# On the Resolutions of (SOME) SIMPLICIAL FORESTS

SARA FARIDI

DALHOUSIE UNIVERSITY

 $I = (M_1, \dots, M_q)$  monomial ideal in polynomial ring.

**Question.** What are the Betti numbers  $\beta_{i,j}(I)$ ?

**Eliahou-Kervaire Splittings:** When I = J + K where  $\mathcal{G}(J) \cap \mathcal{G}(K) = \emptyset$ , and there is a "splitting function" with certain properties, one has a recursive formula:

$$\beta_{i,j}(I) = \beta_{i,j}(J) + \beta_{i,j}(K) + \beta_{i-1,j}(J \cap K)$$



$$I = (xyv, vw, ws, yzv, zuv)$$

**Question.** Can one give an order to the facets of  $\triangle$  so that induces a splitting on the generators of I?

### **Trees and Good Leafs**

**Definition.** A **leaf** is a facet that intersects the complex in a *face*.



#### **Trees and Good Leafs**

**Definition.** A **leaf** is a facet that intersects the complex in a *face*.



**Definition.** A **forest** is a complex whose every subset (of facets) has a leaf.

A tree is a connected forest.



has no leaf

#### **Trees and Good Leafs**

**Definition.** A **leaf** is a facet that intersects the complex in a *face*.



**Definition.** A **forest** is a complex whose every subset (of facets) has a leaf.

A tree is a connected forest.



has no leaf

**Definition.** A **good leaf** is a facet that is a leaf of *every* subset.

**Definition.** A good leaf is a facet that is a leaf of every subset.



**Fact.** Every tree has a good leaf [Herzog-Hibi-Trung-Zheng 2008]

**Definition.** A **good leaf** is a facet that is a leaf of *every* subset.



Fact. Every tree has a good leaf [Herzog-Hibi-Trung-Zheng 2008]

#### Orders induced by good leafs

 $-F_0,\ldots,F_q$  where each  $F_i$  is the leaf of  $\langle F_1,\ldots,F_i\rangle$ 

**Definition.** A **good leaf** is a facet that is a leaf of *every* subset.



Fact. Every tree has a good leaf [Herzog-Hibi-Trung-Zheng 2008]

### Orders induced by good leafs

- $-F_0,\ldots,F_q$  where each  $F_i$  is the leaf of  $\langle F_1,\ldots,F_i\rangle$
- $-F_0, F_1, \ldots, F_q$  where  $F_0$  is a good leaf of  $\triangle$  and

$$F_0 \cap F_1 \supseteq F_0 \cap F_2 \supseteq \cdots \supseteq F_0 \cap F_q$$

**Theorem.** If  $\Delta$  is a forest, then its facets can be ordered as  $F_0, F_1, \ldots, F_q$  such that

- 1.  $F_0$  is a good leaf of  $\triangle$
- 2.  $F_0 \cap F_1 \supseteq F_0 \cap F_2 \supseteq \cdots \supseteq F_0 \cap F_q$
- 3. each  $F_i$  is a leaf of  $\langle F_0, F_1, \dots, F_i \rangle$  for  $0 \le i \le q$

**Theorem.** If  $\Delta$  is a forest, then its facets can be ordered as  $F_0, F_1, \ldots, F_q$  such that

- 1.  $F_0$  is a good leaf of  $\triangle$
- **2.**  $F_0 \cap F_1 \supseteq F_0 \cap F_2 \supseteq \cdots \supseteq F_0 \cap F_q$
- 3. each  $F_i$  is a leaf of  $\langle F_0, F_1, \dots, F_i \rangle$  for  $0 \le i \le q$



$$vy\supseteq v\supseteq v\supseteq\emptyset$$

**Theorem.** (Hà - Van Tuyl 2007) If F is a leaf, then there is an Eliahou-Kervaire type splitting for  $\triangle$  described as follows:

$$\beta_{ij}(\Delta) = \beta_{ij}(\Delta \setminus F) + \sum_{\ell_1=0}^{i} \sum_{\ell_2=0}^{j-|F|} \beta_{\ell_1-1,\ell_2}(\overline{\mathcal{C}}(F)) \beta_{i-\ell_1-1,j-|F|-\ell_2}(\Delta/\mathcal{C}(F))$$

