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We generalise and unify some recent results about extinction in nth-order non-
autonomous competitive Lotka—Volterra systems. For each r < n, we show that if
the coefficients are continuous, bounded by strictly positive constants, and satisfy
certain inequalities, then any solution with strictly positive initial values has the
property that n — r of its components vanish, whilst the remaining r components
asymptotically approach a canonical solution of an r-dimensional restricted sys-
tem. In other words, r of the species being modeled survive whilst the remaining
n — r are driven to extinction. © 1995 Academic Press, Inc.

1. INTRODUCTION

This paper generalises and unifies some recent results of Ahmad and
Lazer [1-3], Tineo [6], and these authors [5, 7] about classical Lotka—
Volterra systems.

Consider a community of n mutually competing species modeled by the
nonautonomous Lotka-Volterra system

n

%) = x (OB — D, ag)x(0), i=1,..,n, )

=1

360

0022-247X/95 $6.00

Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.



COMPETITIVE LOTKA~VOLTERRA SYSTEMS 361

where x(#) is the population size of the ith species at time ¢, x; denotes dx;/
dt, and for all i and j the functions a;(f) and b;(¢) are continuous on R and
bounded above and below by strictly positive reals.

Each k-dimensional coordinate subspace of R" is invariant under sys-
tem (1) (k € {1 - - - n}), and we adopt the tradition of restricting attention to
the closed positive cone R%.. We denote the open positive cone by R,
and call a vector x positive if x € R, strictly positive if x € R.

The restriction of system (1) to the ith coordinate axis is the nonautono-
mous logistic equation

Xi(t) = xi (Dbi(t) — au(Dx;). )

Let x}(¢) denote the unique bounded solution of Eq. (2) on the strictly
positive x-axis. Then x} is bounded below by a strictly positive constant
and all other solutions of (2) with strictly positive initial condition con-
verge to x7. See Ahmad [1] and Coleman [4].

Given a function g defined on R, denote the infimum and supremum of g
on R by

g = infg(t),  g“= sup.g().

In [5] the authors show the following.

THEOREM 1.1. Given system (1), suppose that
: . b _ bl
V> 1,3 <kDVj=k — <k 3)
ay 4y

Q
Then every trajectory with initial condition in R’ is asymptotic to x}.

In other words, under inequalities (3), for all strictly positive initial
conditions, species x;, ..., X, are driven to extinction, whilst species x;
stabilises at x}.

See Section 3 of {5] for a geometric interpretation of inequalities (3), in
terms of thickened nullclines of system (1), which should help to unravel
the subscripts.

In [2], Ahmad and Lazer considered system (1) for the autonomous
case, where the functions a; and b; are positive constants. They proved
the following.

THEOREM 1.2 (Ahmad and Lazer [2]). Given (autonomous) system
(1), suppose that

bk > z Qyj (&b—j), Yk <n (4)

J=Lj#k ¢l
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n—1
by < 3 ayul, Q)
J=1

Then the linear system

n—1
b, = 2 ay;, k<n,
ey

has a unique positive solution u* = (uf, ..., uy-), and (uf, ..., uy_y, 0) is
globally attracting Sfor (autonomous) system (1) on the open positive cone
R%.

In other words, under inequalities (4)-(6), for all strictly positive initial
conditions, species x, is driven to extinction, whilst species xi, ..., X,
coexist stably at u*.

In this paper we bridge the gap between these two results, generalising
Theorem 1.2 to the nonautonomous case and combining the two sets of
inequalities (3)—(6) to find algebraic criteria that guarantee the survival of
species xi, ..., x, and the extinction of species x,;i, ..., X,.

In Section 2 we state our main result (Theorem 2.1), which is then
proved in Sections 3-5.

2. STATEMENT OF RESULT

In order to discuss the survival of species x,, ... x,, we develop the
following notation. Let H" denote the r-dimensional coordinate subspace
on which x,+y, ... x, vanish. Then H',, (H’) denote the closed (open)
positive cones in H", as usual. We use the variable u to denote the restric-
tion of system (1) to H’,

a0 = w;(0) (b,-(t) - a,»,(t)u,-(t)), i=1,..,r (7

Jj=1

And we shall refer to this restricted system as the small system.

