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0. INTRODUCTION

In this paper we consider the following nonautonomous Kolmogorov
population system
u;=uiFi(t’ u), u:(ul,..., un), 1<i<n5 (0‘1)

where F: R x R" — R" is a continuous function and R”, is the nonnegative
orthant, R” = {xeR™ x,20, 1 <i<n}. These systems arise naturally in
population biology. See [7] for the autonomous case and [10] for the
periodic case.

In order to apply the usual theorems about O.D.E., we shall assume the
following restriction on F:

(H,) F is locally Lipschitz. That is: for all (#;, x,) in R x R”, there
exists a neighborhood N of this point, and a positive constant M, such
that ||F(z, x)—F(¢t, y)| S M| x—y| for all (1,x), (¢ y) in N. Here,
”x” = |xl| + e+ ’xnllf X = (x17 “eey xn)e R~

(H,) Fis bounded in R x K for each compact subset K of R”".

Assume that the partial derivatives (0F,/0x;)(t, x) are defined and
continuous for all ¢ in R and x>0, and suppose that there are positive
constants #, ¢y, ..., ¢, such that

oF,
—2(t,x)

1z

oF;
—az— (LX) 2m+ ) g . I<ign, (02)

jeJi
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where, from now on, J,= {1, ..,i—1,i+1, .., n}. If the system (0.1) has a
positive solution v= (v, ..., v,), defined and bounded in [0, co), we shall
prove that:

(a) All solutions u of (0.1) with #(0)> 0, are defined on {0, «0) and
u(t)—ov(t)—0 as t— o0. (0.3)

(b) System (0.1) has at most one solution 1%, defined on R, whose
components are bounded above and below by positive constants.

(c) If Fis almost periodic, uniformly on compact subsets of R”, , and
v;, .., U, are bounded below by positive constants on [0, o0), then system
(0.1) has an almost periodic solution, whose components are bounded,
above and below, by positive constants. A parallel result holds in the
periodic case.

(d) If Fis T-periodic with respect to a time variable 4, then system
(0.1) has a nonnegative 7-periodic solution °, such that u(t) —u%)—>0 as
t— oo, for any positive solution u of (0.1).

These results have the advantage that we do not assume any sign
condition on OF,/dx; for i# j. So, we can study simultaneously several
population models: competing species, predator—prey, mutualism, etc....

1 see [8, p. 36; 10].

Condition (0.2) is quite restrictive, but it can be applied successfully
when F,(t, u) has the form

Fi(t,uy=a, ()= ), by(D)y (04)
j=1
and g;, b,;: R— R are bounded continuous functions. For example, assume
a,;,>0, by, >0, and

4> Y, byring/byn (0.5)

Jjedi

 where, in the next, g,(g,,) =inf(sup){g(?): te R} for each bounded func-
4 tion g: R > R. We shall prove that in this case, F satisfies (0.2), and (0.1)
 has a solution v as above. Thus, we improve the main results in [1,2, 5, 6].

Remark. 1f n=2 and F, is given by (0.4), then (0.2) is implied by:
by >0, by, >0, and

sup(|b,l/by) < inf(b,,/1b61)- (0.6)
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Remark. Let ay, .., a,: R— R be continuously differentiable functions
such that the derivatives «}, ..., a;, are bounded below by positive constants.
Then the assertions above remain true if we replace u; by a,(u;) in (0.4).

To end this paper, we prove a stable coexistence theorem for the periodic
predator—prey model.

1. THE MAIN RESULTS

We begin with some notations. Given x=(x,.., x,} in R" we
write x>0 (x20) if x,>0 (x;20) for 1<i<n We also define
Ixh = lxs |+ -+ |x,).

The maximal domain of a solution u of (0.1), is denoted by dom(u).
Notice that, if #(7) > 0 for some 7, then u(¢)> 0 for all ¢ in dom(x). In this
case we say that u is a positive solution to (0.1).

