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Abstract. It is well known that for the two species autonomous competitive
Lotka-Volterra model with no fixed point in the open positive quadrant, one
of the species is driven to extinction, whilst the other population stabilises at
its own carrying capacity. In this paper we prove a generalisation of this result
to nonautonomous systems of arbitrary finite dimension. That is, for the n
species nonautonomous competitive Lotka-Volterra model, we exhibit simple
algebraic criteria on the parameters which guarantee that all but one of the
species is driven to extinction. The restriction of the system to the remaining
axis is a nonautonomous logistic equation, which has a unique solution u(t)
that is strictly positive and bounded for all time; see Coleman (Math. Biosci.
45 (1979), 159–173) and Ahmad (Proc. Amer. Math. Soc. 117 (1993), 199–
205). We prove in addition that all solutions of the n-dimensional system with
strictly positive initial conditions are asymptotic to u(t).

1. Introduction

This paper continues Zeeman [15] in an attempt to generalise classical results
about Lotka-Volterra systems in the direction suggested by Ahmad [3], Gopalsamy
[7] and others [5, 13].

Consider a community of n mutually competing species modeled by the nonau-
tonomous Lotka-Volterra system

ẋi(t) = xi(t)

bi(t)− n∑
j=1

aij(t)xj(t)

 , i = 1, . . . , n,(1.1)

where xi(t) is the population size of the ith species at time t, and ẋi denotes dxi
dt .

Each k-dimensional coordinate subspace of Rn is invariant under system (1.1),
(k ∈ {1, . . . , n}), and we adopt the tradition of restricting attention to the closed
positive cone Rn

+. We denote the open positive cone by intRn
+, and call a vector x

positive if x ∈ Rn
+, strictly positive if x ∈ intRn

+. Given x, y ∈ Rn, we write x ≥ y
to denote that (x− y) is positive.
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The mutual competition between the species dictates that aij(t) > 0 for all i 6= j,
and for all t. In addition we assume throughout that for all i and j, aij(t) and bi(t)
are continuous functions, bounded above and below by strictly positive reals. Thus,
when we consider system (1.1) restricted to the ith coordinate axis, we have the
nonautonomous logistic equation

ẋi(t) = xi(t)(bi(t)− aii(t)xi(t)).(1.2)

It is well known that an autonomous logistic equation

ẋ = x(b− ax)

with a, b > 0 has a global attractor on intR+ at the carrying capacity x = b
a .

The combined results of Ahmad [3] and Coleman [6], stated as Lemmas 1.1 and
1.2 below, show that in the nonautonomous equation (1.2) the role of the globally
attracting carrying capacity of the autonomous equation is played by a well defined
canonical solution x∗i (t) to which all other solutions converge.

Lemma 1.1 (Ahmad, Coleman). Equation (1.2) has a unique solution x∗i (t) which
is bounded above and below by strictly positive reals for all t.

We call x∗i the canonical solution of equation (1.2).

Lemma 1.2 (Coleman). If u(t), v(t) are solutions of (1.2), then (u(t)− v(t))→ 0
as t→∞.

Thus u(t), v(t)→ x∗i (t) as t→∞.
It is a classical result that for a two species autonomous competitive Lotka-

Volterra model with no fixed point in the open positive cone intR2
+, one of the

species is driven to extinction, whilst the other population stabilises at its own
carrying capacity.

In [3], Ahmad proves an analogous result for nonautonomous two-dimensional
competitive Lotka-Volterra systems. That is, under the assumption that each of the
coefficient functions is continuous and bounded above and below by strictly positive
numbers, he gives simple algebraic criteria under which there is no coexistence of
the two species. One of the species is driven to extinction, whilst the other species
stabilises at the canonical solution of the logistic equation on that axis.

