Conceptual Circuit Models of Neurons
Bo Deng?

Abstract: Electronic circuit analogues of biological memlyanes are presented by which the
passive channels are modeled as parallel and serial combitians of resistors (Ohmic conduc-

tors) and diffusors (negative nonOhmic conductors), and th active channels of the one-way
ion pumps are modeled as one-way inductors. We show that ouliraple analogue models

can reproduce known phenomena of membrane excitability sutas the generation of action-

potentials and spike-bursts.

1. Introduction. The field of mathematical modeling of neurons has seen a tréaus growth
([22, 20, 19, 3, 18, 16]) since the landmark work, [17], of Igkoh and Huxley on the electro-
physiology of neurons. Basic mathematics of these Hodgkirley (HH) type models are well-
understood today ([22]). However, they are only phenonagioal beyond their usage of Kirch-
hoff’s Current Law for the transmembrane currents of alkiii]). By their approach, mechanis-
tically different current channels of each ion species ggregated into one conductance-based
current. A given ion’s distinct pathways through the celllvean be of the following kinds: the
passive channel due to the electromagnetic force of all ibegpassive channel due to the diffusive
force against its own concentration gradient across tHenrmhbrane, and the active channel from
the ion’s one-way ion pump if any. Although the electropbysgical narratives of these channels
have been widely known for some time ([15]), no one has attedijo model them individually as
elementary circuit elements in a whole circuit synthesis akesult they are not readily accessible
to elementary circuit implementation.

The purpose of this paper is to fill this literature gap. Wd satihrt with a generic conceptual
model of neurons, deconstruct each ion current into itsipagslectro and diffusive) currents
and its active (ion pump) current, and then model each cuaegording to its hypothesized/ -
characteristic. We will demonstrate that our newly synitexsmodels recover many well-known
neural dynamics, including action potentials and spikiestsu

1.1. The Conceptual Model.Our proposed circuit models are not for a specific type of olesir
per sebut rather for a conceptual embodiment of circuit princsgderived from neurophysiology.
The models are minimalistic in the sense that they cont&iagpéy contrasting types of ion species
with little duplication of each other’s functionalities. uBthe method is sufficiently general to
allow any number of ion species with or without such duplmas. For the most part of our
exposition, however, we will use the sodiumNen and the potassiumKion to illustrate the
general methodology. Specifically, Fig.1 is an illustratfor one type of the models that will be
used as a prototypical example throughout the paper. Arysion from, say, Ct or C&* will at
least duplicate one element of such a minimalistic modek NE -K* combination shown here
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Figure 1: (a) A conceptual model of generic neurons with ipasserial Na channels, passive
parallel K- channels, and an active N&* ion pump. (b) A circuit model of the conceptual
neuron model. (c) ThéV -characteristics of circuit elements modeling both thespasand the
active channels. The pump characteristic of a particulaisaepresented by an inductor symbol
with an arrow, meaning the “one-way” flow of the pumped ion.

can be substituted or modified by the inclusion of other icecss such as a NaCa* pair or a
Na™-K*-CI~ triplet as long as they are permitted by neurophysiology.

The conceptual model consists of a set of assumptions oivpassl active channels. Passive
channels are of two kinds: tleectro currendriven by the electromagnetic force frat charged
ions; thediffusive currentresulted from the concentration-induced transmembraffigstin of a
particular ion species. The first type is equivalent to a resister whasesgt can be thought as
being passive in the presence of the electro field. The diffusnd can also be thought as being
passive because it is not facilitated by any conversion athemical energy of the cell. As we
will see shortly that most nonlinear resisters careqaivalentlydecomposed into either a parallel
or a serial combination of an Ohmic resister (linear with aifdee slope) and a nonlinear resister
with negative slopes (a diffusor). Symmetrically, such sister can also be decomposed into a
parallel or serial combination of a nonlinear resister yitisitive slopes and a linear diffusor (with
a negative slope). Because of the first kind equivalence,canealso think from now on that
a conductor is always Ohmic (linear with a positive condnc& and that a diffusor is always



nonlinear with negative resistances.

In contrast, aractive currentis due to the transmembrane transport of an ion species from a
energy-converting, i.e., ATP-to-ADP (ATPase), ion pum@nte referred to as an active channel.
The assumptions below are made for some conceptual andag@neperties of these channels,
for which an illustration is given by Fig.1. The conceptualdel should apply to membranes with
the depicted structure, with small nerve fibers as an examipée ion pump can play functional
role in excitability.

Circuit Model — Generic Assumptions:

(a) Each electro current, through a channel is characterized by a monotonically
increasingfunction I, = ¢(V) of the voltagel, across the channel. The chan-
nel or any device or structure whose current-voltage @tat characterized by
such a monotonically increasing/-characteristic curve is called@nductor
(following a convention in neurophysiology although it &lled a resistor in the
general field of circuit).

(b) Each diffusive curreni, through a channel is characterized by a monotonically
non-increasingunction I, = ¢(V;) of the voltageV,; across the channel. The
channel or any device or structure whose current-voltagéoe is characterized
by a monotonically decreasing/-characteristic curve is calleddaffusor.

(c) Each active current through a channel has a fixed curigsttibn and the time
rate of change of the current is proportional to the prod@ith® current and the
voltage across the channel. The channel or device or steuathiose current-
voltage relation satisfies this condition is callepamp

(d) All'ion channels are resistive to electromagnetic fotaege or small.

(e) Unless assumed otherwise, all active and passive d¢siibetween different ion
species are in parallel across the cell membrane.

() The impermeable bilipid cell membrane is modeled as aciqr.

We note that by the term channel it can mean the whole, or ditange part, or just an intrinsic
property of a biophysical structure such as a voltage oreprohediated ion gate. Hypothesis (a)
is the standard Ohm’s law, but it can be considered to modebfiening and closing of an ion
species’ voltage gate — the higher the voltage, the moreingsiof the gate, and the greater the
electro current from all ions. It is probably a less mechanisut definitely a more circuit-direct
approach than that of Hodgkin-Huxley’s by which the operpngpbability of the gate is modeled
as a passive time evolution.

Hypothesis (b) is justified by invoking the diffusion pript that ions have the propensity to
move against their concentration gradient. For ions thettal effect of the diffusion is exactly
opposite the electromagnetic force: A net extracellularcemtration of a cation (positive charged



ion) generates an higher electromagnetic potential on titgide, giving rise to an outward di-
rection for the electro current. But the higher externalasoriration of the cation generates a
diffusion-induced inward current, giving rise to the nofieasing' V' -characteristic of a diffusor,
see Fig.1(c). More specifically, letbe the net charge outside the cell, or equivalently the gradi
of the charge from the inside to the outside. Since diffufioce moves in the opposite direction of
the gradient, the corresponding time change of the chagg:e,j—‘t], is proportional to the negative
gradient—q, that is,/; = —kq. SinceV = ¢/C defines the voltage difference across the cell wall,
we havel;, = —kCV, showing the negative characteristic of a diffusor. Moralistically, the
linear dependencd,; = —kq, should be replaced by a nonlinear dependence which cizadita
is similar to an odd functionf, thatisf(V)V < 0. We will be more specific about the diffusor’s
nonlinearity later. We also note that a particul&f-curve would be a phenomenological fit to the
analogous opening and closing of the diffusive type of iolega

Note that because voltage potential can be set againstiamagribasal constant, we can require
without loss of generality that thB//-curves for both conductors and diffusors to go through the

origin for simplicity and definitiveness:

$(0) = 0.

However, a particular passive channel may have a non-zstioggpotential £/, which is modeled
as a battery for voltage source, and the combiféecharacteristic curves will differ only by an
E-amount translation along the voltage variable. (More #jgegescriptions later.) We also note
that diffusive and drift parts of electro-diffusion may dgaordugh the same ion channels under
the influence of transmembrane electric field, but the caneépnodels distinguishes the two for
mathematical analysis.

Hypothesis (c) is less immediately apparent, but can béiggat least conceptually as fol-
lows. Unlike passive ion channels, which have topologycattaightforward pathways in most
cases, ion pumps have a more involved and convoluted gepiadfr In particular, we can as-
sume that the ions wind through the pump in a helical path.[18]other words, the energy
exchange between ATP and the pump sends the ions throughah gih much like electrons
moving through a coiled wire. However, unlike a coiled windlctor, individual ion current has a
fixed direction with Na going out and K going in. The simplest functional form for an ion pump
that captures both its inductor-like feature and its ong-dieectionality is the following

A = \AV (1)

whereV is the voltage across the pumpis the particular ion’s active current through the pump,
and \ is referred to as thpump coefficientsee Fig.1(c). Proportionality between the derivative
of the current and the voltage models the pump as an induRtoportionality betweer’ and A
preserves the directionality of, that is,A(0) > 0 if and only if A(¢) > 0 for all ¢. In addition, the
smallerA(t) is, the fewer ions are available there for transportatiod,fzence the smaller the rate
of current changed’(t), in magnitude becomes. In other words, this model of ion puiogm be
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considered as a nonlinear inductor mediated by its own stfoe fixed directionality and strength.
More importantly, the pump characteristic provides with tnly direct link to energy exchange:
the rate of change of the pump current is proportional to tvegp, AV, of the pump. (For a more
elaborative approach, one can replace the linear fattoy a functional with saturation, such as
a Monod functionﬁ or some variants of it.) We should note that our current ustdeding is
that electrogenic pumps have kinetics with no inductanaethe conceptual model requires this
one-way inductance for excitability.

Hypothesis (d) is certainly true wherever electromagrfeld is present. A passive conductor
automatically takes it into consideration. A passive difftdoes not have to have this because
its IV -curve can be assumed to have already absorbed such anesistmlicitly. For the Na-

K™ ion pump, we only need to wire such a parasitic resistor ireseo fulfill this hypothesis,
see Fig.1(b). The resistance,> 0, will be assumed small for the paper. Hypotheses (e) is a
provisional assumption for this paper. It can be modifiedlkonadifferent ions to go through

a same physical channel, see remarks on Hypothesis (2) sptwfic pK'sNa- and pNg sK*
models below. Hypotheses (f) is a standard assumption atr@bysiology of neurons.

1.2. Circuit Symbols and Terminology. For this paper, we will take the outward direction as the
default current direction for all passive channels. Onespkon to this convention is for active
currents whose directions are fixed and thus whose fixedtdinscare the default and the true
directions, see Fig.1(b). Another exception is for the mxkcurrent (such as synaptic currents
or experimental controls with or without voltage clamp),;, whose default direction is chosen
inward to the cell. We will use standard circuit symbols vawer apply and follow them closely
when introducing new ones.

Mimicking the contour plot for mass concentration, the antdc-circle symbol, see Fig.1(b,c),
is used for diffusors. Here is a brief explanation for theicho For a function of two variables
u(z,y), say the concentration of an ion species outside the cel|l wdbcal maximum occurs
usually at a point{z,yo). For any constant smaller than the maximum valu€z,, o), the
equationu(z,y) = ¢ usually defines a closed curve in thg-plane, with circle being the simplest
example. Moreover, the gradie¥t(z, y) is perpendicular to its contour curwéz, y) = c at the
point (z, y), and points towards the increasing direction of the contalurec. Diffusion moves in
exactly the opposite direction of the gradient, from higlote concentration. It is because of this
connection of nested contour curves to anti-gradient siiffiu that the concentric-circle is chosen
for the diffusor symbol.