Since we are interested in the almost periodic case, we must study system
(0.1) in the nondifferentiable case. Thus, we shall assume that there are
positive constants ¢, .., ¢, and a continuous function m: R — [0, 00) such
that

¢;[Fi(t, xj) = Fi(t, x,~ )1+ m(t) h,

<= ¥ ¢lF(tx}) ~ Fy(6,xi7 ) (L1)
JeJi
for tin R, 1<i<m x=(X1,.%,) >0, h=(h,..h) >0, and
Xpi=(xy+hy, o x;+hyy Xy, - X,,). Notice that (0.2) implies (1.1) if the
partial derivatives (0F,/0x;)(t, x) are defined and continuous for ¢ in R and
x>0.
Given positive solutions u = (uy, ..., #,) and v=(v,, .., v,) to (0.1), we
define

n

H)=r(t,u,v)= 3 c;{n(u,(z))—In(v,())l. (1.2)

j=1

1.1. THEOREM. If (1.1) holds and I .= dom(u) ~dom(v) # ¢, then there
exists a countable subset N of I such that r is differentiable on J := I\N and

ry<mO)u(t)—o(t)|  for tinlJ. (13)

Proof. We begin with the following remark. Let f: (a, b)) > R be dif-
ferentiable and define D= {r: a<t<b, f(t)=0%#f'(¢)} and g(¢)=f(2).

Then g is differentiable on 7\D and D is countable, since D is discrete. |

From this, there exists a countable subset N of I such that |In(x;/v,)| is
differentiable onJ:=N\Nforl<j<n
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Let us fix ¢ in J and define S, = {j1u;(1)>v;(¢)}, S_ = {j:u; (1) <v;(1)},
So = {jiu;(t) = v,(t)}, and S =S, 0US_. Notice that § # J and
(d/dt){In(u;/v;)] =0 in ¢, for all j in S,. Consequently,

r(= % ¢LE(u(t) = F(t v(0)]
— 3 ¢ [F(t ult))— F,(1, (1)1

jesS_

Now, let us define x, b,k in R” and 47 in R by: x;=v,(¢) if jeS,;

Cx=u(t) if jeSouS ; x=(xy, . X,); h=u(t)—x; k=v(t)—x and

di=F;(t, x,)—F;(t,x;7") for p=h,k Since F,(t, u(t))—F;(t0(t))=

1 F(t,xth) = F,(t, x)— [F,(t, x+k)— F(1, x)], then

Fi(t,u(t) = Fi(r,o())= Y 44— Y 4%

ieS, ieS_

Notice that h,=0 for ie S_ U S, and hence AJ’.'i=0 for i in S;u S _, since
xy=xi"'. Analogously, 45 =0if ie SUS, .

From this,
0= % of 4~ % 4]~ % of T 41~ T 4
jeSy ieS, ieS_ jeS_ ieSy ieS_
-3 [T odi- T oat]- T[T odi- T oai]
ieSy Ljes, jes_ ieS_LjeS, Jjes—
= Z }“ih_ z iik’
ieSy ieS_
where
Ap= 3, ¢, 45— % ¢; 4%, for p=h,k

jesy jesS_

4 For iin S, , we have (see (1.1))

An<c; di+ Y ¢ lAi < —m(t) b,
jedi
Analogously, A, =m(t) k; for all i in S_, and the proof is complete.

In the following, C, denotes the set of all bounded continuous functions
¢ R— R such that g, > 0. We also assume hypotheses (H,)}-(H,), which

- “we have stated in the Introduction.
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1.2. THEOREM. Assume (1.1), and suppose that (0.1} has a positive
solution v= (v, ..., U,) defined in [t,, o), for some 1y, such that

M :=sup{v,(1): t= 15, 1<i<n} < + 0. (14)
If u=(uy, .., u,) is a positive solution to (0.1} such that I:=dom(u)n

dom(v) # J, then u is defined and bounded in [t,, o0), if t, el We also
have the following facts:

