
Proof of Perron-Frobenius Theorem
Let x = (x1, x2, . . . , xn)T ∈ Rn with yT denoting exclusively the transpose of

vector y. Let ‖x‖ = maxi{|xi|} be the norm. Then the induced operator norm for
matrix A = [aij] is ‖A‖ = maxi{

∑
j|aij|}.

Consider a Markov’s chain on n states with transition probabilities pij =
Pr(Xk+1 = i|Xk = j), independent of k, and P = [pij] the transition matrix.
Then

∑n
i=1 pij = 1 for all j. Let p(t)

ij = Pr(Xk+t = i|Xk = j) and P (t) = [p
(t)
ij ] be

the t-step transition probability matrix. Then we have p(t)
ij =

∑
` p

(t−1)
i` p`j for all

i, j. In matrix, P (t) = P (t−1)P = · · · = P t which is the t-step transition matrix. If
q = (q1, . . . , qn)T is a probability distribution for the Markovian states at a given
iterate with qi ≥ 0,

∑
qi = 1, then Pq is again a probability distribution for the

states at the next iterate. A probability distribution w is said to be a steady state
distribution if it is invariant under the transition, i.e. Pw = w. Such a distribution
must be an eigenvector of P and λ = 1 must be the corresponding eigenvalue.
The existence as well as the uniqueness of the steady state distribution is guaran-
teed for a class of Markovian chains by the following theorem due to Perron and
Frobenius.

Theorem 1. Let P = [pij] be a probability transition matrix, i.e. pij ≥ 0 and∑n
i=1 pij = 1 for every j = 1, 2, ..., n. Assume P is irreducible and transitive

in the sense that pij > 0 for all i, j. Then 1 is a simple eigenvalue of P and all
other eigenvalues λ satisfy Reλ < 1. Moreover, the unique eigenvector can be
chosen to be a probability vector w and it satisfies limt→∞ P

t = [w,w, . . . , w].
Furthermore, for any probability vector q we have P tq → w as t→∞.

Proof. Let λ be an eigenvalue of P . Then it is also an eigenvalue for the transpose
P T . Let x be an eigenvector of λ of P T . Then P Tx = λx and ‖λx‖ = |λ|‖x‖ =
‖P Tx‖ ≤ ‖P T‖‖x‖. Since ‖P T‖ = 1 because

∑n
i=1 pij = 1 we have |λ| ≤ 1.

Next, we prove a claim that limt→∞ p
(t)
ij exist for all i, j and the limit is inde-

pendent of j, limt→∞ p
(t)
ij = wi.

Because P = [pij] (is irreducible and transitive) has non-zero entries, we have

δ = min
ij
pij > 0.

Consider the equation of the ijth entry of P t+1 = [p
(t+1)
ij ] = P tP ,

p
(t+1)
ij =

∑
k

p
(t)
ik pkj.
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Let
0 < m

(t)
i := min

j
p

(t)
ij ≤ max

j
p

(t)
ij := M

(t)
i < 1.

Then, we have

m
(t+1)
i = min

j

∑
k

p
(t)
ik pkj ≥ m

(t)
i

∑
k

pkj = m
(t)
i .

i.e., the sequence {m(1)
i ,m

(2)
i , . . . } is non-decreasing. Similarly, the upper bound

sequence {M (1)
i ,M

(2)
i , . . . } is non-increasing. As a result, both limits limt→∞m

(t)
i =

mi ≤Mi = limt→∞M
(t)
i exist. We now prove they are equal mi = Mi.

To this end, we consider the difference M (t+1)
i −m(t+1)

i :

M
(t+1)
i −m(t+1)

i = maxj

∑
k p

(t)
ik pkj −min`

∑
k p

(t)
ik pk`

= maxj,`

∑
k p

(t)
ik (pkj − pk`)

= maxj,`[
∑

k p
(t)
ik (pkj − pk`)

+ +
∑

k p
(t)
ik (pkj − pk`)

−]

≤ maxj,`[M
(t)
i

∑
k(pkj − pk`)

+ +m
(t)
i

∑
k(pkj − pk`)

−]
(1)

where
∑

k p
(t)
ik (pkj − pk`)

+ means the summation of only the positive terms pkj −
pk` > 0 and similarly

∑
k p

(t)
ik (pkj − pk`)

− means the summation of only the neg-
ative terms pkj − pk` < 0.

It is critical to notice the following unexpected equality with the notations∑−
k (pkj − pk`) :=

∑
k(pkj − pk`)

−,
∑+

k (pkj − pk`) :=
∑

k(pkj − pk`)
+:∑

k(pkj − pk`)
− =

∑−
k (pkj − pk`)

=
∑−

k pkj −
∑−

k pk`

= 1−
∑+

k pkj − (1−
∑+

k pk`)

=
∑+

k (pk` − pkj)
= −

∑
k(pkj − pk`)

+.

Hence, the inequality (1) becomes

M
(t+1)
i −m(t+1)

i ≤ (M
(t)
i −m

(t)
i ) max

j,`

∑
k

(pkj − pk`)
+.

If maxj,`

∑
k(pkj − pk`)

+ = 0, it is done that M (t)
i = m

(t)
i . Otherwise, for the

pair j, ` that gives the maximum let r be the number of terms in k for which
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pkj − pk` > 0, and s be the number of terms for which pkj − pk` < 0. Then r ≥ 1,
and ñ := r + s ≥ 1 as well as ñ ≤ n. More importantly∑

k(pkj − pk`)
+ =

∑+
k pkj −

∑+
k pk`

= 1−
∑−

k pkj −
∑+

k pk`

≤ 1− sδ − rδ = 1− ñδ
≤ 1− δ < 1.

The estimate for the difference M (t+1)
i −m(t+1)

i at last reduces to

M
(t+1)
i −m(t+1)

i ≤ (1− δ)(M (t)
i −m

(t)
i ) ≤ (1− δ)t(M

(1)
i −m

(1)
i )→ 0,

as t → ∞, showing Mi = mi := wi. As a consequence to the inequality m(t)
i ≤

p
(t)
ij ≤M

(t)
i , we have limt→∞ p

(t)
ij = wi for all j. In matrix notation, limt→∞ P

t =
[w,w, . . . , w].

Next, we show the λ = 1 is an eigenvalue with eigenvector w. In fact from
the definition of w above limt→∞ P

t = [w,w, . . . , w] and thus [w,w, . . . , w] =
limt→∞ P

t = P limt→∞ P
t−1 = P [w,w, . . . , w] = [Pw, Pw, . . . , Pw] showing

Pw = w.
Next, we show the eigenvalue λ = 1 is simple. Let x 6= 0 be an eigenvec-

tor. Then Px = x. Apply P to the identity repeatedly to have P tx = x. In
limit, limt→∞ P

tx = [w,w, . . . , w]x = (w1

∑
xj, w2

∑
xj, . . . , wn

∑
xj)

T =
(x1, x2, . . . , xn)T . So xi = wi

∑
xj for all i. Because x 6= 0, we must have

x̄ :=
∑
xj 6= 0, and that all xi have the same sign. In other words, x =

x̄(w1, . . . , wn)T = x̄w for some constant x̄ 6= 0, showing that the eigenvector of
λ = 1 is unique up to a constant multiple. Finally, for any probability vector q, the
result above shows limt→∞ P

tq = (w1

∑
qj, w2

∑
qj, . . . , wn

∑
qj)

T = w.
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