In circuitry, a device having a decreasifnyf-characteristics is called a negative resistor. In
practice, it usually comes with both positive and negategstive regions, such as the combined
conductors and diffusors in series and parallel as illtestkan Fig.2. Electrical devices with a
purely decreasingl’-curve are not usually encountered in practice and hencematacquired a
symbolin the literature. We use it here only to emphasizeé@acdntrast the role of transmembrane
diffusion of ions in comparison to their electromagnetieet.

The conventional symbol for a nonlinear (non-Ohmic) resigtith a non-monotoni¢V -curve
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such as arb-shaped orV-shaped curve consists of a slanted arrow over a lineatoesgmbol.
We will not use it here for our conductor-diffusor combimeas in series or in parallel because
it has been used exclusively for the HH type circuit modelsi@ifirons that combines both the
passive andhe activecurrents as one conductance-based channel. For this naaiomethe serial
aggregation and the parallel aggregation each acquirgghdlgimodified symbol to the European
symbol of resistors, shown in Figs.2, 3. The symbol feedal conductor-diffusois a vertical box
circumscribing a lettef because the serial connectivity always results ifidrcurve withV as a
function of I, V' = h(I), by Kirchhoff's Voltage Law, and usually in the shape of dadef5 when

it becomes non-monotonic. Similarly, the symbol fquarallel conductor-diffusors a horizontal
box circumscribing a letteN because the parallel connectivity always results ii\drcurve with
I'asafunctiono¥/, I = f(V), by Kirchhoff's Current Law, and usually in the shape of adefV
when it becomes non-monotonic. We note thatkhiecharacteristic of a serial conductor-diffusor
and a parallel conductor-diffusor when both are again cotedein parallel can be monotonic or
non-monotonic, a function of" or a function of/ or neither, but most likely a curve implicitly
defined by an equatioR'(V, ) = 0. As a result, it is represented by a square circumscribing a
diamond symbolizing the typical fact that it may not be a tiorcof V or /.

As mentioned earlier that once a common reference potestat, a given ion’s passive chan-
nel can have passiveaesting potential, denoted biy; for ion J, which is defined by the equation
F(E;,0) = 0if the equation(V, I) = 0 defines the complet8l/-characteristic, whether or not it
defines a function o¥’, or I, or neither. However, when all ion species other than ior bhrcked
to cross the cell membrane, the dynamics of ion J may settléndo an equilibrium state. By
definition, the equilibrium state’s membrane potential poment is called thenembraneesting
potential or theactiveresting potential, denoted by, if the corresponding active (pump) current
Ay > 0is not zero. We will see later that the passive resting pi@knt;, can be alternatively
defined to correspond to an equilibrium state at whigh= 0.

The symbol for ion pumps is similar to inductors because efrtfunctional similarity but
with an arrow for their one-way directionality. A standandear inductor symbol with a slanted
double-arrow stands for a variable inductor.

Recall that the/V-curve for a conductor is increasing or nondecreasing aadthcurve for
a diffusor is decreasing or non-increasing. However, thi iiather imprecise definition. Without
further constraint, even a linear conducfoe ¢V can be artificially decomposed into a conductor
and a diffusor in parallel:

gV =(g—ad)V +dV

for anyd < 0. Thus, to avoid such arbitrary cancelation between comdsi@nd diffusors of
equal strength, we will follow a normalizing rule to decorspani V' -curve into either dinear
conductor, or dinear conductor and aonlineardiffusor with zero maximal diffusion coefficient.
This form of decomposition is callechnonical

More precisely, lef = f(V') be anIV-characteristic which we want to decompose into a
canonical form in parallel. Lej = max{maxy f(V'), 0} > 0 (with the maximum taken perhaps



over some finite effective range). Then we have by Kirchlsa@furrent Law,

I=f(V)=gV+[f(V)=gV]:=fe(V) + fa(V),
for which f4(V') = f(V) — gV is non-increasing since its maximal diffusion coefficiengiven by
max fy' (V) = max(f'(V) — g) = 0, showing the decomposition is canonical. (Here by definitio
the rate of chang¢' (1) is thediffusion coefficienf f'(V') < 0 and theconductancé f'(V) > 0.)
We can further write the diffusafl’-curve as

V) gV = al 2297 i g = minfmgnl (V) — g, 0} < 0

with d being the maximal diffusion coefficient in magnitude. Semly, if V' = h([) is the [V -
curve, then by Kirchhoff’s Voltage Law, the canonical degasition in series is

V= W(I) = <1+ Gld(h(D) = ZD] = hel0) + ha(1).
wherel/g = max{max; h'(I), 0} and1l/d = min{min,[h'(I) — 1/g], 0}. Note that parameters
g andd are the necessary minimum to determined a serial or pacalfeluctor-diffusor; and that
the parallel (resp. serial)l/-curve is nondecreasing if and onlygif+ d > 0 (resp.1/g+1/d > 0
or g +d < 0). As an illustration of the procedure, one can check thactmnical form for a
linear conductor = gV is itself.

Note that the canonical decomposition has a symmetric fogr@shanging the roles of con-
ductors and diffusors: to decomposedn-characteristic into either linear diffusor, or alinear
diffusor and anonlinearconductor with zero minimal conductance. A given condudiffusor
will be decomposed in one of the two forms but not necessariboth forms as in the case that a
linear conducto®” = ¢/ can only have the canonical decomposition and a linearstiffi = d/
can only have the opposite. However, we will explain latext tihe canonical decomposition is
more probable for ions’ passive channels than its symmetimterpart because of the fact that
the electromagnetic force governs all ions while a pargicidn’s diffusive current depends only
on that particular ion’s concentration gradient. Nevdebg, despite such differences in decom-
position of a nonlinear V-characteristic when both decompositions apply, all dirptoperties
derived from the characteristic will remain the same beeaishe circuit equivalence guaranteed
by Kirchhoff's Laws. Thus, unless stated otherwise, lall-characteristic decompositions dis-
cussed from now on are canonical. Note that the canonicalwtars are always Ohmic (linear)
while the canonical diffusors, if not zero already, are glsvaon-Ohmic (nonlinear with negative
conductance).

The cell membrane or a channel is saidd&polarizeif its voltage moves toward” = 0. If
the voltage moves away froii = 0 the membrane or the channel is saidyperpolarize Thus,

a negative increase or a positive decrease in a voltage ip@adization of the voltage, and in
contrast, a negative decrease or a positive increase ispangolarization of the voltage.

1.3. Model Classification and Result Summary.We will adopt a notation convention for our
neural models. Take for example, the model‘sKia’ to be discussed below stands for the fol-
lowing. The lower case “p” before Kmeans that the passive channels df<Kare inparallel
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and that K'’s diffusive channel can be dominating in some effectiveae@f the dynamical states
so that the combinedV -characteristic of the parallel conductor-diffusor is nmnotonic in the
region. Similarly, the lower case “s” means the same exdwitthe passive channels of Na
are inseries The subscript is used for ion pump information. In this ¢céseexample, pKsNa’
symbolizes the assumption that Ks pumpednto the cell while Na is pumpedoutsidethe cell
by the Na -K* ion pump. On the other hand, a subscript “0” means the absdr@aeion pump for
its designated ion. So, model pKNa" denotes the same pikNaZ model except for the assump-
tion that the neuron does not have a Kn pump. Also, we will use subscriptsd, +d, such as
in pdesNaid, to denote ion pumps not combined in structure but ratheratipg independently
on their own. A circuit diagram for such models, slightlyfdient from Fig.1 in the ion pump
structure, will be given near the end of the paper.

As it will be shown later, the direction of an ion pump will fike polarity of the ion’s passive
resting potentiaif the ion species’ active resting potential exists. More Bpadly, if Na™ (resp.

K ™) has an active (membrane) resting potential (which is \stia case), then the assumption that
Nat (resp. K") is pumped outward (resp. inward) impli€s, > Fx, > 0 (resp.Ex < Ex < 0).
That is, the polarities of both passive and active restingmaals are fixed to be the same by the
directionality of the ion pumps.

This basic scheme can be extended in a few ways. In one exterfer example, if both
passive and active channels of the'Nan are blocked, the reduced system can be considered as a
pK* model. In another extension, for example, if in the effeeti®gion of the neuron’s dynamical
states, Na’'s diffusion does not dominate but its ion pump is nonetheleféective, we can use
pK*cNaf to denote the model in that part of the effective region, wlih lower case “c” for the
conductivenature (i.e. monotonically increasing) of that part off/its-characteristic. Furthermore,
the notation for the corresponding serial conductor-giffucan be reduced to a vertical box with
a diagonal line from the lower-left corner to the upper-tigbrner rather than a circumscribed
letter “S”. Similar notation and symbol can be extended tajbel conductor-diffusors without
diffusion domination. In another extension, more ion spe@an be included. For example, all
our simulations of this paper were actually done for a’pKa cCly (with g, = 0.01, d., =
0, Ec = —0.6), which, to become apparent later, is equivalent to a mihpkasNal model.

We remark that a pKpNal or cK*pNal’ model may fit well to the giant squid axon, but not
all models from the taxonomy can necessarily find their nglysiological counterparts. Also, it
will become clear later that from the viewpoint of equivdleincuit, a pK'cNal model is usually
equivalent to a pK model, but a pRKcNal or pktsNa model may not be so in general because
of the ion pump inclusion for the former and a possitaonlinearity of the Naion for the latter.

In addition, the taxonomy is order independent: xXyY and }enotes the same model.

There will be three types of neural dynamics consideredingsnembrane potentials, mem-
brane action potentials (pulses or spikes), and spiketdhuResting potentials are stable equilib-
rium states in some membrane potential and current rangesewdiffusion does not dominate
from any ion species. In other words, stable equilibriuntestare prominent features of cX mod-



Table 1: Dynamical Features

Models| Resting Potentials Action Potentials Spike-Bursts

cX X X
sX
sXcY
pX
pXcY
pXsY

NN NN
SN
X X X X

els. Onthe other hand, action potentials and spike-bursisszillatory states and their generations
require diffusion domination of some ion species in somédirange of the effective range of the
oscillations. More specifically, action potentials reguiliffusion domination from only one ion
species over its parallel conductive channel while spikests require diffusion domination from
at least two ion species, one over its parallel conductianokl and another over its serial con-
ductive channel. Hence, for the purpose of distinction; arkediated action potentias the result
of K*’s diffusion domination in parallel, while a Namediated action potential is the result of
Nat’s diffusion domination in parallel. That is, action potiats is the prominent features of pX
and pXcY models. Similarly, a NaK* spike-bursis the result of a K-mediated burst of Na
mediated spikes because of K diffusion domination in parallel for the burst and Nadiffusion
domination in series for the spikes, respectively, the pnemt feature of a pKsNa. model. Simi-
lar description applies to kNa" spike-bursts for a pNesK* model. We note that an xX model is
a subsystem of an xXyY model and as a result the prominentdigadbehavior of the xX system
will be a feature, though not prominent one, of the larger X>6§ystem. Thus, one should expect
resting potential state, action potential phenomenon iXy&'pmodel. A summary of the result is
listed in Table 1, in which a “—” entry means “possible butikely”.