(a) If m>0 is constant then (0.3) holds.
(b) If

e:=inf{v;(¢): 121y, 1 <i<n}>0 (1.5)
then there exist positive constants A, i such that
t
)=o) < e = ote) exp = [ misyas) (19

for t,<t, <t In particular, (0.3) holds if

jom m(s) ds = + oo. (17)
(c) The problem
u;=uF,(t, u), ueC,,1<i<n (1.8)
has at most one solution if
jowm(s) ds= + 0. (19)

' Proof. From (1.3), we know that r is a decreasing function on I. In par-
ticular, r(¢)<r(t,) for all 1>1¢,, tel Hence, there are positive constants
P, q such that '

g ()< () <po (e 1<j<m, teln[t,, ).  (110)

Thus, u is bounded in In[tr,, o), and by (H,) and an elementary
theorem about continuation of solutions, we know that u is defined in
[y, ).

From (1.3) we also have

f lu(s) —v(s)l| ds < (X/m)[r(t)—r(t,)], for t>1,
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A and hence

jw lu(s) — v(s)] ds < + 0. (L11)

But u, v are bounded in [7,, ) and by (H,), the same holds for ', v".
From this and (1.11) we get [u(z)—v(7)| —» 0 as ¢ — oo and so the proof of
(a) is complete.

(b) By (1.4)-(1.5)-(1.10) and the usual mean value theorem, there
are positive constants «,, &, such that

() =00 < i () = I 0)

<2 () — ;1)
oy

for t>¢, and 1<i<n From this, there are positive constants a, o, such
that

o, l|u(t) — o)l < () <™ Hult) — o(2)] (1.12)

for t>1,. Thus, r'(1) < —am(t) r(t) for t =1, (t€J), and hence

, v
r(t)sr(tl)exp(—j om(s) ds), if tzt21,.
fn

The proof of (0.6) follows now from (1.12) and so the proof of (b) is
complete.

Assume now that u, v are solutions to (1.8). From the arguments above
we conclude that (0.6) holds if f; < ¢ Hence

Hu(t) = o(0)] > 4(0) — v(0)] exp (u [ ) ds)

for <0 and then u(0)=v(0), since (1.9) holds and u and v are bounded.
Thus, the proof is complete.

1.3. COROLLARY. Suppose that F is periodic in time, with period T >0,
and assume that there is a solution v of (0.1), defined in [t, 00), which
satisfies (1.4)~(1.5). If (1.1} and (1.7) hold, then system (0.1) has exactly one
T-periodic positive solution.

Proof. Let us define v*(r)=v(t+kT) for all integers k=1 and
t>1,—kT, and choose a subsequence {v™(0)} of {v*(0)} such that
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v™(0) » xe R" as m — co. Since & < v¥(¢) < M for all components of v*, it is
easy to prove (see Lemma 1 of [1]) that the solution u of (0.1), having the
initial condition u(0)=x, is defined on R and e<u,<M for all com-
ponents u; of u.

On the other hand, by Theorem 1.2 we know that v'(¢)—uv(z) >0 as
t— o0, and so, v"*}0)—> x as m— co. Thus v"(T)—> x as m— oo and
then u(0)=u(T). Therefore, u is T-periodic and the proof follows from
Theorem 1.2.

1.4. THEOREM. Suppose that (0.1) has a positive solution v defined in
[to, 0©), which satisfies (1.4)—(1.5) and assume that F(t, x) is almost periodic
uniformly for x in [e, M']".

Assume further that for all x°>0 in R", there exists an open subset U of
R" containing x°, and a constant A>0 such that |F(t, x)— F(t, y)| <
Alx—yl for all x, yeU and t in R.

If (1.1) holds, then problem (1.8) has exactly one solution u and u is almost
periodic and mod u < mod F.