In Section 4 we collect together some recent results of Ahmad and
Lazer {3] and Tineo [6] which state that inequality (8) of Theorem 2.1,
below, implies that the small system has a unique strictly positive solution
1*(¢) which is bounded for all time, and that all other trajectories of the
small system with strictly positive initial condition are asymptotic to u*.
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Theorem 2.1 states that if, in addition, we assume inequality (9), then
all trajectories of the full n-dimensional system with strictly positive initial
conditions are asymptotic to «*. Note that we are employing a slight
abuse of notation, allowing «* to denote both the trajectory (uf(?), ...,
u} (1) of system (7) in H', and the trajectory (uF (1), ..., uf(5), 0, ..., 0) of
system (1) in R".

THEOREM 2.1. Given system (1), suppose that

Vi<r, bi> ZaM%» ®)
j=j#i aj
i !
Vk>r 3 <kdVi=k obobu )
akj a,.u

Then system (7) has a unique bounded strictly positive solution u*(t)
defined on R, and every trajectory of system (1) with initial condition in
R’ is asymptotic to u*.

In other words, under inequalities (8) and (9), for all strictly positive
initial conditions, species x,.;, ..., x, are driven to extinction, whilst
species x|, ..., x, stabilise at u«*.

Once again, see Section 3 of [5] for a geometric interpretation of ineq-
ualities (9), to help unravel the subscripts.

We prove Theorem 2.1 in Sections 3-5, discussing the extinction of
species x,, ..., X, Section 3, the existence of #* in Section 4, and the
convergence of trajectories to «* in Section 5.

Allowing for relabeling of the axes by a permutation ¢, let H® denote
the r-dimensional subspace on which species ¢='(+ + 1), ..., ¢~ '(n) all
vanish. Then we have the following.

COROLLARY 2.2. If there is a permutation ¢ of the indices {1, ..., n},
after which system (1) satisﬁesoinequalities (8) and (9), then every trajec-
tory with initial condition in R’ is asymptotic to u} under the original
system, where uj} is the unique bounded globally attracting solution of the
restriction of system (1) to H®.

3. EXTINCTION OF X,51, ..., X,
THEOREM 3.1. If system (1) soatisﬁes inequalities (9) and x(t) is a solu-
tion of system (1) with x(ty) € R for some 1y, then for all i > r,

@) x(H)—0ast— o, and

) [7 x(t) dt < =,
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Proof. Theorem 3.1 is the special case of Theorem 5.1 in [5] for which
r = 2. Since the method of proof in [5] is to first prove conclusions (a) and
(b) for x,, and then to work from x, down to x; by induction, the proof of
Theorem 3.1 here is a subset of the proof of Theorem 5.1 in [5].

4. EXISTENCE OF u*

In this section we collect together some recent results concerning the
small system (7) on the coordinate space H'.

THEOREM 4.1 (Ahmad and Lazer [3]; Tineo [6]). Given system (7),
suppose that

bl> > ag(ﬁ), Vi=1,..,r (10)

]
J=Vg# aj

Then

(a) System (7) has a solution u*(t) defined on R, each coordinate of
which is bounded above and below by strictly positive constants.

(b) The solution u* is unique.

o
(c) Every trajectory with initial condition in H', is asymptotic to u*
ast— o,

(d) There exists ¢ = (cy, ..., ¢} € Iii and m > 0 such that

cia;i(t)y = m + Z Cja_,','(t) Vi=<rVi (1)

=g+

Proof. (a) See Ahmad and Lazer {3].
(b), (¢) See Tineo [6, Theorem 1.2].
(d) See Tineo [6, Theorem 2.2 and Corollary 2.3}.

Remark. Note that inequality (10) follows directly from inequality (8).

5. CONVERGENCE TO u*

THEOREM 5.1.  If system (1) satisfies inegualities (8) and (9) and x()
is a solution of system (1) with x(t,) € R for some ty, then for all
i<r x(t)—= uf) as t — =,

To prove Theorem 5.1 we combine the methods of Tineo [6, Theorem
1.1], proving that trajectories of the small system converge to u*, with
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those of these authors [5, Theorem 5.1], proving that all but one of the
species are driven to extinction. In particular, the introduction of the
function f and Lemma 5.4 follow Tineo quite closely. We include the
proof of Lemma 5.4 in full to show how the convergence of trajectories in
H', has been generalised to the convergence of trajectories in R%.

