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Notation

• V = (n+ 1)-dimensional vector space over C.

• PV = projective space of V .

• [v] ∈ PV = equivalence class containing v ∈ V \ {0}.

• SdV = dth symmetric power of V .

• 〈X〉 = linear span of X ⊆ PV .
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Secant varieties

• X = projective variety in PV .

• Let p1, . . . , ps be generic points of X. Then 〈p1, . . . , ps〉 is

called a secant (s− 1)-plane to X.

• The sth secant variety of X is defined to be the Zariski

closure of the union of secant (s− 1)-planes to X:

σs(X) =
⋃

p1,··· ,ps∈X

〈p1, . . . , ps〉.
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Secant dimension and secant defectivity

• A simple parameter count implies the following inequality

holds:

dimσs(X) ≤ min {s · (dimX + 1)− 1, dimPV } .

• If equality holds, we say X has the expected dimension.

• σs(X) is said to be defective if it does not have the expected

dimension.

• X is said to be defective if σs(X) is defective for some s.
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The Alexander-Hrschowitz theorem

• Let vd : PV → PSdV be the dth Veronese map, i.e., vd is the

map given by vd([v]) = [vd].

• Theorem (Alexander-Hirschowitz, 1995)

σs[vd(PV )] is non-defective except for the following cases:

dimPV d s

≥ 2 2 2 ≤ s ≤ n

2 4 5

3 4 9

4 3 7

4 4 14
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Secant varieties of Segre-Veronese varieties

• n = (n1, . . . , nk), d = (d1, . . . , dk) ∈ Nk.

• Vi = (ni + 1)-dimensional vector space.

• Seg :
∏k

i=1 PVi → P
(⊗k

i=1 Vi

)
= Segre map, i.e., the map

given by Seg([v1], . . . , [vk]) = [v1 ⊗ · · · ⊗ vk].

• Xn,d := Seg
(∏k

i=1 vdi (PVi)
)
↪→ P

(⊗k
i=1 S

diVi

)
is called a

Segre-Veronese variety.
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Conjecturally complete list of defective two factor cases

n d s

(m,n) with m ≥ 2 (d, 1)
(
m+d
d

)
−m < s < min

{(
m+d
d

)
n+ 1

}
(2, 2k + 1) (1, 2) 3k + 2

(4, 3) (1, 2) 6

(1, 2) (1, 3) 5

(1, n) (2, 2) n+ 2 ≤ s ≤ 2n+ 1

(2, 2) (2, 2) 7, 8

(2, n) (2, 2)
⌊
3n2+9n+5

n+3

⌋
≤ s ≤ 3n+ 2

(3, 3) (2, 2) 14, 15

(3, 4) (2, 2) 19

(n, 1) (2, 2k) kn+ k + 1 ≤ s ≤ kn+ k + n
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This conjecture is based on:

• already existing results (by many people including E. Carlini

and T. Geramita) and

• computational experiments that employ the so-called

“Terracini lemma”.

• Remark.

– Terracini’s lemma can be used to experimentally detect

defective cases.

– The result of a computation provides strong evidence, but

it cannot be used as a rigorous proof of its deficiency.

– Proving that experimentally determined defective secant

varieties are actually defective requires more insight.
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What about Segre-Veronese varieties with three or more factors?

Let n = (n1, · · ·nk),d = (d1, . . . , dk−1, 1) ∈ Nk. Then (n,d) is
said to be unbalanced if

nk ≥
k−1∏
i=1

(
ni + di

di

)
−

k−1∑
i=1

ni + 1.

Let (n,d) be unbalanced. Then σs(Xn,d) is defective if and only
if s satisfies the following:

k−1∏
i=1

(
ni + di

di

)
−

k−1∑
i=1

ni < s < min

{
nk + 1,

k−1∏
i=1

(
ni + di

di

)}

(Catalisano-Geramita-Gimigliano, 2008).
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Defective cases for Segre-Veronese with k ≥ 3

known before 2010 (modulo the unbalanced case)

Pn d s

P1 × P1 × P1 (1, 1, 2n) 2n+ 1

P1 × P1 × Pn (1, 1, 2) 2n+ 1

Pn × P1 × P1 (1, 1, n+ 1) 2n+ 1

Pn × Pn × P1 (1, 1, 2d)
⌈
(2d+1)(n+1)

2

⌉
≤ s ≤ dn+ n+ d

P2 × P2 × P3 (1, 1, 2) 11

Pn × Pn × P2 (1, 1, 2) 3n+ 2

P1 × P1 × P1 (2, 2, 2) 7

P1 × P1 × P2 (2, 2, 2) 11

P1 × P1 × P3 (2, 2, 2) 15

P2n+1 × P1 × P1 × P1 (1, 1, 1, n+ 1) 4n+ 3

P2 × P5 × P1 × P1 (1, 1, 1, 2) 11
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The main theorem (rough version)

• Theorem (A-Brambilla, 2010)

Let k ∈ {3, 4}, let n = (n1, . . . , nk) and let d = (1, . . . , 1, 2).

Then there exist infinitely many defective secant varieties of

Xn,d, which were previously not known.

• Remark. The family we discovered includes some of the

defective secant varieties listed one slide ago as special cases.
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Defective cases known before 2010 revisited

Pn d s

P1 × P1 × P1 (1, 1, 2n) 2n+ 1

P1 × P1 × Pn (1, 1, 2) 2n+ 1

Pn × P1 × P1 (1, 1, n+ 1) 2n+ 1

Pn × Pn × P1 (1, 1, 2d)
⌈
(2d+1)(n+1)

2

⌉
≤ s ≤ dn+ n+ d

P2 × P2 × P3 (1, 1, 2) 11

Pn × Pn × P2 (1, 1, 2) 3n+ 2

P1 × P1 × P1 (2, 2, 2) 7

P1 × P1 × P2 (2, 2, 2) 11

P1 × P1 × P3 (2, 2, 2) 15

P2n+1 × P1 × P1 × P1 (1, 1, 1, n+ 1) 4n+ 3

P2 × P5 × P1 × P1 (1, 1, 1, 2) 11
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Outline of the proof

• Step 1. Find a non-singular subvariety C of Xn,d passing

through s generic points.

• Step 2. Use C to provide an upper bound of dimσs(Xn,d):

dimσs(Xn,d) ≤ s · (dimXn,d − dimC) + dim〈C〉.

• Step 3. Find (n,d, s) satisfying

s·(dimXn,d−dimC)+dim〈C〉 < min

{
s · (dimXn,d + 1),

k∏
i=1

(
ni + di

ni

)}
−1.
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Example

• Let n, d ∈ N, a ∈ {0, · · · , dn/de − 1};

• n = (n, n+ a, 1), d = (1, 1, 2d) ∈ N3, and

• s = (n+ a+ 1)d+ k for ∀k ∈ {1, . . . , n− ad}.

• Then σs(Xn,d) is defective.

• Remark. This includes the following previously known
example as a special case:

Pn × Pn × P1 (1, 1, 2d)
⌈
(2d+1)(n+1)

2

⌉
≤ s ≤ dn+ n+ d

The theorem now implies

Pn × Pn × P1 (1, 1, 2d) d(n+ 1) + 1 ≤ s ≤ dn+ n+ d
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Thank you very much for your attention!
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