All numerical simulations will be done in this paper for dinsonless models because of two
reasons. One, numerical simulations tend to be more reliabkn all variables and parameters
are restricted to a modest, dimensionless range. Two, therdiionless models can always be
changed to dimensional ones by scaling the variables aringders accordingly.

2.1. Specific Models.We will consider several specific models in the paper, aledasn two
specific models introduced here in this section: the gal model and the pNasK* model,
respectively. Their specific channel structures are ilaiet in Fig.2(a,b) and Fig.2(c,d), respec-
tively. We now introduce them in detail one at a time.

The pK*sNal Model:

1. K*’s conductive and diffusive currents go through separatallghchannels for
which an increase (hyperpolarization) in a positive vatagnge) < v; < s,
of the diffusor triggers a negative drop (inward flow) of itgi@nt, see Fig.2(a).
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Figure 2: The pKsNa model: (a) AnN-shaped/V-curve (solid) for a parallel conductor-
diffusor of the passive K's channels. It is the vertical sum of the conductor and diffucurves.
(b) An S-shaped/'V-curve (solid) for a serial conductor-diffusor of the passNa“'s channels.
It is the horizontal sum of the conductor and diffusor curvBssh curves are the solid curves’
horizontal translations to their respective nonzero pasgsting potentials, giving rise to the final
IV-curves for the respective passive channels. (c, d) The saswiption but for the pNasK™*
model. Both models retain the same polarities for the passisting potentialgyy, > 0, Ex < 0.

2. Na'’s conductive and diffusive currents go through the samawbkfor which
an increase in an outward (positive) current rartge; i; < i, of the diffusor
triggers a negative hyperpolarization (decrease) in titage, see Fig.2(b).

3. Both ion species have an active resting potential eatisfy\sag Fn. > 0 and
EK < 0.

4. There is an ion pump for each ion species with the active &erent,/x. pump.
going inward and the active Kcurrent, /x ,ump, 90ing outward. Both share a
common structure in the sense that they have the same pumme@r values:
A = Ay, = A and a small resistanee> 0.

These hypotheses are formulated mainly from a minimalggticciple. This includes: (i)
the ion species do not duplicate each others functionsa(d)ffusor is included only if it can
fundamental change the combingd-characteristic to a non-monotonic curve; (iii) tieshaped
and the/V-shaped V -characteristics overlap in an effective or common voltaggon; and (iv) the
polarities,Fn, > 0 andEx < 0, for the active resting potentials are fixed, which are apipnately
in the ranges of 80 mV and~ —90 mV, respectively. All alternative configurations that weréa
checked have violated at least one of the four minimalistteia for the pKfsNa- model above.
More detailed comments on the hypotheses follow below.

By Hypothesis 1 and Kirchhoff's Current Law, the passive &urrentiy is the sum of its
conductor current/k ., and its diffusor current/x 4, with the same passive voltagg across
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the conductor and the diffusor in parallel. Thus, fhé-characteristic curve for the parallef'K
conductor-diffusor (Fig.2(a)) is

Ik = Ixe + Ixa = fre(Vk) + fxa(Vk) == fx(Vk) (2

where functionsfx . and fx 4 define the individual monontong/-curves for the conductor and
diffusor, respectively. After adjusted for the passiveingspotential (battery sourcé)x = Vi —
Vk, we have,

Ix = fi(Ve — Ex). (3)

Throughout most of the paper, we will consider &rshaped nonlinearity as shown in Fig.2(a),
which is the result of the diffusion domination oftKin the range[v, + Ex, v, + Ex|. This
hypothesis can be interpreted like this. When the membratempal lies in this range, it is mainly
due to a correspondingly uneven distribution of Kcross the cell wall, which in turn triggers the
diffusion-driven flow of the ion. However, when the membragential lies outside the range, its
characteristic is mainly due to factors other tharidkuneven distribution across the membrane.

More specifically, all conductor-diffusor decompositiari$-ig.2 are canonical. A justification
of this choice is based on a key distinction between thereldotce and the diffusive force. The
former is defined by all ion species, while the latter is definaly by a particular ion which is a
constituent part of the former. Because of a fixed amount af ghven ion species, its diffusive
effect occupies only a subrange of the whole electro randgais dives a conceptual justifica-
tion for the ramp-like functional form for the diffusor clamteristic. That is, outside the ramping
voltage range, a given ion’s biased concentration on ore@idhe cell wall approaches an all-
or-nothing saturation, inducing an approximately consti#ffusive current flux through the mem-
brane. Within the ramping range, however, the diffusiveeniris more or less in proportion to the
membrane potential. The ramp-like functional form can &lequstified even if the constitutive
ion consists of the majority of all ions. The reason is thaibars diffusive movement is limited by
the maximal porosity of the cell membrane that in turn defthesnmaximal flow of the ion because
of its diffusion. Again, the requiremert0) = 0 for the characteristics is set against some basal
references collected into the passive resting potentraipaters?;.

It will become clear later that action potential depolati@afrom rest cannot be easily gener-
ated without theV-nonlinearity. The left and right branches of aicurve have positive slopes,
corresponding to the voltage region where the conductiventidominates the diffusive current.
They are referred to as tle®nductive branchesr theconductor dominating branchegélthough
it is possible for both branches to intersect thexis in a so-called bistable configuration, we
will consider for most of the exposition the case of a uniquernsection by only one of the two
branches, for which the branch that intersectsithaxis is called thgrimary branch We will
see later that the intersection is the passive resting pakéti,. The middle branch is called the
diffusive branctor thediffusor dominating branch

By Hypothesis 2 and Kirchhoff’s Voltage Law, the passive'NaltageVy. is the sum of its
conductive voltagel, ., and its diffusive voltagel/x, 4, with the same passive Naurrent/y,
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going through the conductor and the diffusor in series. THecharacteristic curve for the serial
Na' conductor-diffusor (Fig.2(b)) is

VNa - VNa,e + VNa,d = hNa,e(INa) + hNa,d([Na) = hNa(]Na)a (4)

where functiongiy, . andhy, 4 define the individual monotonifl -curves for the conductor and
diffusor, respectively. After adjusted for the passiveirgspotential (battery sourcé)y.,, we have

Vo = WNa + Exa = hna(Ina) + Exa. (5)

Throughout most of the paper, we will consider gshaped nonlinearity as shown in Fig.2(b).
Again, a similar interpretation can be made for the diffastimmination of Na in the current
range[iy, i»] as that of K in the voltage rang@; + Ex, v, + Ex] from Hypothesis 1.

It turns out from our analysis of our minimalistic modelstttiee models will not produce spike-
bursts without art-shaped V' -characteristic of one ion species or some combinationftegrent
ion species. One the other hand,sashaped characteristic can only be generated from a camduct
and a diffusor in series, but not in parallel. Thereforesithe spike-burst phenomenon and the
circuit imperative that imply the serial structure of a caantive current and a diffusive current.
It is not important whether the conductive current and thisive current are from a single ion
species or from different ion species to share a same phydieanel. It matters only that the
serial combination produces such gsshaped characteristic. However, in the case that a differe
ion species (such as™K or C&*, or CI-, or a combination thereof) is involved, this hypothesis
can be generalized to have Na conductivecurrent and that other iongiffusivecurrent, in part
or whole, to go through the same channel, and the same résudes obtained will remain true.
In other words, assuming the serial channel sharing for dfethis model and for K of the next
model is simply a sufficient way to guarantee such a necessagition for spike-bursts. As we
will show later that this hypothesis is not needed for thestexice of resting potentials, passive or
active, nor for the generation of action potentials.

Similar terminology applies to th&-nonlinearity. Specifically, the top and bottom parts have
positive slopes, resulted from the conductor’s dominafiigcharacteristic in the respective cur-
rent ranges. They are referred to as¢baductiveor conductor dominating branche®f the two
branches, the branch that intersectslthaxis is referred to as thgrimary branch or the primary
conductive branch. Again we will see later that the intetisacis the passive resting potential
Ena. In contrast, the middle branch with negative slopes isrreteto as theliffusive branclor
thediffusor dominating branch

Hypothesis 3 was already commented above. Hypothesis 4 &l&mown property of most
neurons. We note that although there is a frequently-cit2gt®ichiometric exchange ratio for the
Na"-K* ATPase, we do not tie the active curretit§ pump, /x pump t0 the same ratio, especially
not at a non-equilibrium state of the membrane potentiaé &changer certainly has an optimal
exchange ratio for each ATPase, but it does not have to @atats optimal capability all the
time because one can envision a situation in which a sevdegleted extracellular concentration

12



of K* just cannot meet the maximal demand of 2 potassium ions fenyeaxchange. The same
argument applies to Na This non-constant-exchange hypothesis for Ma ATPase is also the
basis to segregate the net ion pump curigpt,, into theIx, pump anNdIk pump CUrrents:

Ipump - INa pump IK pump-

Exchanging the roles of Naand K in the pK*sNa" model with a few modifications results
in the pNa sK* model below. More specifically, we have

The pNajsK* Model:

(1) Na'’s electro and diffusive currents go through separate |gdrethannels for
which a depolarization (increase) in a negative voltaggean < v, < 0, of the
diffusor triggers a positive drop in its outward (positiee)rent, see Fig.2(c).

(2) K*’'s electro and diffusive currents go through the same chaionevhich an
increase in an outward (positive) current rangeg i; < 1o, Of the diffusor
triggers a negative hyperpolarization (decrease) in illage, see Fig.2(d).

(3) Both ion species have an active resting potential eaisfging Fn, > 0 and
EK < 0.

(4) There is an ion pump for each ion species with the active darent, /. pump.
going inward and the active Kcurrent, I ,ump, 90ing outward. Both share a
common structure in the sense that they have the same pumme@r values:
A = Ay, = A and a small resistance> 0.

In addition to the role reversal, there is a marked diffeeehetween these two models for Hy-
pothesis (1) in the diffusor-dominating voltage range:tfe pK'sNa model, the range satisfies
0 < v; < vy Whereas for the pNesK* model, the range satisfies < v, < 0, see Fig.2(a,c).
This specific range assumption for each model is based onithienalistic criterion (iii) so that
the model'sS-characteristic and th&-characteristic can affect each other in a common and close
proximity possible. Hypothesis (2) remains the same froengitevious model except for the role
exchange between the ions. On the other hand, Hypotheggsa(®, identical for both models,
which are listed here for the completeness of the second ImBdeause of the symmetrical simi-
larities between the pksNal model and the pNgsK*™ model, detailed analysis from now on will
be given mainly to the pksNa. model. Note also, the depiction of neuromembrane of Figid is
fact for the pK“sNa model.

2.2. Equivalent Circuits. There are different but equivalent ways to represent theiitimodel
Fig.1(b) depending on how individual channels are seleltigrouped. The ones that will be used
and discussed in this paper are illustrated in Fig.3 for tiégNa- model, but we remark that the
main equivalent circuit to be used for the analysis and satmn of the paper is that of Fig.3(b).
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Figure 3: Equivalent Circuits.