Ahmad and Lazer [4], and Zeeman [15] generalise the classical result in a different
direction: to autonomous competitive Lotka-Volterra systems of arbitrary finite
dimension n. Ahmad and Lazer find algebraic criteria under which one of the n
species is driven to extinction, whilst the remaining (n− 1) species coexist stably.
Zeeman finds algebraic criteria under which (n − 1) of the species are driven to
extinction, whilst the remaining species stabilises at its own carrying capacity.

In this paper we improve and generalise the results of [15] to the case of nonau-
tonomous competitive Lotka-Volterra systems of arbitrary finite dimension n. See
also [5, 11] for further generalisations of this work which bridge the gap between
the results of Ahmad and Lazer, and those of these authors.

In section 2 we state our main result (Theorem 2.1) and compare it with the
main result in [15]. In section 3 we give a geometric interpretation of our algebraic
hypotheses, and use this to give a geometric sketch of the proof. We make the proof
rigorous in sections 4 - 6.
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2. Statement of result

Recall that we assume throughout that for all i and j, aij(t) and bi(t) are contin-
uous functions, bounded above and below by strictly positive reals. To fix notation,
let

alij = inf
t
aij(t), auij = sup

t
aij(t), bli = inf

t
bi(t), and bui = sup

t
bi(t).

Note that in the autonomous case, alij = auij = aij(t) for all t. In section 3 we
give a geometric interpretation of inequalities (2.1) of the following theorem, which
should help to unravel the subscripts.

Theorem 2.1. Given system (1.1), suppose that

∀k > 1, ∃ik < k 3 ∀j ≤ k, buk
alkj

<
blik
auikj

.(2.1)

Then every trajectory with initial condition in intRn
+ is asymptotic to x∗1.

In other words, for all strictly positive initial conditions, species x2, . . . , xn are
driven to extinction, whilst species x1 stabilises at the unique bounded solution x∗1
of the logistic equation on the x1-axis.

We prove Theorem 2.1 in sections 4, 5 and 6, proving the extinction of species
x2, . . . , xn in section 5 (Theorem 5.1), and the convergence of trajectories to x∗1 in
section 6 (Theorem 6.1).

Allowing for relabeling of the axes, we have:

Corollary 2.2. If there is a permutation φ of the indices {1, . . . , n} after which
system (1.1) satisfies inequalities (2.1), then every trajectory with initial condition
in intRn

+ is asymptotic to x∗φ−1(1) under the original system.

The following corollaries relate Theorem 2.1 to the results in Ahmad [3] and
Zeeman [15].

Corollary 2.3. Given system (1.1), suppose that

∀k > 1, ∀j ≤ k, buk
alkj

<
bl1
au1j

.

Then every trajectory with initial condition in intRn
+ is asymptotic to x∗1.

Proof. Corollary 2.3 follows directly from Theorem 2.1 by setting ik = 1 for each
k.

Corollary 2.4. Given system (1.1), suppose that

buj
aljj

<
bl1
au1j

∀j > 1, and
blj
aujj

>
buk
alkj

∀k > j.

Then every trajectory with initial condition in intRn
+ is asymptotic to x∗1.

Proof.

buk
alkj

<
blj
aujj
≤

buj
aljj

<
bl1
au1j

∀k > j,
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and when j = k

buk
alkj

=
buj
aljj

<
bl1
au1j

.

Hence Corollary 2.4 follows from Corollary 2.3.

Remark 2.5. It is clear from this proof that the hypotheses of Corollaries 2.4 and
2.6 may be relaxed to permit one of the sets of inequalities to be weak inequalities.
In the two-dimensional case, this agrees with the results of Ahmad in [3].

Corollary 2.6 follows directly from Corollary 2.4. We include it to show how The-
orem 2.1 improves the main theorem in [15], which is given by applying Corollary
2.6 to the autonomous case.

Corollary 2.6. Given system (1.1), suppose that

buj
aljj

<
bli
auij

∀i < j, and
blj
aujj

>
bui
alij

∀i > j.

Then every trajectory with initial condition in intRn
+ is asymptotic to x∗1.