Proof. Let (2,) be a sequence of R. Without loss of generality, we can
assume that there exists a continuous function G: R x [, M]" — R” such
that

F(r+ tk,x)—>(}(t, x) as k- oo unif. on Rx K

In particular, G is locally Lipschitz in the sense of (H,) and satisfies (1.1).
Thus, by Theorem 1.2, the problem

W =u,G,(tu), ueC,,1<i<n ' (1.13)

has at most one solution belonging to K :=[¢, M ]".
Now let us define v*(¢) =v(t +¢t,) for all integers k=1 and t>=1,—1,.
Then v* is a solution to the system

u;=uF;(t+t;, u). I<ign

belonging to K. In particular, we can assume that v*(0) > xe K as k > co.
From this, the solution u to the initial value problem wu;=u;G,(t, u),
1<i<n, u(0)=x is a solution to (1.13) and the proof follows from
Theorem 10.1 of [4].

1.5. THEOREM. Assume (0.2) and suppose that (0.1) has a positive solu-
tion v, defined and bounded in [y, ). If F is T-periodic with respect to time
variable t then there exists a (unique) T-periodic nonnegative solution u® of
(0.1) such that u(t) —u®(t) > 0 as t - oo, for any positive solution u to (0.1).
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Proof. For each subset I of I,,: ={1,2,..,n} let S(I) be the set of all
T-periodic solutions u of (0.1) such that u,>0 (resp. u;=0) for all iel
(resp. ieI,\I). Notice that S({¥) consists exactly of the trivial solution.
Assume now that I+# . Without loss of generality, we can suppose that
1={1, .., p} for some 1 < p<n If u=(u,, .., u,) € S(I), then (uy, .., u,) is
a solution to the problem

u,=uF(t,uy, . u,0..,0), ueC,,1<i<p.

From this, and Theorem 1.2, S(I) has at most a point and so, the set S, of
all nonnegative T-periodic solutions of (0.1), has at most 2" points. Notice
that the trivial solution (= 0) to (0.1), belongs to S.

Let u be a positive solution of (0.1). For all integers k, we define
u(t) = u(t + kT). Notice that, by Theorem 1.2(a), v*(r) —v(t) > 0 as 1 — co.
Let us fix 7, in dom(u); it is clear that t*edom(vk) for some k, and by
Theorem 1.2, u is defined on [¢,,, o) and u(t) —v*(t) — 0 as ¢ — co. From
this, u(t) — v(¢) —» 0 as ¢ — oo and hence,

u(t)—w(t)—-0 as t—> (1.14)

4 for any positive solutions u, w to (0.1).

For each p in R" , let u(t, p) be the solution to (0.1) given by u(0, p)=p,
and let D be the subset of R” consisting of all points p such that u(z, p)
is defined on [0, T]. We know that peD if p>0. Moreover, the set
Fix(H), of all fixed points of the Poincaré map, H:D—R"
H(p) :=u(T, p), is finite and nonempty. Notice that Fix(H) = {u(0):ue S}.

Let us fix p>0. By (1.14), u(t+ T, p)—u(t, p) >0 as t > 0, and hence
H*(p)— H**'(p) -0 as k — oo. Since {H*(p)} is a bounded sequence, it
is easy to prove:

Claim. Each subsequence of { H*(p)} has a convergent subsequence to
a point ¢ = 0. Moreover, u(t, q) is defined on R and H(g)=g¢.

Let us write Fix(H)= {p;, .. p,} and choose closed balls B, .., B,
about p,, ..., p,, respectively, such that B,n B;= J if i # j. Let N, (resp. N)
be the set of all integers k> 1 such that H*(p) € B; (resp. k¢ N, for any j).

1 From the above claim, N is finite and so there exists j such that N; is

infinite. Let us write N,={n, <n,< ---}. By the above claim, {H™(p):

3 , me N} converges to p;, and then, the same holds for {H™*'(p): meN,}.