Except for Fig.3(f), not all analogous circuits for the pi$&* model are shown since they can be
derived similarly.

More specifically, Fig.3(a) is the same circuit as Fig.1(kgdept that the passive electro and
diffusive K* channels are grouped together and the optional externarthaurrent or voltage
source is redrawn simply as another parallel channel.

Fig.3(b) is the same as (a) except that both ions’ passivengis are represented by a com-
bined conductor-diffusor in series (Eq.(5)) and a combic@mauctor-diffusor in parallel (Eq.(3)),
respectively. And for most of the analysis and discussianwil assume the&S-nonlinearity and
the N-nonlinearity of Fig.2 for Na's IV -curve and K's IV -curve, respectively.

Circuit Fig.3(c) is the same circuit as (b) except that afigiee channels are combined into one
super passive channel whaoBE-curve is defined by an equatidty (1}, 1,) = 0 of Eq.(7). There
is no conceptual nor practical difficulty to construct suomgositorial/ V' -curvesgeometrically
based Kirchhoff’s Voltage Law, see [4]. However, it seemsveyy practical to have a general
algorithm for the defining equations of tli& -curves of such equivalent conductors and diffusors
in arbitrary numbers. For example, it is rather straightfand to do so for the parallel combina-
tion of one serial-conductor-diffusor and one paralletdactor-diffusor, which is the case here.
Specifically, by Kirchhoff's Current Lawi, = Ix, + Ix. Also from Ix = fx (Ve — Ex) we first
have

Ina =1, — Ix = I, — fx(Vo — Ex).
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Second, sinc&: — Ex, = Vaa = hna(Ina), We have
Vo — Ena = hxa(Ip — fx(Vo — Ex)).
Rearrange this relation to have
F(Vo, 1) == Vo — Exa — hna(Lp, — fx(Vo — Ex)) = 0.

This equation does not necessarily sati&fy), 0) = 0. As a result, we define thgassive resting
potential £, to be the solution of
F(E,,0) = 0. (6)

Finally, becausé = V, + E, we have the V-curve’s defining equation
F,(Vo, Ip) == F(V, + Epv L) =V, + Ep — Exa — hna(Ip — fx(Vp + Ep —Ex))=0. (7)

For the mathematical analysis to be carried out later, hewee will not use this equivalent form
because it is more convenient to use individual iahig‘curves in their segregated forms as for the
cases of Figs.3(b,d). (But, a comparison simulation forresistency check is given in Fig.10.)

Circuit Fig.3(d) is the same as Fig.3(b) except that the iomp currents are combined into
one active current according to the following relation:

{ Ipump - INa pump IK pump INa pump — 2<IS + Ipump) (8)

IS - INa pump + [K pump

equivalently { )
Ik pump — 5( pump)

wherel,,;, is the net active current through the ion pump dgds the sum of absolute currents

exchanged by the ion pump. L&}L be the voltage across the pump corresponding to the outward

net current/,,,,. Sinceyl,.m, is the voltage across the resistive component of the pumgand

Kirchhoff's Voltage Law,V = Vi + vIpump. NOW from thelV-characteristic of the ion pump

Eq.(1), we have

IK pump/ - )\K]K pump[_VA] - )\IK pump[_VC + ’YIpump] - )\]K pump[_VC + V(INa pump [K pump)]a
(9)
where) . = A\, = A by Hypothesis 4 of both models. The equivalent equationsgfgr,, Is are

{ INa pump/ - )\NaINa pumva - )\INa pump[VC - fVIpump] = )\INa pump[vC - W(INa pump IK pump)]

{ Ipump, = Als [VC - VIpump] (10)

IS, = )\Ipump[VC - fVIpump]-

It is useful to note that we always have > 0 and that the nontrivial part/{,,, # 0) of I’s
nullcline is exactly the same ds,,,,,,'s nullcline, Ve = v1,.mp. Furthermore, the equation fég
is rather simple and it can be solved explicitly in terms @ tiet current,,,,,, as

Is(t) = Is(0) + /0 Mpump (T) Ve (T) — Y pump(7)] dT. (11)
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As a result, the net active current satisfies

1
AZS(0) + fy Mpunp(7)[Ve(7) = Y Epuamp (7)] 7]

(12)

In other words, the parallel ion pumps from circuit Fig.38p¢ equivalent to a nonlinear inductor
of Fig.3(d) with L being the nonlinear inductance defined above. For the reteanf the paper,
we will use both circuit (b) and circuit (d) interchangealdgpending on whichever is simpler for
a particular piece of analysis or simulation.

Circuit Fig.3(e) is the same circuit as (a) except that afigpse and active K channels are
combined into one K channel,/x = Ix + Ik pump, @nd all passive and active N@hannels are
combined into one Nachannel,Ix, = I, + INa pump, @S cOnventionally done for all HH type
models. Here one uses instead the ions’ active resting pai®ty.,, Fk, as the battery source
offsets for the congregated ion channels. The precisdar§dtip between the active and passive
resting potentials will be derived later. We will not exaany quantitative comparison between
these two types of models further in this paper except tothattst is not clear how to extract from
circuit (e) some of the properties to be derived in this paper

Fig.3(f) is a circuit diagram for the pNa&K* model. It is exactly the same as (a) except that
the passive Nachannel is a parallel conductor-diffusor while the passivechannel is a serial
conductor-diffusor.

Notice that the circuit diagram (b) and (f) each is in a oneite qualitative correspondence
to the pK'sNal model and the pNsK®, respectively. In other words, a circuit diagram can be
uniquely constructed qualitatively from a model taxon arue wersa.

1 .
Ipump/ - m[VG — ’YIpump]a with L(t) =

2.3. Equivalent Circuits in Differential Equations. We now cast the circuits in terms of their
differential equations for simulation and analysis laB&cause of the equivalence, a neuron model
can be qualitatively described by its model taxon, or itswitrdiagram, or its system of differential
equations, with progressively greater details in desompt
To begin with, all circuit models follow Kirchhoff’s Curréh.aw for all transmembrane cur-
rents:
Ic + Ina + Ik + INa pump — 1K pump — Lext = 0,

for which, as noted earlier, the directions of the activerenits are fixed, and.,; is directed
intracellularly. With the capacitor relation

CVd (t) = I

where(' is the membrane capacitance in a typical rangé'of 1uF/cm?, the first differential
equation for all circuits is

CVC/(t) = _[]Na + IK + INa pump — IK pump — ]ext]-

The K* passive current can be replaced bylits-curve Ix = fx(Vo — Ex) from (3). But the
Na"™ passive current cannot be solved from its non-invertibleshaped/ V' -curve (hysteresis),
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Table 2: Equivalent Differential Equations

( CVC, = _[Ip + INa pump IK pump — Iext]

. " Iaum/:)\laumv_laum_l um
Circuit Fig.3(c) Nap b Na pump Ve = Y (N pump = I pump )]
IK pump — )\]K pump[_VC + V(INa pump [K pump)]

EII/J = Fp(Vc — Ep, Ip) = VC — ENa — hNa(Ip — fK(VC — EK))

( CVe' = —[Ina + fx (Ve — Ex) + Tpump — Text]
Ipump/ = %[VC — YL pump]
EINa/ = Vo — ENa - hNa(INa)

with L > 0 defined by (12)

Circuit Fig.3(d)

( C(‘/C/ - _[fNa(VC - ENa) + [K + [pump - Iext]
Circuit Fig.3(f) Loump’ = Ms[Ve — Y pump)

(The pNa sK* Model) Is" = Myump [YC — ¥ Loump)

L EIK/ = VC - EK - hK(IK)

Vo — Ena = hxa(Ina). Sincel is not redundantly defined by the Naassive current, but rather
the other way around, thB/-relationship

FNa(VC - ENa7 INa) = VC - ENa - hNa(INa) =0

defines an ideal voltage-gated relationship for the passiveent/y,. A standard and practical
way ([4]) to simulate and to approximate this idé&l-curve is to replace the algebraic equation
above by a singularly perturbed differential equation deve

6INau/ - FNa<VC - ENaa INa)a

where0 < e < 1is a sufficiently small parameter. More specifically, theifnssign (or lack of it)
in front of Fy, is chosen so that the conductor-dominating branches dfitheurve, Ve — En, =
hna(Ina), are attracting and the diffusor-dominating middle braisctepelling for this auxiliary
differential equation. It is useful to note that the nuhdj or thely.-nullcline, of this equation is
exactly the serial conductor-diffus@i/-curve of the passive Nachannel. Now combining the
Ve, Ina €quations and those for the active pumps (9), the systeniréaitcFig.3(b) is

CVC/ = _[INa + fK(VC - EK) + INa pump — IK pump IOXt]

INa pump/ - )\]Na pump[VC - V(INa pump IK pump)] (13)
IK pump/ - )\]K pump[_VC + V(INa pump IK pump)]
elna' = Ve — ENa - hNa(INa)-
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(2) (b)
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Figure 4: (a) Continuous and piecewise liné&@curves for K's parallel conductor-diffusor. The
solid curve is the vertical sum of the dash curves. (b) Cotrs and piecewisél -curves for
Na'’s serial conductor-diffusor. The solid curve is the honita sum of the dash curves. (c) An
equivalent/V-curve in bold solid when af-shaped Na conductor-diffusod V' -curve and anvV-
shaped K conductor-diffusoil V-cure are combined in parallel. It is obtained as the vdrsiom
of Nat’s IV-curve and K's IV -curve. The result may not be a functioniéfor I as shown but
instead described implicitly by an equation such as Eqi{g)is the joint passive resting potential
at which the current sum from the constituémt-curves is zero.

In terms of the net and absolute active currdpts,,, /s from Eq.(10), the same system becomes

CVC/ - _[INa + fK(vC - EK) + Ipump - cht]
]p;lmp/ = )\]S[VC - ’YIpump] (14)
]S = )\]pump[VC - ’ylpump]
elna' = Ve — ENa - hNa(INa>-
The equivalent systems of equations for circuit Fig.3(a) ammcuit Fig.3(d) can be derived simi-
larly and they are listed in Table 2.

2.4. Piecewise Linear/VV-Characteristics. We are now ready to specify a functional form for
the conductive and diffusivéV -curves, Eq.(2, 4), for the purposes of analyzing and sitimga
the circuit equations. As illustrations, we use continuand piecewise linear functions for all
conductive and diffusivéV -curves, and show later how to generalize the constructi@mtooth
functionals. The functions are listed in Table 3.

We first describe thé/-shaped V' -curve for the passive Kchannel. The component conduc-
tive and diffusive curves are given as follows in their canahforms.

