1: . 5 10 6 1
2: . . 1 2 1

```
S = k[x_1, x_2, y, z], I = Y(x_1, y^2, z^2) = (x_1, x_2^2, x_2y, x_2z, y^2, z^2).
total: 1 6 11 8 2
0: 1 1 . . . (Betti diagram of S/I)
1: . 5 10 6 1
2: . . 1 2 1
```

First syzygies

Eliahou-Kervaire symbols:
$$[x_2^2, x_1]$$
, $[x_2y, x_1]$, $[x_2y, x_2]$, $[x_2z, x_1]$, $[x_2z, x_2]$, $[y^2, x_1]$, $[y^2, x_2]$, $[z^2, x_1]$, $[z^2, x_2]$

```
S = k[x_1, x_2, y, z], I = Y(x_1, y^2, z^2) = (x_1, x_2^2, x_2y, x_2z, y^2, z^2).
total: 1 6 11 8 2
0: 1 1 . . . (Betti diagram of S/I)
1: . 5 10 6 1
2: . . 1 2 1
```

First syzygies

Eliahou-Kervaire symbols:
$$[x_2^2, x_1]$$
, $[x_2y, x_1]$, $[x_2y, x_2]$, $[x_2z, x_1]$, $[x_2z, x_2]$, $[y^2, x_1]$, $[y^2, x_2]$, $[z^2, x_1]$, $[z^2, x_2]$

Other symbols:
$$[x_2z, 1 \cdot y]$$
, usual EK symbol

$$S = k[x_1, x_2, y, z], I = Y(x_1, y^2, z^2) = (x_1, x_2^2, x_2y, x_2z, y^2, z^2).$$
total: 1 6 11 8 2
0: 1 1 . . . (Betti diagram of S/I)
1: . 5 10 6 1
2: . . 1 2 1

First syzygies

Eliahou-Kervaire symbols:
$$[x_2^2, x_1]$$
, $[x_2y, x_1]$, $[x_2y, x_2]$, $[x_2z, x_1]$, $[x_2z, x_2]$, $[y^2, x_1]$, $[y^2, x_2]$, $[z^2, x_1]$, $[z^2, x_2]$

Other symbols:
$$[x_2z, 1 \cdot y]$$
, $[z^2, 1 \cdot y^2]$ (multidegree y^2z^2)