Let U be an open subset of R containing B;, such that Un B,= ¢, for
i#j, and H*(p)¢ U if ke N. Then there exists m, in N; such that H™(p),
H™*+Y(p)e U if m>m, and me N;. From this, H"(p), H™*'(p)e€ B, for

- mzmy, meN,. That is, m+ 1 belongs to N; if me N, and m = m,. Conse-

quently, N, contains all integers m = mq and then H™(p)— p; as m— .
Therefore, u(¢, p)—u(t, p;) — 0 as t — c0.
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By (1.14), u(1, P) —u(t)~ 0 as t — oo, for any positive solution u of (0.1).
Thus, the proof is complete, since u°(t) = u(1, p;) is T-periodic and non-
negative.

1.6. REMARK. Let u° be the solution given by Theorem 1.5, and assume
that u? =0 for some i. Then [{ F, (s, u®(1)) dr <0.

Proof. Let us fix a positive solution u of (0.1) and write v(s)=
F (1, u°(0)), w(t) = F.(1, u°(1)), w(t)= F,(¢, u(1)). Since v is T-periodic,
s+ r T
(1/r) j o) di = (T) jo o()dt  as r— 4o
uniformly on se R.
On te other hand, w(¢)—v(z) = 0 as t — oo, since the partial derivatives

OF,/0x; are bgunded in Rx K for all compact subsets K of R" . (Notice
that these derivatives are periodic with respect to ¢.) From this,

am | ww - [T a0 as sow

uniformly on > 0. v
Assume now that [ v(r)dr>0. Then there exist so, ro>0 such that
fs*"w(1)dr>0 for s>s4 and r>r,. But

s+ s+r
|| wwydi= ] @) de=nu(s + r)ju(s)
and so, u, is increasing in [s,, o). Contradiction, since u,;(t) — 0 as ¢ — .
This contradiction ends the proof.

As a consequence of Theorem 1.5, we get

1.7.'COROLLARY. Let G=(Gy,..,G,):R">R" be a continuously dif-
Serentiable function and suppose that there are positive constants m, ¢y, ..., ¢,
such that
0G;
Ox;

¥

oG,
Ci—xf(x)“i*zcj +m<0

JE€Ji

(x)

for 1<i<n and x20. Assume further that the system u;=u;G/(u),
1<i<n, has a positive solution v, defined and bounded in [0, ). Then: the
system_u,-G,-(u)= 0, 1 <i<n, has a solution u® in R", such that u(t) > u° as
t — 00, for any positive solution u to the system u; =u;G (u), 1 <i<n.

Remark, Let H——:(H]‘, vy H,): RxR™— R" be a continuous function
such that: H(z,0)=0; H s bounded in R x X for all compact subsets K of
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R"; the partial derivatives 0H,/0x; are defined and continuous on R x R”",
and

oL (4,0 < =it

0H,
—— (LX) + 2
ax] jedi i
for 1 <i<n. If (1.7) holds, then the trivial solution to system x'=H(t, x)
is globally exponentially stable. To show this, let z(¢) be a nontrivial
solution of x' = H(t, x); from the arguments in Theorems 1.1, 1.2, we get
(O < fz()Hl exp(—{tm(s)ds)if <t 7, te dom(z); and hence dom(z) =
(&, c0) for some — o0 Sa< + 0, and z(t) >0 as t - 0.

Moreover, if (1.9) holds, then the trivial solution to the system
x' = H(1, x) is the only solution to this system bounded on R. When H is
a linear function of x, this result becomes the complement to Theorem 2 of

91

2. COMPETITION SYSTEMS

We shall consider the system
§=ui[ai(t)~— Y byt uj], 1€i<n, (2.1)
i=1 .

where a;, b;eC, for 1<, j<n This system models the competition
between » biological species.