Remark 2.7. It is interesting to compare the relative strengths of the hypotheses
of Theorem 2.1 through Corollary 2.6, by considering the application of each to
three-dimensional autonomous competitive Lotka-Volterra systems. These systems
were studied in [14], and classified into 33 open equivalence classes called nullcline
classes. In [15] it was shown that systems in nullcline class 1 are precisely those
satisfying the hypotheses of Corollary 2.6, and that this result is far from being
sharp, since nullcline classes 2,3,7 and 8 also consist of systems in which all but one
species are driven to extinction.

It is straightforward to verify that (permitting permutation of the axes) the
hypotheses of Corollary 2.4 are satisfied by systems in nullcline classes 1 and 3; the
hypotheses of Corollary 2.3 are satisfied by systems in nullcline classes 1, 3 and 7;
and the hypotheses of Theorem 2.1 are satisfied by systems in nullcline classes 1,
2, 3 and 7. Thus we see that although the main result in this paper is considerably
stronger than that in [15], even for the autonomous case, it is still not sharp, as it
does not apply to the systems in nullcline class 8.

3. Geometric interpretation of the inequalities

The autonomous case. Consider the autonomous competitive Lotka-Volterra
system

ẋi = xi

bi − n∑
j=1

aijxj

 , i = 1, . . . , n,(3.1)

satisfying the inequalities

∀k > 1, ∃ik < k 3 ∀j ≤ k, bk
akj

<
bik
aikj

.(3.2)

System (3.1) restricted to the positive x1-axis is an autonomous logistic equation
with a global attractor at the carrying capacity b1

a11
. Theorem 2.1 tells us that the
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Figure 1. Example of nullclines of (a) an autonomous, and (b) a
nonautonomous two-dimensional competitive Lotka-Volterra sys-
tem satisfying inequalities (2.1).

point ( b1a11
, 0, . . . , 0) is in fact a global attractor on intRn

+ for the full system (3.1).
That is, each of species x2, . . . , xn is driven to extinction.

We proceed to translate inequalities (3.2) into geometric properties of system
(3.1), and to sketch the proof of Theorem 2.1 for the autonomous case, to show
how these inequalities inductively lead to the extinction of each xk for k > 1. A
detailed proof of Theorem 2.1 is given in sections 5 and 6.

The ith nullcline of system (3.1) is the set in Rn
+ on which ẋi = 0. It is given by

{xi = 0}∪Ni where Ni is the hyperplane bi =
∑n
j=1 aijxj , which has positive axial

intercepts bi
aij

. See Figure 1(a) for a two-dimensional example. Inequalities (3.2)

give a partial ordering between the axial intercepts of the hyperplanes Ni along each
axis, from which we can deduce non-intersection properties of the nullclines in Rn

+.
A geometric analysis of similar non-intersection properties was used to prove the
results in [15]. The non-intersection properties corresponding to inequalities (3.2)
are considerably weaker than those used in [15], but nevertheless lead to the same
conclusion. For example, consider the hyperplanes Nn and Nin . By inequalities
(3.2),

bn
anj

<
bin
ainj

, ∀j ≤ n.(3.3)

Hence Nn and Nin are disjoint in Rn
+. Moreover, Nin lies entirely above Nn,

meaning that Nin is contained in the unbounded component of Rn
+ \Nn.

The following lemma is proved in the first half of the proof of Theorem 5.1
(replacing n by j in the proof).

Geometric Lemma 3.1. Given system (3.1), if there exist i, j such that Ni lies
entirely above Nj, then species xj is driven to extinction.

Thus xn is driven to extinction by inequalities (3.3). We now restrict attention
to the subspace Hn−1 on which xn = 0, and we consider the restriction of the
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hyperplanes N(n−1) and Ni(n−1)
to this subspace. By inequalities (3.2),

b(n−1)

a(n−1)j
<

bi(n−1)

ai(n−1)j
∀j ≤ (n− 1),

so Ni(n−1)
lies entirely above N(n−1) in H

(n−1)
+ , and hence x(n−1) is driven to ex-

tinction in the subsystem corresponding to xn = 0.
Similarly, for each r > 1, Nir lies entirely aboveNr in the r-dimensional subspace

Hr on which x(r+1), . . . , xn vanish, and hence xr is driven to extinction in the
corresponding subsystem.