I = fgo(V)=g¢V, withg, >0

0 if V< V1
I=fka(V)=¢ d (V=) ifv; <V <y, withd, <0,0<v; <o,
dK(UQ - Ul) |f Vo < \%
Here parametey, is the conductance of Ks electro channel and the. = 1/¢, is the corre-
sponding resistance, and parameter< 0 is K™’s maximal diffusive coefficient. It is easy to
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Table 3:7V -Characteristic Curves

S-Nonlinearity N-Nonlinearity
V = hxa(1) I = fk(V)
e piecewise linear curve:
1 1 N .
pK*sNat | ¥ = Q—Na]+ d—Na(I —i)lin <I<ia) | =g V4d (V-u)o <V <o)
1
iz = in)(i2 < 1) +dy (v2 — v1)(v2 < V)
Na
e smooth curve:
1 1 I —1
V=—I+—ptan ! —= — 1V~ Um
- d, P I =gV +d, putan P
+ ! ptan~! b with 1 v
e — —F - with
d. P +d, 1 tan w wi
il—}—ig ’ig _il |dN | o U1 + V2 U2 — U 9k
ly = ) - = Um = I :u -
2 2\ g +d. 2 2 |9 + dic|
V = hx(I) I = fxa(V)
piewise linear curve:
1 1 N .
pNarskt | VT g g I m i< I<i) | p o v (o - w)(V <)
1
+d—(i2—i1)(i2 <) + dy, (V =) (11 <V < 19)
K
Conditions: Conditions:
g,>0,d, <0, g, +d, >0 g,>0,d, <0, g,+d, <0
with J = Na, or K with J = Na, or K

see from Fig.4(a) that thB/-curve for the parallel conductor-diffusdr= fx.(V) + fxa(V),is
N-shaped if and only if the diffusor can dominate in the rapgeu,| in the following sense,

gy +d, <0withg, >0,d, <0. (15)

When this condition is satisfied, thg-shaped parallel conductor-diffusor combo has the desig-
nated critical pointd” = v; andV = v, with the middle diffusive branch having a negative slope,
g, + d.. In practical terms, there is a net concentration-dommgatntracellular current if the
potential difference across the parallel conductor-difus in the range df,, vs].

For an easier access to numerical simulation and a simptatiow, we will use avat | ab
notation for Heaviside-type functions as follows

0 fx<aorb<z
(a<z<b)= _
1 ifa<x<b
wherea, b are parameters withoo < a < b < +o0. If eithera = —oo or b = 400, we simply
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write (x < b) or (a < z), respectively. Now K’s parallel conductor-diffusor can be expressed as
I'=fx(V) = fre(V)+faV) = g VHd (V—v1)(v1 <V <vg)+dy (v2—v1)(v2 < V). (16)

Nat’s serial conductor-diffusofV-curve can be similarly constructed. Specifically, we have

1 .
V = hNae(l) = —1I, with g, > 0, and

Na
V = hnaa(l) = d; (I —idy) ifip <1 <iy withd, <0, 0<i; <iy.

L (22—21) |f22<[

dNa

and in terms of thé/at | ab notation,

V= hNa(I) = hNa,e(]) + hNa,d(])
- ﬁIﬂL d;a(f—z'l)(z'l < I <iy)+ dl (iy — 1) (in < I).

Na

(17)

TheV-to-I slope of the middle diffusive branch is

1 — gNadNa
1/gNa _'_ 1/dNa gNa + dNa7

which will results in anS-nonlinearity if and only if the slope is negative or equesatly

Iy +dy, > 0withg, >0,d,, <O0. (18)

In such a casd, = i,, i, are two critical values, and in practical terms, there istaaacentration-
dominating depolarizing voltage across the serial coraitatiffusor if the outward current in-
creases in the range pf, is]. See Fig.4(b).

To conclude this section we note that bdthshaped/ V' -characteristic and the more general
kind with F'(V, I) = 0 have been observed in dendrites ([2, 14]). From our anadysige we can
see that the latter must contain some canonical diffusiseharacteristics in serial.

3. Circuit Properties. The analysis carried out below is for the equivalent ciragtiations
Egs.(13, 14) and those listed in Table 2 with the continuousmecewise lineafV -curves (16,
17). For the existence of steady states, $heonlinearity and theV-nonlinearity are not needed
but only their primary conductive branches. For the gei@mabf action potentials, Nds S-
nonlinearity is not needed but its primary conductive bhawhich can alter K’s N-nonlinearity
gualitatively but only for large conductance. For the gatien of spike-bursts, both nonlinearities
are required. In all types of the behaviors, the ion pump gyos are indispensable.

3.1. Pump Dynamics.We begin with the analysis of a minimum circuit consistingaafapacitor,
a resister, and a pump in series. The circuit and its phase gartrait are shown in Fig.5. In
particular, the corresponding ordinary differential etipras are given as follows

cV' =1
{ I'=\(-V — E —~I). (19)
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Figure 5: (a) A minimum circuit for the dynamics of a pump. {h)e phase plane portrait of the
circuit equation.

The V-axis consists of entirely equilibrium points for which Heowith} < E are unstable and
those with\’ > E are stable. Also, every unstable one is connected to a siableThis means the
following. Suppose that there is initially a net chargeleposited on the lower side of the capacity
so thatVy, = —¢o/C < —F andl = 0. Then because the equilibrium poiig, 0) is unstable and
the region/ < 0 is forbidden, soon or later the pump starts to work whég) > 0 at some time
to, setting off the transport of the right amount of chargedotbp side of the capacitor, and the
circuit dynamics eventually settles down at the equilibripoint(V (4+00), 0). (In the case that the
resistance; = 0, the equilibrium point can be expressed explicithylastoo) = —2F — 1}, see
below.) This shows that our assumed pump characteristid Eigdeed captures what we think a
pump should do qualitatively — to transport and store upgésunidirectionally.

Analytically, the minimum pump circuit equation Eq.(19)dae solved explicitly by changing
it first to its phase equation as below

% = -\CyI = \C(V + E),
whose solution with initial conditio(0) = I, > 0,V (0) = Vj is
I=|I,+ l(Vo +E)— L exp(—ACH[V = Vy]) — l(V +E)+ .
vy AC~? vy AC~?
In the limity — 0, the solution is on a parabola

I:IO+§ (Vo + E)* = (V + E)?] :IO+§(VO—V)(V+VO+2E).
With the limiting initial equilibriumlim; o+ 1(¢) = Iy = 0, lim;_o+ V' (¢) = Vj, the stable equilib-
rium point opposite tdj < 0 is —V, — 2E as pointed out above.
Dynamics of subcomponents of the circuit equations Eqs14)] especially those without the
pumps, can be considered similarly, but they are well-wstded elementary circuits which can be
found in almost all undergraduate textbooks for circuitry.

3.2. Passive and Active Resting Potential¥Ve now consider the whole circuit equations with the
piecewise lineaf V' -curves (16, 17). The steady state equilibriums consideogdare all stable.
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They lie on the primary conductive branches of both ions'spasl/ V' -curves, with the diffusive
effect of inward ion flow not dominating these steady stakdsnce, the result of this subsection
does not depend on Hypothesis (1) and Hypothesis (2) of tbhertadels. In other words, it is the
primary feature of a cKcNal model. For this reason, we will restrict the effective rangehe
primary conductive branches and assume instead the foltpwi

_ _ _ 1 _
IK = fK(VC — EK) = gNa(VC — EK) andVC = hNa(INa) —+ ENa = —INa + ENa

Na
We will also use the following notation interchangeably ffiesistance and conductance

1 1 1

gK:E7 gNa:E’ gAzaa gp:gK_'_gNa'

Under the restriction to primary conductive branches, ttizy& membrane equilibrium point,
Vo' = Lump' = Is' = Ina' = 0, is solved from the following equations using the equivatercuit
equation (14):

INa + Ik + Tpump — Lext =0
Ve — vpump = 0

Ix = gy, (Vo — EK)

Vo =rg, Ina + Exa.

It is a linear system, simple to solve exactly. Several casegonsidered below.
We first consider the equilibrium states when one of the isfdacked. When K is blocked,
the equilibrium for the reduced Nasystem, i.e. the cNamodel, is solved from the same equation
(20) with the third equation deleted and th&-€urrents set to zerodg = Ik pump = 0 in the first

equation. The reduced system becomes,

(20)

]Na + INa pump Iext =0
VC - ’YINa pump — 0
Vo = ry.INa + ENa,

Since there are 4 variablég;, Ina, Ina pumps andExy, to determine from 3 equations, one of the 4
variables can be used to determine the others. Solutiohs eguations can be explicitly expressed
as follows:

_ 1
VC - ENa = AEN& + 7]ext

Ina T 9a Ixna T 9a
INa pump — gAENa
Ina = =gy Ena + Loxs-
Sincely, pump > 0 for the pump current, for the Kblocked system to have an active membrane
resting potential (with external forcing,, = 0) we must have from the second expression that

(21)

FEna >0

which also gives the same polarity to the passive restingniall £, > 0 from the first expression
when/.,; = 0. Notice from Eq.(21) above, that when the voltage is clangiexro,Ve = En, =
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0, the external current i&,; = —g... Fxa, that is, the passive resting potential can be measured if
the conductance,, is known.

For the Na -blocked equilibrium, the analysis is exactly the samelfierreduced pK system.
Specifically, after deleting the fourth equation in (20)tieg /n. = Ina pump = 0, @and dividing
the third equation by, , and equating the role 6f Ik ,um, to that ofIx, Lump, the equation form is
exactly the same as the'kblocked equilibrium equations above. As a result,¥active resting
potential can be solved as

gK R 1
By — By + L. (22)
gt N gt

Again, with I, = 0, both Ex and Ex have the same polarity and the corresponding ion pump
equilibrium current is

IK pump — _gAEK

in order for which to be positive we must haig < 0. Similarly, the passive resting potentiak
can be measured from an equilibrium which is voltage-clatrgieero whery, is known:

_ 1
VC:EK:O, EK:_ext~

K

The result above is summarized below.

Proposition 1. For both thepK*sNal andpNafsK* models, the directionality of an ion species’
pump from Hypothesis 4 determines the polarity of the iomriggéactive resting potential from
Hypothesis 3, which in turn implies the same polarity foritihrespecies’ passive resting potential.
Also, F, (resp. Ex) can be measured by the external current if the voltage is\pked at zero and
K* (resp.Na") is blocked.

Note that this result can be easily generated to other i@sting potentials. For example, if the
cell has a Ct ion pump and ha#; < 0, the same polarity ag, then the cell should pump
Cl~ ion outward, in the opposite direction to'® pump direction. This is because Uk negative
charged whereasis positive charged, but both result in a net inward pumpenirto which the
same analysis above then applies. Similaily, > 0 iff Cl ~ is pumped inward.

Now consider the full steady state equilibrium from equaij20) without any ion blockage.
Upon simplification, it is straightforward to derive or toextk that the active membrane resting
potential is

_ gNaENa + QKEK + 1

Ina T 9k T 9a Ina T 9k T 9a
This relation has several equivalent form. First, the tptsive resting potentidlp introduced
in (6) is another conductance-weighted linear combinatidhe passive resting potentials of both
ions:

E Lot (23)

EP = gNaENa + gKEﬁK7

gNa + gK
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see Fig.4(c) for an illustration and derivation. With thedation, the active membrane resting
potential is
gp R 1
En = Ep + Loyt
9p T G, 9p T G4
Also, using the relations obtained above between the aatidepassive resting potentials of both

ions, it can be expressed as another conductance-weighdeatje of active resting potentials,

ENa E 1
Em - TN +gK K + ]ext
gNa+gK+gA gNa+gK+gA
FE E
_ (gNa + gA) Na + (gK + gA) K + 3 ot (24)
Ina T 9kt 9a Ina T 9x Tt 9
_ gNaENa + gKEK + gAEA + 3
- exty
gNa+gK+gA gNa+gK+gA

whereFE, is simply defined as the sum of the active resting potentidlssions: £, = En.+ Fxk.

