New examples of defective secant varieties of Segre-Veronese varieties

(joint work with M. C. Brambilla)

Hirotachi Abo

Department of Mathematics
University of Idaho

abo@uidaho.edu http://www.uidaho.edu/~abo

October 15, 2011

Notation

- V = (n+1)-dimensional vector space over \mathbb{C} .
- $\mathbb{P}V$ = projective space of V.
- $[\mathbf{v}] \in \mathbb{P}V = \text{equivalence class containing } \mathbf{v} \in V \setminus \{\mathbf{0}\}.$
- $S^dV = d^{\text{th}}$ symmetric power of V.
- $\langle X \rangle$ = linear span of $X \subseteq \mathbb{P}V$.

Secant varieties

- $X = \text{projective variety in } \mathbb{P}V$.
- Let p_1, \ldots, p_s be generic points of X. Then $\langle p_1, \ldots, p_s \rangle$ is called a secant (s-1)-plane to X.
- The s^{th} secant variety of X is defined to be the Zariski closure of the union of secant (s-1)-planes to X:

$$\sigma_s(X) = \overline{\bigcup_{p_1, \dots, p_s \in X} \langle p_1, \dots, p_s \rangle}.$$

Secant dimension and secant defectivity

• A simple parameter count implies the following inequality holds:

$$\dim \sigma_s(X) \le \min \left\{ s \cdot (\dim X + 1) - 1, \dim \mathbb{P}V \right\}.$$

- \bullet If equality holds, we say X has the expected dimension.
- $\sigma_s(X)$ is said to be **defective** if it does not have the expected dimension.
- X is said to be defective if $\sigma_s(X)$ is defective for some s.

The Alexander-Hrschowitz theorem

- Let $v_d : \mathbb{P}V \to \mathbb{P}S^dV$ be the d^{th} Veronese map, i.e., v_d is the map given by $v_d([\mathbf{v}]) = [\mathbf{v}^d]$.
- Theorem (Alexander-Hirschowitz, 1995)

 $\sigma_s[v_d(\mathbb{P}V)]$ is non-defective except for the following cases:

$\dim \mathbb{P}V$	d	S
≥ 2	2	$2 \le s \le n$
2	4	5
3	4	9
4	3	7
4	4	14

Secant varieties of Segre-Veronese varieties

- $\mathbf{n} = (n_1, \dots, n_k), \mathbf{d} = (d_1, \dots, d_k) \in \mathbb{N}^k$.
- $V_i = (n_i + 1)$ -dimensional vector space.
- Seg: $\prod_{i=1}^k \mathbb{P}V_i \to \mathbb{P}\left(\bigotimes_{i=1}^k V_i\right) = \text{Segre map, i.e., the map}$ given by $\text{Seg}([\mathbf{v}_1], \dots, [\mathbf{v}_k]) = [\mathbf{v}_1 \otimes \dots \otimes \mathbf{v}_k].$
- $X_{\mathbf{n},\mathbf{d}} := \operatorname{Seg}\left(\prod_{i=1}^k v_{d_i}\left(\mathbb{P}V_i\right)\right) \hookrightarrow \mathbb{P}\left(\bigotimes_{i=1}^k S^{d_i}V_i\right)$ is called a Segre-Veronese variety.

Conjecturally complete list of defective two factor cases

n	d	s
(m,n) with $m \ge 2$	(d,1)	
(2,2k+1)	(1,2)	3k+2
(4,3)	(1,2)	6
(1,2)	(1,3)	5
(1,n)	(2,2)	$n+2 \le s \le 2n+1$
(2,2)	(2,2)	7, 8
(2,n)	(2,2)	$\left\lfloor \frac{3n^2 + 9n + 5}{n + 3} \right\rfloor \le s \le 3n + 2$
(3,3)	(2,2)	14, 15
(3,4)	(2,2)	19
(n,1)	(2,2k)	$kn + k + 1 \le s \le kn + k + n$

This conjecture is based on:

- already existing results (by many people including E. Carlini and T. Geramita) and
- computational experiments that employ the so-called "Terracini lemma".

• Remark.

- Terracini's lemma can be used to experimentally detect defective cases.
- The result of a computation provides strong evidence, but it cannot be used as a rigorous proof of its deficiency.
- Proving that experimentally determined defective secant varieties are actually defective requires more insight.

What about Segre-Veronese varieties with three or more factors?

Let $\mathbf{n} = (n_1, \dots, n_k), \mathbf{d} = (d_1, \dots, d_{k-1}, 1) \in \mathbb{N}^k$. Then (\mathbf{n}, \mathbf{d}) is said to be unbalanced if

$$n_k \ge \prod_{i=1}^{k-1} \binom{n_i + d_i}{d_i} - \sum_{i=1}^{k-1} n_i + 1.$$

Let (\mathbf{n}, \mathbf{d}) be unbalanced. Then $\sigma_s(X_{\mathbf{n}, \mathbf{d}})$ is defective if and only if s satisfies the following:

$$\prod_{i=1}^{k-1} \binom{n_i + d_i}{d_i} - \sum_{i=1}^{k-1} n_i < s < \min \left\{ n_k + 1, \prod_{i=1}^{k-1} \binom{n_i + d_i}{d_i} \right\}$$

(Catalisano-Geramita-Gimigliano, 2008).