Thus inequalities (3.2) lead inductively to the extinction of xk for each k > 1,
and hence we prove in Theorem 6.1 that R1 is globally attracting on intRn

+.

The nonautonomous case. Now consider the nonautonomous system (1.1) sat-
isfying inequalities (2.1). Define the upper system of system (1.1) to be the au-
tonomous system

ẋi = xi

bui − n∑
j=1

alijxj

 , i = 1, . . . , n,

and define the lower system by

ẋi = xi

bli − n∑
j=1

auijxj

 , i = 1, . . . , n.

Then for each i, the upper system has ith nullcline Nu
i , as defined above and which

meets the xj-axis at
bui
alij

. Similarly, the lower system has ith nullcline N l
i , which

meets the xj axis at
bli
auij

.

We use these upper and lower nullclines to define a thickened nullcline Ni for
system (1.1) by

Ni = {x ∈ Rn
+ : ∃y ∈ N l

i , z ∈ Nu
i 3 y ≤ x ≤ z}

In other words, Ni is the region in Rn
+ between N l

i and Nu
i . See Figure 1(b) for a

two-dimensional example.
For each fixed t, the ith nullclineNi(t) of the autonomous system with coefficients

aij(t), bi(t) meets the xj-axis at bi(t)
aij(t)

. Now,

bli
auij

<
bi(t)

aij(t)
<

bui
alij

∀j = 1, . . . , n,

and hence Ni(t) ⊆ Ni. In other words, the ith nullcline of the autonomous system
corresponding to each fixed t is contained in the ith thickened nullcline of the
nonautonomous system.

Inequalities (2.1) can now be interpreted, in direct analogy with the autonomous
case, as non-intersection properties of the thickened nullclines. For example: N l

in
lies entirely above Nu

n , and hence (thickened) Nin lies entirely above (thickened)
Nn. Moreover, the proof of Theorem 5.1 shows that the geometric lemma (Lemma
3.1) holds for the nonautonomous case as well as the autonomous case, and thus
the non-intersection properties lead to the extinction of species x2, . . . , xn just as
before.
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4. A compact attracting region

There are many ways to find a compact attracting region for system (1.1).
Lemma 4.1 uses a particularly simple compact attracting region to give coarse
bounds on the components of a solution to system (1.1). These bounds are needed
for the estimation in sections 5 and 6. A more delicate and optimal compact at-
tracting region for system (1.1) is found in [16].

Lemma 4.1. If x(t) is a solution of system (1.1) with initial condition in intRn
+,

then there exist r, δ > 0 and T ∈ R such that for all t > T ,
n∑
i=1

xi(t) ≥ δ and 0 < xi(t) ≤ r, ∀i = 1, . . . , n.

Proof. It is clear that the open and closed positive cones are invariant under system
(1.1). Now choose

r ≥ 2max

{
bui
alij

: i, j = 1, . . . , n

}
, δ ≤ 1

2
min

{
bli
auij

: i, j = 1, . . . , n

}
and define

S =

{
x ∈ Rn

+ : δ ≤
n∑
i=1

xi(t) ≤ r
}
.

We shall show that S is a globally attracting positively invariant compact set for
Rn

+ \ {0}. Then if x(t) is a solution of system (1.1) with initial condition in intRn
+,

there exists T ∈ R such that for all t > T, x(t) ∈ S, and the conclusion follows.
Consider the function L : Rn

+ → R+ defined by L(x) =
∑n
i=1 xi. Then ∇L =

(1, . . . , 1), and the derivative of L along trajectories of system (1.1) is given by

L̇ = ∇L.ẋ =
n∑
i=1

ẋi =
n∑
i=1

xi(t)

bi(t)− n∑
j=1

aij(t)xj(t)

 .