As a concluding note, we recall that the nullcline for thatabsolute active curreiif equation
coincides that of the net active current’s nullcling, — v/,..,, = 0. As a result, the membrane
steady state equilibrium is not dynamically fixed. In fabg testing potentials form a line parallel
with the Is-axis in the observable state spacédf, /¢ + Ina. + Ik + Lpump) Of the circuit. This is
a new and interesting property:

Proposition 2. For both thepK*sNa" and pNafsK* models, the membrane can maintain the
same observable steady state by pumping the potassium dndrsmns at different individual
rates as long as the ion pump maintains the same net activerdut,,,,, at the corresponding
steady state rate. Also, the conductance weighted passstsag potentials can be measured by
the external current when the membrane potential is clanmeéro:gNaENa + gy Fyx = L.

More importantly, this continuum of equilibrium states ateicturally stable to be shown later, the
sole consequence to the existence of the dual ion pumpsisloake, changing the total absolute
current/g can leave the steady state fixed.

3.3. Action Potential Generation With lon Blockage. We now consider the neuron models
with either the sodium ion or the potassium ion blocked, tiee pK’ or the sNa subsystem,
respectively. For the first casBy, = Ina pump = 0, the reduced model equation (13) becomes

{ CVe' = ~[f(Ve = Ex) — I pump — Lext] (25)

IK pump/ - )\IK pump[_vC - 71K pump]-

It is a 2-dimensional system iWg, Ik pump. AS shown in (15), forg, + d, < 0, K*’'s IV-
curve admits anV-shaped nonlinearity. As a result, the system above behsw@arly like
the FitzHugh-Nagumo equations, see Fig.6(a) for a phase pllastration. However, unlike the
FitzHugh-Nagumo equations, the effective range of thé-Nicked K"-system is restricted to the
upper half plan€k pump > 0 since thel-axis, Ik ,ump = 0, IS invariant for the system through
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(b)

. _/
I =fx(Ve—Ex)

-~/

IZfK(VC_E_K) —1ex

Figure 6: (a) Na-blocked phase portrait. (b)blocked phase portrait. It is clear from the phase
portraits that active resting potentials do not alwaystekigx > 0 or Ey, < 0.

which no solutions originated above can cross. Becauseedbttt that/x ,ump's Nontrivial null-
cline, Ix pump = —V /7, lies only in the second quadrant, any active equilibriuatestx with

Ix yump > 0 must be negative. From the phase portrait, we can clearlyhsg¢¢he active equi-
librium point is a stable node while the passive equilibripoint is a saddle, which is stable only
in the complete absence of active currént,,,, = 0. Also, we can see that the passive resting
potential £k is always smaller than the active resting potential both are related by Eq.(22).

The phase portrait Fig.6(a) shows a stable active equilibstate base with.,, = 0 as well as
a nonstable active equilibrium state case with a postiye> 0 for which a limit cycle emerges.
For the limit cycle case to occur, two conditions need to hdiyithe critical voltage value for
the V-nonlinearity must be negativéjx + v; < 0, and (i) the combined diffusive coefficient,
g, +d, < 0, must not be too large in magnitude so that the two critigal,.,-current values of
the N-nonlinearity lie entirely above thg;-axis.

The active steady state is stable for a rangd.gf and it gives rise to ar,.-forced limit
cycle, or action potential, when it loses its stability. Thg-threshold for the action potentials is
determined when the active resting potential equilibritigpmcrosses the first critical value of the
N-shaped/V-curve atv; + Ex into the diffusion-dominating region. Solving from the edjon
(22) and the threshold conditioix = v; + Fx, we have the threshold value

Y L =
Towi > I inr i= v + Fx|,
A [ YT gy K}

which is small for smalk. It implies that action potentials can be readily generdtednodest
external forcing. The type of action potentials are-Kediated. This result can be summarized as
follows.

Proposition 3. For the Na-blockedpK®sNa" model, theK "-mediated action potentials can be
readily generated fole,, > Ik e iIf v > 0, g, + d, < 0 are relatively small in magnitude each,
and if the left critical value of théV-nonlinearity in voltage is negative;x + v; < 0. However,
whenEx + v; > 0, no amount of stimuli,,; can induceK *-mediated action potentials. For the
K*-blockedpNa; sk model, theNa-mediated action potentials can be readily generated when
Ena +v1 < 00r Ey, + v, > 0 but small because of the smallness of the ion pump’s resistan
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We now consider the K-blocked model of Eq.(13),

C(‘/C/ - _[INa + INa pump Iext]
INa pump/ - )\]Na pump[VC - ’}/INa pump] (26)
elna' = Ve — ENa - hNa(INa)-

In the case that the active resting potential does not lie arig\iffusive branch, we can consider
the system restricted on its primary conductive branch &méeFor the piecewise linear case, the
primary branch of théy,-nullcline is0 = Vo — Exa — Ana(Ina) = Vo — Exa — 7'y, Ina, from which

Ina = gNa(VC - ENa)-
Substitute it into Eq.(26) gives the reduced 2-dimensisgatem

{ CVC, = _[gNa<vC - ENa) + INa pump ]ext]

INa pump/ - )\]Na pump[VC - ’}/INa pump]-

It can be seen from its phase portrait Fig.6(b) the followitige system is restricted to the upper
half planelx, ,ump > 0; if exists the active resting potentialy, must be positive; and only in the
absence of the active pump currépt ,.mp = 0 is Na"’s passive resting potentidly, stable; and
the relationshi) < Fx, < Ena. must hold as concluded already from the last subsectiorp, Als
when restricted on the primary conductive branch, the actésting potentiaky,, has been solved

explicitly in (21) as
'VQNa n ,}/
Na
L+ 79y,

Vo = By, = —12%e
C N 1+'}/9Na

and/na pump = Ena/7 > 0, INa = —INa pump + Lext-

In order for the neuron to generate action potentials, oetHe circuit to oscillate, the active
resting potential equilibrium needs to lose its stabilfar this to happen, it have to enter Na
diffusive branch of its passivéV-curve Ve = hna(Ina) + Ena through the lower critical point
In. = i71. Using this relation to determine the needed external igrtreshold from the equation
i1 = Ina = —INa pump + Lot = —ENa/7 + Iext, We have

ext -

1% Y REATV A lEN .

ont > INa,thr =
’ygNa 7

For fixed:; andEx, but smally, this threshold can be too large a current to be injectedtaduron

to realistically generate K-blocked, Na-mediated action potentials, in contrast to the relative
ease to generate N&blocked, K'-mediated action potentials as shown above. In summary, we
have the following.

Proposition 4. For the K*-blockedpK*sNal model,Na*-mediated action potentials cannot be
easily generated with modest external forcing since it Bégd > Ina the DUtLM., o+ INa the = 00.
For It < Inatne the circuit settles down at a stable equilibrium whose cgpending resting
potential Ey, is always positive. The same is true #rt-mediated action potentials in théat-
blockedpNalsK™ model.
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Figure 7: (a) K's hysteresis loop of the pksNal model. (b) Na's hysteresis loop of the
pK*sNa" model. (c) The translatefl’-curves by their corresponding passive resting potentials
showing a configuration satisfying condition (27) and ctindi (28). The newV-hysteresis loop

is the result of the vertical sum ofKs I'V-curve and the primary resistive branch of Na/V/ -
curve.

3.4. Action Potentials Without lon Blockage. We now consider a configuration between'«
N-characteristic curve and N& S-characteristic curve in such a way that the diffusive bhanc
of Na™’s IV -curve does not affect the circuit dynamics, i.e. thecKlal model. The following
notation is used, see Fig.7,

ki = fx(v1) = fx(v]), with vy < of, andky = fix(vy) = fik(v2), With vl < vy
ny = hNa(il) = hNa(if), with 11 < ’LT, andng = hNa(’L;) = hNa(’ig), with Z; < 19

The oriented loop with vertice@y, k1), (v, k1), (ve, ka), (v5, ko) hugging K™’s IV -curve is called
K*’s hysteresidoop. Similarly, the oriented loop with verticés, i,), (n1,i}), (na, iz), (n2, i)
hugging Na's IV -curve is called N&’s hysteresis loop. We note that whether or nof &xcurve
forms an hysteresis is context-dependent. Take ths R-shaped/V-curvel = fix (V) as an
example. As the nullcline for the equatidit = 7 — fx(V'), the curve forms an hysteresis because
a V-phase line can intersect the curve multiple times, andrtesecting points on the two end
branches are stable equilibrium points of the equation hadhtersection with the middle branch
is an unstable equilibrium point. However, the curve doddaron an hysteresis for the equation
I' =1 — fx(V) because every-phase line intersects the curve at most once.

Upon translation by their respective passive resting piaksn K*'s loop is shifted parallel to
the V-axis leftwards by~x amount and N&s loop is shifted parallel to th& -axis rightwards by
Ena. amount. The mutual configuration of the shifted loops fos sbsection is defined by the
following condition:

vi + Bx < ny + Eya. (27)

See Fig.7(c). Under this condition;# N-characteristic lies in the voltage rangé,< n, + Exa,
of the primary conductive branch of N& S-characteristic. As a result, the former will persist if
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pump

Figure 8: Dimensionless simulations of Eq.(14) with pareenealues: g, = 0.17, d,, =
—0.06, i, = 0.5, iy = 1, Ena = 0.6, g =1, d, =—1.25 v; =0.5, vy =2, Eyx =—0.7, C =
0.01, A =0.05, v =0.1, I, = 0, e = 0.001. (a) A phase plane view of the oscillation. (b) A time
series plot for whichx, total = Ina + INa pumps 1 total = Ik + Ik pump = fix(Ve — Ex) + Ik pump-

the latter is not too steep in slope, i.g,, is modest. More precisely, under the following condition
g +d +9,. <0, (28)

the combined K-Na* IV-characteristic] = fx(V — Ex) + g, (V — Exa), with K*’s hysteresis
loop and Na's primary resistive branch in parallel again permits a névgehaped/ V' -curve in
the rangd/ < ny + En,. That is, Kt's-diffusive channel not only dominates its own conductive
channel in it§v;, v5] range, but also dominates the combined passive paralleheffgin the same
range. In fact, the conductance sum of Eq.(28) is the newsiifé coefficient for the combined
IV -curve, see Fig.7(c). When condition (27) is violated,; 3K/ -loop may not persist, as such is
a case illustrated in Fig.4(c).