where

$$\mathcal{C}(F) = (F' \in \Delta \mid F' \cap F \neq \emptyset)$$

$$\overline{\mathcal{C}}(F) = (F' \setminus F \mid F' \in \mathcal{C}(F))$$

**Theorem.** (Hà - Van Tuyl 2007) If F is a leaf, then there is an Eliahou-Kervaire type splitting for  $\triangle$  described as follows:

$$\beta_{ij}(\Delta) = \beta_{ij}(\Delta \setminus F) + \sum_{\ell_1=0}^{i} \sum_{\ell_2=0}^{j-|F|} \beta_{\ell_1-1,\ell_2}(\overline{\mathcal{C}}(F)) \beta_{i-\ell_1-1,j-|F|-\ell_2}(\Delta/\mathcal{C}(F))$$

where

$$\mathcal{C}(F) = (F' \in \Delta \mid F' \cap F \neq \emptyset)$$

$$\overline{\mathcal{C}}(F) = (F' \setminus F \mid F' \in \mathcal{C}(F))$$

**Note.** This formula is *recursive* if  $\triangle$  is a forest as

 $\mathcal{C}(F)$ = subset of a forest= also a forest

 $\overline{\mathcal{C}}(F)$ = localization of a forest = also a forest

Tree 
$$\Delta = (F_0, F_1, \dots, F_{q-1}, F_q)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$good \qquad \qquad leaf$$

$$\beta_{ij}(\Delta) = \beta_{ij}(F_0, \dots, F_{q-1})$$

+

$$\sum_{\ell_1=0}^{i} \sum_{\ell_2=0}^{j-|F_q|} \beta_{\ell_1-1,\ell_2}(\overline{\mathcal{C}}(F_q)) \beta_{i-\ell_1-1,j-|F_q|-\ell_2}(\Delta/\mathcal{C}(F_q))$$

Tree 
$$\Delta = (F_0, F_1, \dots, F_{q-1}, F_q)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$good \qquad \qquad leaf$$

$$\beta_{ij}(\Delta) = \beta_{ij}(F_0, \dots, F_{q-1})$$

+

$$\sum_{\ell_1=0}^{i} \sum_{\ell_2=0}^{j-|F_q|} \beta_{\ell_1-1,\ell_2}(\overline{\mathcal{C}}(F_q)) \beta_{i-\ell_1-1,j-|F_q|-\ell_2}(\Delta/\overline{\mathcal{C}}(F_q))$$

Tree 
$$\Delta = (F_0, F_1, \dots, F_{q-1}, F_q)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$good \qquad \qquad leaf$$

$$\beta_{ij}(\Delta) = \beta_{ij}(F_0, \dots, F_{q-1})$$

+

$$\underbrace{\sum_{\ell_1=0}^{i}\sum_{\ell_2=0}^{j-|F_q|}\beta_{\ell_1-1,\ell_2}(\overline{\mathcal{C}}(F_q))\beta_{i-\ell_1-1,j-|F_q|-\ell_2}(\Delta/\mathcal{C}(F_q))}_{\beta_{i-1,j-|F_q|}(\overline{\mathcal{C}}(F_q))}$$

$$\beta_{ij}(F_0, \dots, F_q)$$

$$= \beta_{ij}(F_0, \dots, F_{q-1}) + \beta_{i-1, j-|F_q|}(\overline{C}(F_q))$$

$$= \beta_{ij}(F_0, \dots, F_{q-2}) + \beta_{i-1, j-|F_{q-1}|}(\overline{C}(F_{q-1})) + \beta_{i-1, j-|F_q|}(\overline{C}(F_q))$$

i

$$= \beta_{ij}(F_0) + \sum_{u=1}^q \beta_{i-1,j-|F_u|}(\overline{\mathcal{C}}(F_u))$$

$$\beta_{ij}(F_0, \dots, F_q) = \beta_{ij}(F_0) + \sum_{u=1}^q \beta_{i-1, j-|F_u|}(\overline{\mathcal{C}}(F_u))$$

This formula is **inductive** but not **recursive**!

$$\beta_{ij}(F_0, \dots, F_q) = \beta_{ij}(F_0) + \sum_{u=1}^q \beta_{i-1, j-|F_u|}(\overline{\mathcal{C}}(F_u))$$

This formula is **inductive** but not **recursive**!