It is easy to see that L is Liapunov-like outside S. That is, by our choice of δ, if
x ∈ Rn

+ \ {0} satisfies
∑n
i=1 xi ≤ δ then ẋi is non-negative for each i, and strictly

positive for at least one value of i. So at each x satisfying 0 < L(x) ≤ δ, L̇ is

strictly positive. Similarly, for each x satisfying L(x) ≥ r, L̇ is strictly negative.
Hence [δ, r] is a compact attracting set for L along each trajectory of system (1.1),
and thus S is a compact attracting set for the flow of system (1.1) on Rn

+ \{0}.

5. Extinction of x2, . . . , xn

Theorem 5.1. If system (1.1) satisfies inequalities (2.1) and x(t) is a solution of
system (1.1) with x(t0) ∈ intRn

+ for some t0, then for all i = 2, . . . , n,

(a) xi(t)→ 0 as t→∞, and

(b)
∫∞
t0
xi(t)dt <∞.

Remark 5.2. Let Hk denote the k-dimensional subspace on which xk+1, . . . , xn all
vanish. Generalising the method in [15], conclusion (a) of Theorem 5.1 can be
proved by inductively applying the Liapunov functions

Vk(x) = x
−buk
ik

x
blik
k
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to each Hk. However, we shall need conclusion (b) to prove that solutions are
asymptotic to x∗1, so we use the idea behind the Liapunov functions Vk to develop
an integration proof here.

Proof of Theorem 5.1. Let x(t) be a solution of system (1.1) with x(t0) ∈ intRn
+

for some t0. By Lemma 4.1 we may assume that x(t0) ∈ S. We prove Theorem 5.1
by induction. First we show that conclusions (a) and (b) hold for xn(t). Let i = in
given by inequalities (2.1). By definition

ẋi(t)

xi(t)
≥ bli −

n∑
j=1

auijxj(t) and
ẋn(t)

xn(t)
≤ bun −

n∑
j=1

alnjxj(t),

so

d

dt
ln
(
x
−bun
i (t)x

bli
n (t)

)
= bli

(
ẋn(t)

xn(t)

)
− bun

(
ẋi(t)

xi(t)

)
≤

n∑
j=1

(
buna

u
ij − blialnj

)
xj(t)

≤ maxj
{
buna

u
ij − blialnj

} n∑
j=1

xj(t).

Hence, for t > t0

d

dt
ln
(
x
−bun
i (t)x

bli
n (t)

)
≤ maxj

{
buna

u
ij − blialnj

}
δ < δn

for some real δn < 0, by Lemma 4.1 and inequalities (2.1). Integrating this equation
we have

ln
(
x
−bun
i (t)x

bli
n (t)

)∣∣∣t
t0
< δn(t− t0)

and so for t > t0

x
bli
n (t) < Ceδn(t−t0), where C =

x
bli
n (t0)

x
bun
i (t0)

rb
u
n .

Thus

xn(t) < Kne
εn(t−t0), ∀t > t0,

where εn = δn
bli
< 0 and Kn > 0. Conclusions (a) and (b) for xn follow directly.

We now prove that for 1 < r < n, xr → 0 as t→∞ under the assumption that
for r < j ≤ n, xj → 0 as t→∞. The method is essentially the same as that used
above for xn. Now let i = ir given by inequalities (2.1). Then

ẋi(t)

xi(t)
≥ bli −

n∑
j=1

auijxj(t) and
ẋr(t)

xr(t)
≤ bur −

n∑
j=1

alrjxj(t),
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so

d

dt
ln
(
x
−bur
i (t)x

bli
r (t)

)
= bli

(
ẋr(t)

xr(t)

)
− bur

(
ẋi(t)

xi(t)

)
≤

n∑
j=1

(
bura

u
ij − blialrj

)
xj(t)

=
r∑
j=1

(
bura

u
ij − blialrj

)
xj(t) +

n∑
j=r+1

(
bura

u
ij − blialrj

)
xj(t).

