Proof of Perron-Frobenius Theorem

Letz = (21,79, ...,7,)T € R" with yT denoting exclusively the transpose of
vector y. Let ||z|| = max;{|z;|} be the norm. Then the induced operator norm for
matrix A = [a;;] is || Al = max;{D_;|a;|}.

Consider a Markov’s chain on n states with transition probabilities p;; =
Pr(Xy41 = i|Xy = j), independent of k, and P = [p;;] the transition matrix.
Then Y7, p;; = 1forall j. Let pi)) = Pr(X;1, = i| X, = j) and PO = [p!")] be
the ¢-step transition probability matrix. Then we have pg) =3, pg—n pe; for all
i,7. Inmatrix, P®) = Pt~D P — ... = P! which is the ¢-step transition matrix. If
q = (qi,...,q,)T is a probability distribution for the Markovian states at a given
iterate with ¢; > 0,>_ ¢; = 1, then Pgq is again a probability distribution for the
states at the next iterate. A probability distribution w is said to be a steady state
distribution if it is invariant under the transition, i.e. Pw = w. Such a distribution
must be an eigenvector of P and A = 1 must be the corresponding eigenvalue.
The existence as well as the uniqueness of the steady state distribution is guaran-
teed for a class of Markovian chains by the following theorem due to Perron and
Frobenius.

Theorem 1. Let P = [p;;] be a probability transition matrix, i.e. p;; > 0 and
Yo pij = 1 forevery j = 1,2,...,n. Assume P is irreducible and transitive
in the sense that p;; > 0 for all i,j. Then 1 is a simple eigenvalue of P and all
other eigenvalues \ satisfy ReA < 1. Moreover, the unique eigenvector can be
chosen to be a probability vector w and it satisfies lim;_.., P* = [w,w, ..., w].
Furthermore, for any probability vector ¢ we have P'q — w as t — oo.

Proof. Let X\ be an eigenvalue of P. Then it is also an eigenvalue for the transpose
PT. Let x be an eigenvector of A of PT. Then PTx = Az and || \z|| = |)\|||z] =
| PTz| < ||PT||||z]. Since | PT|| = 1 because Y, pij = 1 we have |A| < 1.

(®)

7 exist for all 7, 7 and the limit is inde-

Next, we prove a claim that lim; . p;;

pendent of j, lim; ., pf—?

Because P = [p;;] (is irreducible and transitive) has non-zero entries, we have
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Consider the equation of the 7jth entry of P**! = [pgﬂ)] = P'P,
Pt =" pl k.
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Then, we have

mi ™ =min Y S pilpeg > m® D g =m?.
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i.e., the sequence {mgl) , m§2>, ... } is non-decreasing. Similarly, the upper bound

sequence { MV, M.} is non-increasing. As a result, both limits lim,_o. m.”
m; < M; = lim;_, o Mi(t) exist. We now prove they are equal m; = M,;.

To this end, we consider the difference Mi(Hl) — mgtﬂ)

M —m{ = max; 0, plpr; — ming 32, pli i
t
= maxje ), p§k) (Prj — Pre)
t t _
= max; o[Y, Pl (Prj — Pre)t + Yo P (Prj — Pre) ]
t t —
< max; o[ MY 5, (or; — pre)t +m” S (rg — pre) 7]
(1)
where ), pg}? (prj — pre)™ means the summation of only the positive terms py; —
Pre > 0 and similarly >, pg}? (prj — Pre)” means the summation of only the neg-
ative terms py; — pre < 0.
It is critical to notice the following unexpected equality with the notations

>k (Prg = Pre) = (s — re) "5 2o (Prg — Pre) = 21 (Prj — Pre) T

> ek —pre)™ =2k (Prj — Pre)
=k Pkj — Dok Pkt
=1 =30 pry — (1= 220 pre)
= ZZ(W - pkj)
== Zk(pkj — pre)t.

Hence, the inequality (1) becomes
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M.(t+1) . m(t+1) < (M(t) . mgt)) maXZ(ka _ pk€)+'
Jt .

If max;, >, (pkj — pre)™ = 0, it is done that M, O — 0, Otherwise, for the
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pair 7, ¢ that gives the maximum let  be the number of terms in k£ for which



Pkj — Pre > 0, and s be the number of terms for which py; — pre < 0. Thenr > 1,
and n :=r+ s > 1 as well as n < n. More importantly

S w(org — or) ™ =200 prg — 2o Pre
=13 prj — Z:W
<l—-s8d—r0=1—-10
<1l1-6<1.
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The estimate for the difference M, —m,; ' atlast reduces to

i

M) —m < (1 =) (M —m) < (1= 0)' (M —m{V) — 0,
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as t — oo, showing M; = m; := w;. As a consequence to the inequality mgt) <

(1 (0

Pij < Mi(t) , we have lim; .o p;;; = w; for all j. In matrix notation, lim;_ Pt =

[w,w, ..., w.

Next, we show the A = 1 is an eigenvalue with eigenvector w. In fact from
the definition of w above lim; .., P* = [w,w,...,w] and thus [w,w,...,w] =
limy .o P! = Plim;_o P! = Plw,w,...,w] = [Pw, Pw, ..., Pw] showing
Pw =w.

Next, we show the eigenvalue A = 1 is simple. Let z # 0 be an eigenvec-
tor. Then Px = z. Apply P to the identity repeatedly to have Plx = z. In
limit, lim; oo Pz = [w,w,...,wlx = (w1 Y, x;, w2y T, ..., wy yx;)T =
(21,72, ..., 2,)". So z; = w; > x; for all . Because z # 0, we must have
T = ij # 0, and that all x; have the same sign. In other words, x =
T(wy,...,w,)T = Tw for some constant Z # 0, showing that the eigenvector of
A = 1is unique up to a constant multiple. Finally, for any probability vector ¢, the
result above shows lim; o Plg = (w1 Y, qj, w2 Y qjy -y wn y_q;)F =w. O
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