Defective cases for Segre-Veronese with $k \geq 3$ known before 2010 (modulo the unbalanced case)

$\mathbb{P}^{\mathbf{n}}$	d	s	
$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$	(1, 1, 2n)	2n+1	
$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^n$	(1, 1, 2)	2n+1	
$\mathbb{P}^n \times \mathbb{P}^1 \times \mathbb{P}^1$	(1,1,n+1)	2n+1	
$\mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^1$	(1,1,2d)	$\left\lceil \frac{(2d+1)(n+1)}{2} \right\rceil \le s \le dn + n + d$	
$\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^3$	(1, 1, 2)	11	
$\mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^2$	(1, 1, 2)	3n+2	
$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$	(2, 2, 2)	7	
$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2$	(2, 2, 2)	11	
$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^3$	(2, 2, 2)	15	
$\mathbb{P}^{2n+1} \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$	(1,1,1,n+1)	4n+3	
$\mathbb{P}^2 \times \mathbb{P}^5 \times \mathbb{P}^1 \times \mathbb{P}^1$	(1, 1, 1, 2)	11	

The main theorem (rough version)

- Theorem (A-Brambilla, 2010)
 - Let $k \in \{3, 4\}$, let $\mathbf{n} = (n_1, \dots, n_k)$ and let $\mathbf{d} = (1, \dots, 1, 2)$. Then there exist infinitely many defective secant varieties of $X_{\mathbf{n},\mathbf{d}}$, which were previously not known.
- Remark. The family we discovered includes some of the defective secant varieties listed one slide ago as special cases.

Defective cases known before 2010 revisited

$\mathbb{P}^{\mathbf{n}}$	d	s
$\mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}^1$	(1, 1, 2n)	2n+1
$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^n$	(1, 1, 2)	2n+1
$\mathbb{P}^n \times \mathbb{P}^1 \times \mathbb{P}^1$	(1, 1, n + 1)	2n+1
$\mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^1$	(1,1,2d)	$\left\lceil \frac{(2d+1)(n+1)}{2} \right\rceil \le s \le dn + n + d$
$\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^3$	(1, 1, 2)	11
$\mathbb{P}^n imes \mathbb{P}^n imes \mathbb{P}^2$	(1, 1, 2)	3n+2
$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$	(2, 2, 2)	7
$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2$	(2, 2, 2)	11
$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^3$	(2, 2, 2)	15
$\mathbb{P}^{2n+1} \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$	(1,1,1,n+1)	4n+3
$\mathbb{P}^2 \times \mathbb{P}^5 \times \mathbb{P}^1 \times \mathbb{P}^1$	(1, 1, 1, 2)	11

Outline of the proof

- Step 1. Find a non-singular subvariety C of $X_{\mathbf{n},\mathbf{d}}$ passing through s generic points.
- Step 2. Use C to provide an upper bound of dim $\sigma_s(X_{\mathbf{n},\mathbf{d}})$:

$$\dim \sigma_s(X_{\mathbf{n},\mathbf{d}}) \le s \cdot (\dim X_{\mathbf{n},\mathbf{d}} - \dim C) + \dim \langle C \rangle.$$

• Step 3. Find $(\mathbf{n}, \mathbf{d}, s)$ satisfying

$$s \cdot (\dim X_{\mathbf{n}, \mathbf{d}} - \dim C) + \dim \langle C \rangle < \min \left\{ s \cdot (\dim X_{\mathbf{n}, \mathbf{d}} + 1), \prod_{i=1}^{k} \binom{n_i + d_i}{n_i} \right\} - 1.$$

Example

• Let $n, d \in \mathbb{N}, a \in \{0, \cdots, \lceil n/d \rceil - 1\};$

•
$$\mathbf{n} = (n, n + a, 1), \mathbf{d} = (1, 1, 2d) \in \mathbb{N}^3$$
, and

•
$$s = (n + a + 1)d + k \text{ for } \forall k \in \{1, \dots, n - ad\}.$$

- Then $\sigma_s(X_{\mathbf{n},\mathbf{d}})$ is defective.
- Remark. This includes the following previously known example as a special case:

$$\boxed{\mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^1 \quad (1, 1, 2d) \quad \boxed{\left\lceil \frac{(2d+1)(n+1)}{2} \right\rceil \le s \le dn + n + d}}$$

The theorem now implies

$$\boxed{ \mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^1 \mid (1, 1, 2d) \mid d(n+1) + 1 \le s \le dn + n + d}$$

Thank you very much for your attention!