Let x(f) = (x;(2), ..., x,(£)) € R? and w(t) = (u,(5), ..., u,()) € H be
positive solutions of systems (1) and (7), respectively, such that for some
to, we have x;(tg) > ui(ty) for all i = r. We define a continuous function fon
R by

_ N (1)
ﬂO—ﬂﬂmum%—gcim&&JL (12)
where ¢ = (¢y, ..., ¢;) 1s given by Theorem 4.1(d).

Remark. It is easy to show (see Tineo [6, Theorem 1.1]) that f is
continuously differentiable on R\D, where D is a discrete set, defined as
follows. Let D; = {t € R:x;(t) = w;(t) and X;(t) # uy(t)}, and then define
D = U]., D;. Hence df/dt is Riemann integrable and obeys the fundamen-
tal theorem of calculus.

The next lemma uses a simple compact attracting region to give coarse
bounds on the components of solutions to system (1), from which we can
deduce that fis bounded.

LEMMA 5.2.  If system (1) satisfies inequalities (8) and x(1) is a solution
of system (1) with initial condition in R"., then there exist k; > 0 for each
i=1,..,r;e>0,and T € R such that forallt > T,

e < xi() = k; Vi=1,..,r.
Proof. See the proof of Lemma A in Ahmad and Lazer [2] which is

easily adapted to prove Lemma 5.2.

COROLLARY 5.3. Ifsystem (1) satisfies inequalities (8) and (9) then fis
bounded on [ty, ©\D.

Proof. Corollary 5.3 follows directly from Theorem 4.1(a) and (c), and
Lemma 5.2.

LeEmMma 5.4, If system (1) satisfies inequalities (8) and (9) then for all
te [t()’ Oo)\D,

f®O = —mllu(r) — x0)|), + g(o), (13)

where g — 0 as t — < and [ g(t) < .
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Here |||, is the /; norm in H"; ¥ = (xi, ..., x,), and the dot denotes
differentiation with respect to time, as usual. The proof of Lemma 5.4
follows the proof of Theorem 5.1.

Proof of Theorem 5.1. By Lemma 5.4
- 1.
luty = 20 = = — (f — 8.
Integrating this inequality we have

[L1ts) = 2ol s = == ([ ooy ds — [" gts) as)

~ L {r0) ~ s — [ g1s) as)

K <=,

where K is some constant independent of ¢, since f(¢) is bounded by
positive constants (Corollary 5.3) and f  g(t) dt < = (Lemma 5.4). Thus

[ uthy - 2 dit <,
and so for all i = r,
x:(£) = u(t) ast— o,

since ||u(f) — x(1)|, is a nonnegative a.e. differentiable function of ¢, and for
all i = r the functions u;, x; are everywhere differentiable with bounded
derivative on [#y, =). Moreover, by Theorem 4.1(c), forall i < r,

ui(t) — uX() ast — @
and, hence,
xi(t) — uk @) as f — oo, Q.E.D.

In order to estimate the derivative of f and prove Lemma 5.4, it is
convenient to group the indices as follows. For each fixed 1 € [1,, o\D,
define
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S0 ={j = ru®) > x;(0)}
So(t) = {j = r:ut) = x;(}
S-(0) ={j = riut) < x;(n)}.

Now define S(7) = §+(¢£) U S_(¢). The next lemma shows that for all ¢ € [z,
on\D, S(t) # ¢. It is perhaps not strictly necessary, but is included for its
independent interest. Note that from here on we shall suppress the ¢ and
simply write S,, S_, S for S.(1), S_(1), and S(r), respectively.

. LEMMA 5.5, Suppose that x(¢) is a solution of system (1) with x(tp) €
R", for some ty; u(t) is a solution of system (7) with u(ty) € H', and for all
i = r, uty) > xi(ty). Then for all t > ty, there exists i = r such that
u(t) # xi(1).

Proof of Lemma 5.5. Suppose, for contradiction, that there exists
s > to such that for all { < r, u,(s) = x;(s). Then

4i(s) = us) (b.-(S) -> aij(S)u,-(S))

Py
= x,(s) (bi(s) - 21 a,-j(S)xj(S))
P

> x;(s) (b.-(S) - a,-,(s)x,-(s))

J=1
= x,(s)
Therefore,

d

pr (i; — x;)(s) > 0, Vi<r.