"2.1. PROPOSITION. Suppose that there are positive consianis &,
M,,.,M,, such that e<M,, .. M, F(t0,.,0,M,0,.,0)<0, and
Filt, My, oy My 6, My g, s M) 20 for 1<i<n. Assume further that
Fi(t, x)< Fi(t, y) for 0Sx<y). '

If u is a solution to (0.1) with u(t)>0 for some 1, then u is defined on
[1, 00) and )

min {#,(t), o Un(1), £} SUs(1) <max{uy(t), ., 4 1), M}
for 1<i<nandtzr. 2.2)
Moreover, system (0.1) has a solution u=(uy, ..., u,) such that
Uy, U, €C 4. (2.3)

Proof. Fix 1<i<n, and let N; denotes the max in (2.2). Obviously,
u, (1)< N, Assume now that u,(t,)> N, for some t,>1. Then there
exists ¢,, T<I,<Iy, such that u{t;)>N; and u/(¢,)>0. From this,
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0=2F,(t,0,..,0,M,0,..,0)=F,(t;,u(t,))>0; and this contradiction
proves the second inequality in (2.2) for =1, te dom(u). In particular, u
is defined on [, o), since (H,) holds. The first inequality in (2.2} is proved
by the same arguments.

Let us fix x=(x;, .., X,) in R” such that e<x, <M, and let u* be the
solution to (0.1) given by u*(—k)=x, for k=1,2,... From (22),
e<uf(t)< M., for all components of u* and ¢ > —k. In particular, we can
assume that {#*(0)} converges to y e R”. Now, it is easy to show that the
solution u of (0.1) given by u(0) =y, is a solution to (0.1)-(2.3) and so, the
proof is complete.

2.2. THEOREM. Assume

1> Y sup(by/a;) sup(a;/by),

jedi

1<i<n (24)

and let M = (m;) be the n x n matrix defined by m; =0 and m,=sup(b,/b,)
Sfor i#j. If M has no eigenvalues in [ 1, ), then the problem (2.1)—(2.3]) has
exactly one solution u® and u(t)—u°(t)—>0 as t— oo, for any positive
solution u to (2.1). Moreover, u® is almost periodic (resp. T-periodic) if
a;, b, are almost periodic (resp. T-periodic).

Proof. Let us define M,=sup(a;/b;) and fix &>0 such that
e<M,, .., M, and

£<M,.‘l[1—z Mjsup(b,»j/ai):l, 1<i<n.
Jjedi :

If F, is defined by (0.4) then the assumptions in Proposition 2.1 are satisfied
and the proof will follow from Theorems 1.2 and 1.4, if we show that (1.1)
holds.

. To this end, let us fix 1 >J >0 such that the matrix M;= M + d(iden-
tlty) has no eigenvalues in [1, o). From the Perron—Frobenius theory of
positive matrices, we know that M;(c)=A4c¢, for some A in (0, 1) and
c¢=col(cy, ..., ¢,) > 0. From here, M(c) < (1l —9)c, and hence

c;b(t)zm+ Z c;b;i(1),

jedi

1<ign,

where m :=4dinf{c,b,;(1): te R, 1<i<n}. This implies (1.1), and so the
proof is complete.

2.3. CorOLLARY. If (0.5) holds then the assertions in Theorem 22 are
true.
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Proof. It is clear that (0.5) implies (2.4). Define now the »n x n matrix
P=(p;) by p;=0 and piyi= by /by for i#]. Then (0.5) implies P(d) <d,
where d:=col(a,,, .., a,.)- In particular, spectral radius M < radius
spectral P* <1, where M is the matrix in Theorem 2.2 and P* is the
adjoint matrix to P. The proof follows now from Theorem 2.2.

The second assumption in Theorem 22 is satisfied if n= 2,3 and
det(]— M) >0, where I is the identity matrix. In particular, we get

24. COROLLARY. Assume n =2 and inf(a;/by;) > sup(az/by),
inf(a,/b,,) > sup(a,/by,), and inf(b,,/by1) > sup(by2/byy). Then the asser-
tions in Theorem 2.2 hold.

Remarks. (a) Corollary 2.4 was proved in [3] in the periodic case. In
the almost periodic case, this corollary improves the main results in {1].

(b) Corollary 2.3 generalizes the main results in [1,2,5,6,11].

As a consequence of Theorem 1.5 we get the following

2.5. COROLLARY. Assume that a;, b, are T-periodic for some T>0.1If
n=2 and (0.6) holds then system (2.1) has a nonnegative T-periodic solution
W such that, u(t)—u°(t) -0 as t — oo, for any positive solution u of (2.1).