By inequalities (2.1) each term in the first summation is strictly negative. The
inequalities do not give us control over the sign of the second summation. Instead
we use the assumption that xj → 0 as t→∞, for j > r, as follows.

Firstly, note that for t sufficiently large
∑r
j=1 xj(t) >

δ
2 , where δ is given by

Lemma 4.1. Secondly, choose ν > 0 such that ν < |maxj≤r(b
u
ra
u
ij − blialrj) δ2 |, and

note that for t sufficiently large
∑n
j=r+1(bura

u
ij − blialrj)xj(t) < ν. Thus there exists

tr ∈ R such that for t > tr

d

dt
ln
(
x
−bur
i (t)x

bli
r (t)

)
< maxj≤r(b

u
ra
u
ij − blialrj)

δ

2
+ ν = δr < 0.

Integrating this equation we have

ln
(
x
−bur
i (t)x

bli
r (t)

)∣∣∣t
tr
< δr(t− tr)

and so for t > tr

xr(t) < Kre
εr(t−tr),

where εr = δr
bli
< 0 and Kr > 0. Conclusions (a) and (b) follow directly.

6. Convergence to x∗1

Recall from section 1 that x∗1 is the canonical solution to the nonautonomous
logistic equation obtained by restricting system (1.1) to the x1-axis.

Theorem 6.1. If system (1.1) satisfies inequalities (2.1) and x(t) is a solution of
system (1.1) with x(t0) ∈ intRn

+ for some t0, then x1(t)→ x∗1(t) as t→∞.

Proof. By Lemma 4.1, we may assume that x(t0) ∈ S ∩ intRn
+. Then for all t > t0,

x(t) ∈ S and x1(t) is bounded above and below by positive constants. Let u1(t) be
a solution of the nonautonomous logistic equation (1.2) such that u1(t0) ≥ x1(t0).
Then u1(t) > x1(t) for all t > t0 (see Ahmad [1], Lemma 2.8 or Tineo and Alvarez
[12], Proposition 2.1), and u1(t) is bounded (Lemmas 1.1 and 1.2). We now follow
a technique similar to that used in the proof of the previous theorem to compare
u1(t) and x1(t) as t→∞:

d

dt

(
ln
x1(t)

u1(t)

)
=

ẋ1(t)

x1(t)
− u̇1(t)

u1(t)

= a11(t)(u1(t)− x1(t))−
n∑
j=2

a1j(t)xj(t),
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so

u1(t)− x1(t) ≤ 1

al11

 d

dt

(
ln
x1(t)

u1(t)

)
+

n∑
j=2

a1j(t)xj(t)

 .

Integrating this inequality we have∫ t

t0

(u1(t)− x1(t)) dt ≤ 1

al11

 ln
x1(t)

u1(t)

∣∣∣∣t
t0

+
n∑
j=2

∫ t

t0

a1j(t)xj(t)dt


≤ 1

al11

ln

(
x1(t)u1(t0)

u1(t)x1(t0)

)
+

n∑
j=2

au1j

∫ t

t0

xj(t)dt


< K <∞,

where K is some constant independent of t, since x1(t), u1(t) are bounded by pos-
itive constants, and for j > 1,

∫∞
t0
xj(t)dt <∞ (Theorem 5.1). Thus∫ ∞

t0

(u1(t)− x1(t)) dt <∞,

and so

x1(t)→ u1(t) as t→∞,
since u1(t) − x1(t) is a non-negative differentiable function such that u̇1(t)− ẋ1(t)
is bounded on [t0,∞). Moreover, by Lemma 1.2

u1(t)→ x∗1(t) as t→∞,
and hence

x1(t)→ x∗1(t) as t→∞.

Theorem 2.1 is now a corollary of Theorems 5.1 and 6.1.
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