In other words, for each i = r the function (&; — x;) has a zero at s at which
it is strictly increasing. But («; — x;) is positive at ¢y, so the function (u; —
x;) must have at least one more zero in (¢, 5). Indeed, for each i/ < r, there
exists t; € (ty, s) such that
(u; — x)(¢;) = 0, (14)
i( —x)t) =0 (15)
dt ul xl 1 - 1

(ll,' - X,')(ti) = 0, Vi € (f,', S). (16)
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Now define & by # = max,<{t;}. Then us(t) = xi(t¢), and for all i # k,
ui(ty) < xi(ty). So

e (ty) = w(8) \ b(t) — ak;(&)%(&))

bilty) — Z ay(tdu(t)

= xi{te)

= xi(te)

n

> xi(te) L bi(ty) — Z a(t) xi(ty)

)

butn) = 3, a5 0)
=1

)

= Xu(te).

Hence (d/dt)(u;, — x;)(¢x) > 0, but this contradicts inequality (15).
Q.E.D.

Proof of Lemma 5.4. Fix t € [t;, ©\D. From the definition of D we
see that

_C_l'_ ‘l xi{(1)

| =0, Vj € S,.
nu](t) ] 0

And from Lemma 5.5, § # ¢. Consequently,

jo= (-3 om(2) + 5 on(29))

JES-

X ( GO — x0) ~ S, ax0)

JES, i=r+1
+ 2 ¢
JES- i=r+1

2
2. @ = x(0) = 2, a,-,-(t)x.-(z))
2, aui(t) = x(0) + X at)ui) - xi(r)))

€S, i€s_

/(3
3o

JESs,

—+

Zs ¢ (Z ai(u() — x () + Y, au(Dult) — XI(I)))

[(SA i€s.

+ ,—ézs (i Cfajf(t)xi(i)> - J_EZS_ (i c,-aﬁ(t)x,-(t)>.

+ Ii=r+l . Ni=r+d
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Interchanging the order of summation and regrouping terms, we have

fo=2 ((— 2 cait) + 3 Cja,,.(,)) (ui(1) —xi(r))) 17
[ JES+ JES-
+3 (- 3 am0+ 3 cam) wo - X)) + g0, (18
€S- JES. JES -

where

n

g = Z ((E cja;(t) — ,-21 Cjaji(f)> X.'(f)>-

i=r+1 JES.

Consider first the case when i € S, ; then we have (u;(¢) — xi(£)) > 0 and
we can estimate the first summation in inequality (18) as

- E cjaj,-(t) + z cjaj,-(t) = -—c,a,-,(t) - 2 Cj(lj,‘(f) + Z cjaﬁ(t)
JjES, JES- JES, J#i JES_

r

—cia;(t) + E ca;it)

J=hg#i

= -m by Theorem 4.1(d).

A

And, hence,

2 ((— 2 (D) +Z c,a,f(r)) (i) — x.-(t)))

€S, JES.
= ZS — m(ui(t) — x:(1)
= —m Zs '(u‘-(t) — Xi(t))"

Similarly, in the case when i € §_, then we have (u;(f) — xi(r)) < 0 and
we can estimate the second summation in inequality (18) by

- Z cjaﬁ(t) + Z cja,-,-(t) =m,
JES+ JES_
so that

23:' ((— j?_;* ca;(t) + 2 cjaj,-(t)> (ut) — x;(t)))

JES_

= > mut) — x(t)

€S,

= —m 3 () = x(0).



370 MONTES DE OCA AND ZEEMAN

Therefore,

fay = =m 3 1w = x| = m 3 ) = x@) + g0)

iES,

A

—m > |(uie) = x(o)| + g(0)
i=1

I

—m|u(t) = ()|, + g(1).

Finally, we can estimate g(r) by

n
> (E ciabx() = Cja}?xi(f))
i=r+l Vjes, JES.

J

n

=g = 3 (Z cjagxt) = X cya}fx,-(l)).

i=r+1 VES, JjES-

So, by Theorem 3.1,

g() > 0 ast— = f 2(t) dt < =. (19)
Q.E.D.

Theorem 2.1 is now a corollary of Theorems 3.1 and 5.1.
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