It turns out that under condition (27), the circuit dynanmdoshot extend into the region beyond
Ve > ni + Ex, and Iy, > i,. Hence, we can restrict the analysis to the effective refpoiNat
in {Ve < ny + Ena, Ina < i1}. As aresult, we only need to consider the primary branch df&Na
IV-curve to beVe — Exy = hna(Ina) = 7y, Ina OF Ina = g1, (Vo — Exa) as we have done for
condition (28). This restriction solves the last equatib(ld) for the ideal situation whea= 0,
and as a result, Eq.(14) is reduced to a 3-dimensional systtow

CVC/ — —[gNa(VC — ENa) + fK(VC — EK) + Ipump - ]oxt]
]pump/ = Ns[Ve — 'VIpump]
]S, - )\]pump[VC - vlpump]‘

Because the absolute active curréntcan be solved in terms dfc, I,ump @s in (11), and thus
decoupled from the first two equations, the system abovessngislly 2-dimensional. Fig.8(a)
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Figure 9: (a) The action potential cycle on the primary cartise branch offy,-nullcline surface
in the Ve l,umpIna-SPace when conditions (27, 28) are satisfied. (b) The saswe ekcept for
condition (30) or (31). The equilibrium point (filled cirgl®n both K's primary conductive
branch and N&'s primary conductive branch is always stable.

shows a phase portrait in thi&: /.., space for allls > 0. The invertedN-curve is theV,-
nullcline
Ipump = _(gNa(VC - ENa) + fK(VC - EK) - cht)7

forming an hysteresis, and the line is thg,,,-nullcline I, ., = Ve /7.

Depending on the external forcing currdpy;, the circuit can have a stable equilibrium point
lying on both primary conductive branches of the two ions séhoorresponding resting potential
is given by formula (23). In order for the neuron to generatigoa potentials, this steady state
resting potential must lose its stability by entering irtte tombined diffusive branch of the'K
Nat IV -curve through the same left critical point+ Ex (which remains the same for piecewise
IV -curves but may shift for smoothl’-curves.) Hence, the action potential threshold for the
external current is solved from + Fx = E,, and equation (23) as below

Toxt > Im,thr = (gNa + 9k + gA)(Ul + EK) - (gNaENa + gKEK) (29)

Fig.8 shows a simulation of action potentials when the thwiscondition above and the configu-
ration conditions (27, 28) are satisfied. A 3-dimensionalwof the action potential is also shown
in Fig.9(a), showing it lies entirely on the primary brandh/g,’s S-shaped nullcline surface. The
type of action potentials is Kmediated, the result of diffusion domination by Kon only.

Proposition 5. ThepK*sNa" model can generaté ™ -mediated action potential oscillations under

the conditions (27, 28), which reduce the model ftka cNaf model.

3.5. Termination of K*-Mediated Action Potentials. We now consider the case in which'ls
diffusive channel is either not dominating or completelgett in the effective region of interest.
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In the non-dominance situation we assume the opposite witomm (28)
g +d + 9y, >0 (30)

for which K™'s N-characteristic does not persist as in Fig.7(c). In the mdssituation we can
assume
ny + ENa < v+ EK (31)

for which Na"’s S-characteristic lies in the primary conductive region of&passive channels.
In both situations, we can assume for simplicity that'¥«KpassivelV -characteristic in the
effective region of interest to be simply

I= fK<v> = gNaV'

In this case, the system of equations (14) remains 4-diraeabin Vi, I,ump, Is, Ina. HOWever,
since thels-equation is decoupled from the rest equations, the noéicétructures of the other
variables remain fixed for all values &§. As a result, the system is essentially 3-dimensional.
Fig.9(b) shows the nullcline surfaces of the,ump/Nna-System. Adding to this advantageous
feature of dimension reduction, the nontrivial part of fheaullcline coincides with that of ., 'S.
Notice further that because both thg-nullcline and’,,,,-nullcline surfaces are planes given as

Lowmp = —(Ina + 9 (Vo — Ex) — L) and Iyump = Ve /7, respectively,

the relative configuration of these surfaces becomes engiesi as shown. These two planes inter-
sects along a line, which in turn intersects thehapedy,-nullcline at one, or two, or three points.
However, it is straightforward to show that the equilibripints on the conductive branches are
stable and that the one on the diffusive branch is unstalere are indeed multiple equilibrium
points. Fig.9(b) shows the case that there is only one éxjiuith point which lies in Na’s primary
conductive branch. Because of the existence of such stgbikbgium points on Na’s conductive
branches, action potentials, i.e., oscillations, caneajénerated. When cast in terms of selective
blockage of K'’s diffusive channel, we can state the following:

Proposition 6. It is not possible to generate™-mediated action potentials for tid<* sNal model
if K*’s diffusive channel is not dominating in the sense thakeeitiondition (30) or condition (31)
or both hold, in which cases the reduced systemakacNa"™ model.

3.6. Spike-Burst Generation.We now consider the case in which the combined passive clsanne
from both ions result in anV/ -characteristic curve like the one depicted in Fig.4(c)e @halytical
conditions for the configuration is the following:

(a) TheExy,.-shifted Na hysteresis loop lies in the diffusive region of thg-shifted
K™ hysteresis loop:

’U1+EK<n2+ENa<n1+ENa<U2+EK. (32)
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(b) K*’s diffusive channel dominates's conductive channel and N& conductive
channel combined:
g +d, + g, <O0. (33)

(c) Na'’s diffusive channel dominates its serial conductive clgnn the region
i1, 2] to have anS-hysteresis:

1 1
— 4+ — <0, (34)
gNa dNa

(d) Burst (action potential) excitation condition:
Toxt > Im,thr = (gNa + 9k + gA)(EK + Ul) - (gNaENa + gKEK) (35)

Condition (d) is the same as the action potential threshofdition (29) so that the equi-
librium point on the primary conductive branch of Nais unstable. This condition allows the
generation of K-mediated action potentials or bursts, a more appropréate in the context of
this subsection. Condition (c) is what it says. Conditiopi€omore than enough to guarantee
K*'s IV-curve to have anV-nonlinearity which only requireg, + d,. < 0. In fact, in K's
diffusive rangev, + Fx, v, + Ex], the combined passive channel from both ions in parallel is
still dominated by K'’s diffusion. This condition is the same as the second caif28) for
the generation of K-mediated action potentials or bursts. However, it is thed#toon (a) that is
critical for the generation of spike-bursts considereceh&dore specifically, it violates the other
sufficient condition (27) for the generation of kmediated action potentials to prevent them from
completion. This is because the lower knee point of N&-hysteresis cuts into the'kmediated
action potential in K's diffusive range. In another words, at the lower knee of¥Hwysteresis, the
Ina-equation takes over and the Knediated burst is interrupted by Nanediated spikes around
Na'’s S-hysteresis.

Fig.10 gives an illustration on the geometric mechanismpokesburst generation for this
model. The mathematical method to study and to understacid mwblems has developed and
matured through a series of works [5, 6, 7, 8, 9, 10, 11]. Thedftehe method is to utilize the
fast-time scale ofy,’s equation for sufficiently smad > 0. More specifically, at a near ideal situ-
ation where = 0, all solutions of the system are quickly equilibrating oa ttonductive branches
of Na’s S-hysteresis, thus reducing the analysis to the systematestito the lower dimensional
conductive branches dk,’s nullcline surface. Becausk’s non-trivial nullcline coincides with
I,ump's Nullcline, the analysis is further simplified into a 2-adinsional phase plane analysis of
the reducedVc,ump-subsystem on the two branches. A full picture of the orlstalicture is
then pieced together from the subsystem’s 2-dimensioredgportraits on the branches together
with fast transitions from th&-hysteresis’ lower knee edge to its upper conductive bramch
similarly, from its upper knee to its primary conductive fioch.

Here is a more detailed description of the illustration..Figa) shows the nullcline-surfaces
in the Vo l,umpIna-State space. Because of the domination byskdiffusive channel by condi-
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Figure 10: Na-K* spike-bursts. The same parameter values as Fig.8 exceptfab.1, i, = 0.3

for which the conditions (32, 33, 34, 35) are satisfied for(E4). For consistence check, the dash
spike-burst of (d) tracing the solid spike-burst in vareald, is generated from circuit Fig.3(c)'s
equations from Table 2 with exactly the same parameter salod initial conditions.

tion (33), the intersection of theg;-nullcline surface and théy,-nullcline surface, or th&/y.-
nullcline, on the primary conductive branch of N&./V'-characteristic or théy,-nullcline surface
has a fold point, giving rise to one of the two necessary dams for the K"-mediated bursts. Be-
cause of the excitation condition (35), the..,-nullcline surface goes through'#s new diffusive
dominating branch of th&Ix,-nullcline, giving rise to the other necessary condition Ko’ -
mediated bursts. Fig.10(b) is a zoom-in view on the effectegion of spike-bursts. The condi-
tion (32) prevents any K-mediated burst from becoming a'Kmediated action potential, circling
around a would-be FitzHuge-Nagumo-like hysteresis on'dprimary conductive branch like the
case of Fig.9(a) if the condition (27) is not violated by cibiodh (32). As a result, the burst contin-
ues, heading towards the lower knee edge of '8l&-hysteresis. Once an orbit reaches the lower
knee, it must jump upward to the upper conductive branchebthysteresis. On the top branch
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Figure 11: (a) Simulation for Eq.(14) with smoatk'-curves of Table 3. Parameter valugs; =
0.2, dy, = —0.1, iy = 0.1, iy = 0.33, Exa. = 0.6, g, = 5, d, = —5.5, v; = 0.55, vy =
1.5, Bk = —0.7, C = 0.01, A = 0.1, v = 0.1, I« = 0, € = 0.001. (b) Simulation for the
pNalsK* model from Table 2 with parameter valueg;, = 1, d,, = —1.21, v; = —0.7, vy =
—0.2, BExa = 0.6, g, = 0.17, d, = —0.67, i, = 0.18, iy = 0.5, Ex = —0.7, C = 0.01, \ =
0.05, v =0.1, I,; = 0, e = 0.0005.

and in the effective region shown, all solutions moves doWr  0) in Vi, up (lpump' > 0) in
I',ump, @and towards the top knee of tisehysteresis before falling from the edge down to the lower
branch of theS-hysteresis. On the lower branch, solutions moves up invthdirection when

in the region outside the fold of thié- Ix.-nullcline (' > 0). Otherwise when inside the fold
(V' < 0), they move down ifv.. Also, they move down in thé,,,.,-direction if in the region left

of the Iump Ina-nulicline ([,um, < 0), and move up i, if otherwise (,um," > 0). Hence, the
train of Na"’-mediated spikes moves in the increasing directior,@f,, when it is to the right of
the /,.mp Ina-Nullcline and above the fold of thi&- Iy,-nullcline as shown. It will end upon enter-
ing theVIn.-fold. The termination of spikes can also be taken as the étitedourst. However,
once an orbit crosses into the left side of g, /x.-nullcline (I,un,’ < 0), another episode of
spike-burst is set in motion, heading to the fold, turninguaud the fold, and heading to the lower
knee edge of th&-hysteresis again. Fig.10(c) shows the 3-dimensidp#}..., In. phase portrait
projected onto thé,,..., Vc-plane, and Fig.10(d) shows the time series of the spikstisatution.