### Compute $\beta_{0j}(\Delta)$ :

$$\beta_{0,j}(F_0,\ldots,F_q) = \sum_{u=0}^q \delta_{j,|F_u|}$$

where  $\delta_{a,b}$  is the Kronecker delta function.

$$\beta_{ij}(F_0, \dots, F_q) = \beta_{ij}(F_0) + \sum_{u=1}^q \beta_{i-1,j-|F_u|}(\overline{\mathcal{C}}(F_u))$$

This formula is **inductive** but not **recursive**!

#### Compute $\beta_{0j}(\Delta)$ :

$$\beta_{0,j}(F_0,\ldots,F_q) = \sum_{u=0}^q \delta_{j,|F_u|}$$

where  $\delta_{a,b}$  is the Kronecker delta function.

### Compute $\beta_{1j}(\Delta)$ :

$$\beta_{1j}(F_0,\ldots,F_q) = \sum_{u=1}^q \beta_{0,j-|F_u|}(\overline{\mathcal{C}}(F_u))$$

We need to know the generators of  $\overline{\mathcal{C}}(F_u)!$ 

**Theorem.** Given a good-leaf-ordering  $F_0 \cap F_1 \supseteq \cdots \supseteq F_0 \cap F_q$ 

$$-\overline{\mathcal{C}}(F_u) = (F_{i_1} \setminus F_u, \dots, F_{i_s} \setminus F_u) \quad 0 \le i_1 < i_2 < \dots < i_s < u \text{ is a forest}$$

 $-F_{i_s} \setminus F_u$  has a free vertex and is therefore a "splitting facet" of  $\overline{\mathcal{C}}(F_u)$ 

**Theorem.** Given a good-leaf-ordering  $F_0 \cap F_1 \supseteq \cdots \supseteq F_0 \cap F_q$ 

$$-\overline{\mathcal{C}}(F_u) = (F_{i_1} \setminus F_u, \dots, F_{i_s} \setminus F_u) \quad 0 \le i_1 < i_2 < \dots < i_s < u \text{ is a forest}$$

 $-F_{i_s} \setminus F_u$  has a free vertex and is therefore a "splitting facet" of  $\overline{\mathcal{C}}(F_u)$ 

Moreover if  $F_0 \cap F_1 \supseteq \cdots \supseteq F_0 \cap F_q$  then

$$-i_{s}=u-1$$

 $-\overline{\mathcal{C}}(F_u)$  is connected.

$$\beta_{ij}(F_0, \dots, F_q) = \beta_{ij}(F_0) + \sum_{u=1}^q \beta_{i-1,j-|F_u|}(\overline{\mathcal{C}}(F_u))$$

### Compute $\beta_{1j}(\Delta)$ :

$$\beta_{1j}(\Delta) = \sum_{u=1}^{q} \beta_{0,j-|F_u|}(\overline{C}(F_u))$$

$$= \sum_{u=1}^{q} \sum_{v=0}^{u-1} \gamma_{j,|F_u \cup F_v|,\{F_s \cup F_u \mid s < u\}}$$

where 
$$\gamma_{j,N,A} = \left\{ \begin{array}{ll} 1 & j = |N|, N' \not\mid N \text{ for all } N' \in A \\ 0 & \text{otherwise} \end{array} \right.$$

$$\beta_{ij}(F_0, \dots, F_q) = \beta_{ij}(F_0) + \sum_{u=1}^q \beta_{i-1, j-|F_u|}(\overline{C}(F_u))$$

## Compute $\beta_{2j}(\Delta)$ :

$$\beta_{2j}(\Delta) = \sum_{u=1}^{q} \beta_{1,j-|F_u|}(\overline{\mathcal{C}}(F_u))$$
$$= \sum \cdots$$

$$\beta_{ij}(F_0, \dots, F_q) = \beta_{ij}(F_0) + \sum_{u=1}^q \beta_{i-1, j-|F_u|}(\overline{\mathcal{C}}(F_u))$$

#### **More Generally**

$$\beta_{ij}(F_0, \dots, F_q) = \sum_{u_1=1}^q \sum_{u_2=0}^{u_1-1} \cdots \sum_{u_{i+1}=0}^{u_i-1} \gamma_{j,|F_{u_1} \cup \cdots \cup F_{u_{i+1}}|, \{F_{u_1} \cup \cdots \cup F_{u_i} \cup F_s \mid s < u_{i+1}\}}$$

where

 $\gamma_{j,N,A} = \left\{ \begin{array}{ll} 1 & j = |N|, \text{some division properties related to elements of } A \\ 0 & \text{otherwise} \end{array} \right.$