The last result of this section is a consequence of Theorem 1.5 and
Remark 1.6, which improves the main theorem in [11].

2.6. COROLLARY. Assume that a,, b, are T-periodic, and let U; be the
unique positive T-periodic solution to the logistic equation x'=x[a;(t)—
b.(t) x]. Suppose that

jr[a,.(t)— Y by(t) Uj('t)] di>0 1<i<n
0

jedi
and assume that there exist positive constants ¢y, ..., C,, Such that

ebat)> Y ¢bu(t), 'l1<ign. (2.5)

jedi
Then, system (2.1) has a positive T-periodic solution u° and u(t) —u®(£) >0
as t — oo, for any positive solution u to (2.1).

Proof. Let u be a positive solution to (2.1). Then u is defined and
bounded in [z, o0) if T belongs to dom(u). On the other hand, (2.5) implies
(0.2) and, by Theorem 1.5, there exists a nonnegative T-periodic solution u°
to (2.1) such that u(t)—u®(t) > 0 as ¢ — oo, for any positive solution u to
(2.1).
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Assume now that u®=0 for some i and define F ; by (0.4). Then

Fi(t, (1) >a (1)~ Y b,(0) U(r)

JeJi

since %1}’< U; if u?>0. See [11]. This contradicts Remark 1.6, and the
proof is complete.

3. THE PREDATOR-PREY MODEL
In this section we consider the system

w=ul—a(t)—b(t)u+c(t)v]

v'=vld(t)—e(t) u— f(2) v],

where a, SfeC . The following proposition justifies assumption (3.3) in
the main result of this section.

(3.1)

3.1. ProposITION.  If inf(f/d) > sup(c/a) then system (3.1) has no solution
(u, v) such that
uveC,. (32)

Proof. To simplify our statements, let us define B— bla, C=cla
E =e/d, and F= f/d. Assume now that (u, v} is a solution to (3.1)-(3.2). IE
is not. hard to prove that if g: R — R is bounded and differentiable, then
there is a sequence (#,) in R such that 8(1) > g, (resp. g,,) and g'(1,) -0
as k - co. Choose a sequence (z,) such that u(t ) > u; and u'(t,) >0 as
k—oo. Then —B(t)u(t,)+ C(t;) > 1 and hence, 1< —Bru; +C,,v,,.
Analogously, 1> E u, + F,v,, and so, 0> Cy—F,2(CyE,+B,F,)>0
This contradiction ends the proof. oo

3.2. THEOREM. Suppose that a, ..., [ are T-periodic and
inf(c/a) > sup(f/d) (3.3)
inf(b/e) > sup(c/f). (3.4)
Then, system (3.1) has a positive T -periodic solution (uy, vy) such that
(u(t) —ug(t), v(r) — vy(2)) — (0, 0) as t—ow (3.5)

Jor any positive solution (u, v) of (3.1),
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Proof. Notice first that (3.3) is equivalent to C,>F,, and define
a=(Cy—F.)/B.F,. If (u,v) is a positive solution to (3.1) with u{0) <«
and v(0)< 1/F,, we can prove that u(t)<a and v(t)<1/F, for t=0,
tedom(u, v). From this (u, v) is defined and bounded in [0, cv). On the
other hand, (3.4) implies (1.1) and by Theorem 1.5, there exists a non-
negative T-periodic solution (ug, vy) to (3.1), which satisfies (3.5).

Let (1, v) be a nonnegative T-periodic solution to (3.1) such that uv=0.
Then u=0 and ve {0, ¥}, where V is the unique positive T-periodic solu-
tion to the logistic equation x'=x[d(z)— f(t) x]. On the other hand,
1Fyu<V<I1/F, and so, cV—aza,;[(C./F,)—1]>0. The proof follows
from Remark 1.6 and the arguments in Corollary 2.6.
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