Notice that the absolute ion pump currégtoscillates in time as well.

Proposition 7. ThepK*sNa model can generata™K™ spike-burst under the conditions (32,
33, 34, 35).

3.7. Smooth/V'-Curves. There are various ways to construct smabthcharacteristic curves for
both ions’ passive channels. A brute-force way is just toraximate the piecewise linear curves
fx, hna Dy polynomials of degree 3 and higher without decomposimegntinto their respective
conductive and diffusive channels. Here instead we desariother systematic and direct way.
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Take theN-shaped curved = fx(V') for example. It is simpler and more direct to specify
instead the derivativgx'(V') of the curve. Lety,,d,,v; < vy be the same parameters as above
and assume the diffusive dominatiorjin, vs]. Letv,, = % be the middle point of the diffusive
range. Afx’ (V') similar to the derivative of the piecewise linear curvesfas the following:

(i) V = vy, v, are the only critical pointfk’(v;) = fk'(v2) = 0.
(i) Diffusion dominates the middle range,, v-], with d,, + ¢, < 0 being the com-
bined maximal diffusive coefficientfx’(v,,) = d, + g-

(iii) Electromagnetic force dominates the range outsidgittterval[v;, vo] with g,

being the saturated conductance:sup  fx'(V) = g, > 0.
—oco<V <400

It is straightforward to check that the following form séts these conditions:

gt (V= u)(V )

(2252)2 4 BBl (V — 0 )2

f&'(V)

Integrating the derivative gives the function

i) = [ o

_ V_Um 1 Um : Uy — U1 Ik
=g V—|—du[tan17+tan — |, with u = .
K K /0 L 2 |9 + d|

which is a canonical decomposition by definifgV') = fko(V) + fx.a(V) with fx (V) = ¢,V

ande7d(V) = fK(V) — fK7e(V).
A function form for hy, is similarly constructed from its derivative,

e + 2| = i) — i)
hna (1) = —2 dNT L ’
(252)? + (T — i )?

INa

whereg,, + d,, > 0 (equivalent tol/g,, + 1/d,, < 0) andi,, = (i1 + i2)/2. Both fx andhx,
are listed in Table 3.

In fact, this is a general technique that can be used to genthi@ continuous piecewise linear
IV-curves. For example, for the continuous piecewise lineactional/ = fx (1), its derivative
at points other than the critical points, v, is

fK'(V)=g,+d (v <V < ).

Imposing the continuity ofk at the critical points to the integrgk (V') = fov fx'(v)dv results in
the functional we have been using.

Note that the configuration conditions (a,b,c,d) of the ey subsection are sufficient for
spike-burst generation for the models with the piecewisedi/V -curves. However, they are not
sufficient enough for the smooflV -curves because unlike the linear case the critical poirttsso
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Figure 12: (a) Circuit diagram for the pKsNa’, type models whose equations are given by
Eq.(36). (b) The same parameter values as Fig.10 except for= 0.1, v, = 0.05, A\, =
0.05, A\, = 0.1 for EQ.(36).

smooth curves will shift when combined in parallel. We wilsE the precise strategic control on
the locations of the new critical points. However, thesedttions do give a good approximation
of the new points that can lead us to the right nullcline camrigjons after a few trials-and-errors.
Fig.11(a) is a Na-K* spike-burst simulation with the smooffy'-curves from Table 3.

3.8. pNa_ sk Model Simulation. A pNalsk* model is exactly the same as thefsfNal model
except that K’'s passive channel is a serial conductor-diffusor and 'sipassive channel is a
parallel conductor-diffusor as illustrated in Fig.3(Hhd polarities of the passive resting potentials
and the directionalities of the ion pumps remain the samee Syfstem of equations is listed in
Table 2 with continuous piecewise linear functionals fothbions’ passive channels as listed in
Table 3. Fig.11(b) is a K-Na* spike-burst simulation of the pNaK* model.

3.9. pdesNaid Model Simulation. With disjoint ion pumps, the pump parameter valies A,
are not necessarily equal, nor are the parasitic resigtancey,.. The circuit equations corre-
sponding to Eq.(13) become instead as below

CVe' = —[Ina + fx(Vo — EK) + INa pump — 1K pump — Lext)

Ina pump, = )\NaINa pump(VC - nyaINa pump) (36)
Ik pump/ = A\ lx pump(VC + e I pump)

EINa/ =Vo — ENa - hNa(INa)-

Fig.12 shows a circuit diagram and a spike-burst simuldtothis type of models.

3.10. Termination of Action Potentials and Spike-Bursts byShutting Off lon Pumps. Fig.13
shows typical dynamics regarding spike-bursts when onleeoion pumps in a pKksNal model is
blocked. When the Napump is shut off, the model reduces to a‘@a model, and the bursts
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Figure 13: Nd-K* spike-bursts. The same parameter values as Fig.10 for&q(g) The Na-
pump is shut off with initial conditionx, pump(0) = 0 but Ik pump(0) > 0. Spike-bursts persist.
(b) The K -pump is shut off with/k ,ump(0) = 0 but Ina pump(0) > 0. Spike-bursts terminate.

persist. Thus, the Napump is not necessary. On the other hand, when th@#mp is rendered
inoperable, all bursts are turned off, a typical outcome K gNai models. Similar results are
found from pNg sK* models and pK sNa’", models. In terms of cellular metabolism, neuron’s
electrical pulses and spikes can be completely turned afhiogting down the intracellular ATPass.

Proposition 8. To generate action potentials and spike-bursts, it is nemgsto have one ion
species to have parallel electro and diffusive channelstartthve an ion pump at the same time.

4. DiscussionsWe have described here a reductionistic approach to casiincuit models for
neurons. Basic components include serial conductorsiiffs; parallel conductor-diffusors, and
ion pumps. A minimal number of model parameters are summiiz Table 4. The parameter
list alone suggests that if the models are good approximstio real neurons then most of their
structures but their passive resting potentials and theiges of diffusion domination follow from
circuit imperatives. The question of why those exceptiggabmeters become what they are is
perhaps a question of evolution which certainly cannot likestsed here within the framework of
circuitry.

Circuit properties of our pXsY models can be summarized ammalized as follows.

1. For cX, models, wherez = + (resp. —) if X* is positive (resp. negative)
charged, andv = + (resp. —) if X# is pumped outward (resp. inward), the
active resting potentiablx and the passive resting potentiat must satisfy

0 < zaFEx < zaFx

provided thatx exists.
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Table 4: Circuit Parameters

9,

g, +d,

9,d,/(g, +d,)

Ey

Ey

(v; + Ey,vo + Ey)
(21, 72)

Vs

A

J

C

max. conductance of ion J

max. diffusion coefficient for parallel conductor-diffuso
max. diffusion coefficient for serial conductor-diffusors
passive resting potential

active resting potential witl'; = gjfimeJ

diffusion dominating voltage range for parallel channels
diffusion dominating current range for serial channels

ion pump resistance of ion J

ion pump coefficient of ion J in the unit a@f/ [ampere - Henry]

membrane capacitance

2. lon X’s passive resting potential is not stable in,ckodels but can be mea-
sured by the external curreft; when other ions’ currents are blocked and the
membrane potential is clamped at z&fg = 0.

3. The membrane resting potentlg), can be maintained at a fixed value in.oXY .
models but with different ion pump currents for X and Y.

4. Action potentials mediated by ion X can be generated inypXmodels only if
X’s diffusive channel can dominate all ions’ conductive ghals in parallel in a
finite voltage range. Moreover, X-mediated action potemkegpolarizes (starts)
most probably at a negative membrane potential.

5. Spike-bursts can be generated inysX, models only if ion X’s diffusive chan-
nel can dominate all ions’ conductive channels in paratheldurst generation
and ion Y’s diffusive channel can dominate its conductivarutel or other ion’s
conductive channel in series for spike generation.

6. Action potentials and spike-bursts may not be generatpijsY. models which
do not have an ion pump or only have an inoperable ion pumpfoki

The model, the analysis, and the result can be extended iy mays. In one aspect, the
conductive branches need not symmetrically have the samx@mma conductance for thé&-
curve, nor for theN-curve. Also, thelV-characteristic curves for passive channels need not be
either piecewise linear or smooth, but can be a mixture ofi.odh another aspect, additional
ion channels can be incorporated into the minimal two-iomsl@s as pointed out in Sec.2. In
fact, all the simulations above were actually done for aesponding pXsYcGl model with
9o, = 0.01, d., = 0, Ecy = —0.6, but the smallness in magnitude of the conductance andsibifiu
parameters did not qualitatively change the dynamics oinirémal models. It is conceivable
that some nontrivial extensions may alter the minimal cledstructures described here in some
fundamental ways that are not yet understood. We also natenibst of the results on action

37



potential and spike-burst generations have been obtaoratié pK'sNal models. Similar work
is yet to be done for the pNaK*™ models.

We have categorized some basic dynamical behaviors of thelsias summarized above. Yet
there are some more features left unexplored. The existgihagunction-fold point leading to
a period-doubling cascade ([7, 8]), the existence of Skolis orbit ([9]), and the existence of
a chaotic attractor with a canard point ([11], but for a srhagthysteresis only) are distinctive
possibilities for our models because our models and the ébath models cited in the references
share a fundamentally similar geometry for the said phemamiéowever, these features may not
be as prominent as the three kinds analyzed above for ngurahdcs.

We have given a general yet design-specific method to cartsteuron models. Given the
multitude, flexibility, and robustness in choosing the igedes in a model, the serial/parallel
configurations of the ion channels, the individual shapethef /-characteristics of the passive
ion channels, the functional characteristics of ion puraps, the parameter values, one should be
able to use our method to customize a model to fit a particype of neurons.

We anticipate little difficulty to implement the models iratesircuits. This is especially true
for circuit Fig.3(d) with a linear inductor with constantnctancel. (The simulations of Fig.10
and Fig.11 demonstrated thiatis approximately constant, implying that= 1/(\Is) can be fixed
at a constant as well.) Electronic devices withhysteresis andv-hysteresis are almost as com-
mon as other elementary components of resistors, indyetodscapacitors. For example, a tunnel
diode has aV-shaped V' -characteristic like our parallel conductor-diffusor.€Timiddle negative
resistive region of a tunnel diode is the result of quantunméling by which electrons can cross
an energy barrier because the probability, by means of #wtreh’s wave function, to find them
in the classically forbidden side is substantial. 4tharacteristic can be constructed by flipping
and rotating anV-characteristic, and the necessary operations can bg @agillemented by el-
ementary circuit networks ([4]). The only non-standard poment for our circuit models is the
one-way ion pump whose characteristic is given by (1). Batdlshould be no practical difficulty
to realize the characteristic by some circuit network. lyastimensionalizing the variables and
parameters is straightforward. For example, if we wat to measure the voltagé- andms for
the time, then the capacitan€eis measured in farad if the current is measured in Ampere, or
if the current is measured im A, etc. In other words, we can set the variables to any dimassio
we want and then scale the parameter dimensions accordingly

Acknowledgement: Special thanks to Jack Hale and Shui-Nee Chow who believdtkiproject
in its inception when the outcome was nothing but uncertain.
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