[4] Use Euclid's algorithm (described in Chapter 0) to find a solution
(m, n) of 13m + 8n = 1.
13 = 1(8) + 5 so 5 = 13 - 8
8 = 1(5) + 3 so 3 = 8 - 5 = 8 - (13 - 8) = 2(8) - 13
5 = 1(3) + 2 so 2 = 5 - 3 = 13 - 8 - (2(8) - 13) = 2(13) - 3(8)
3 = 1(2) + 1 so 1 = 3 - 2 = 2(8) - 13 - (2(13) - 3(8)) = -3(13) + 5(8)
2 = 2(1) + 0
Thus we see that 1 = gcd(13,8) = -3(13) + 5(8), so we can take m = -3 and n = 5.
There are infinitely many other solutions: (m,n) = (-3, 5), (-3 + 8, 5 - 13),
(-3 + 2(8), 5 - 2(13)), (-3 + 3(8), 5 - 3(13)), etc., all work.