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Abstract: Electronic circuit analogues of biological membranes are presented by which the

passive channels are modeled as parallel and serial combinations of resistors (Ohmic conduc-

tors) and diffusors (negative nonOhmic conductors), and the active channels of the one-way

ion pumps are modeled as one-way inductors. We show that our simple analogue models

can reproduce known phenomena of membrane excitability such as the generation of action-

potentials and spike-bursts.

1. Introduction. The field of mathematical modeling of neurons has seen a tremendous growth

([12, 20, 19, 3, 18, 16]) since the landmark work, [17], of Hodgkin and Huxley on the electro-

physiology of neurons. Basic mathematics of these Hodgkin-Huxley (HH) type models are well-

understood today ([22]). However, they are only phenomenological beyond their usage of Kirch-

hoff’s Current Law for the transmembrane currents of all ions ([1]). By their approach, mechanis-

tically different current channels of each ion species are aggregated into one conductance-based

current. A given ion’s distinct pathways through the cell wall can be of the following kinds: the

passive channel due to the electromagnetic force of all ions, the passive channel due to the diffusive

force against its own concentration gradient across the cell membrane, and the active channel from

the ion’s one-way ion pump if any. Although the electrophysiological narratives of these channels

have been widely known for some time ([15]), no one has attempted to model them individually as

elementary circuit elements in a whole circuit synthesis. As a result they are not readily accessible

to elementary circuit implementation.

The purpose of this paper is to fill this literature gap. We will start with a generic conceptual

model of neurons, deconstruct each ion current into its passive (electro and diffusive) currents

and its active (ion pump) current, and then model each current according to its hypothesizedIV -

characteristic. We will demonstrate that our newly synthesized models recover many well-known

neural dynamics, including action potentials and spike-bursts.

1.1. The Conceptual Model.Our proposed circuit models are not for a specific type of neurons

per sebut rather for a conceptual embodiment of circuit principles derived from neurophysiology.

The models are minimalistic in the sense that they contains sharply contrasting types of ion species

with little duplication of each other’s functionalities. But the method is sufficiently general to

allow any number of ion species with or without such duplications. For the most part of our

exposition, however, we will use the sodium Na+ ion and the potassium K+ ion to illustrate the

general methodology. Specifically, Fig.1 is an illustration for one type of the models that will be

used as a prototypical example throughout the paper. Any inclusion from, say, Cl− or Ca2+ will at

least duplicate one element of such a minimalistic model. The Na+-K+ combination shown here
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Figure 1: (a) A conceptual model of generic neurons with passive serial Na+ channels, passive

parallel K+ channels, and an active Na+-K+ ion pump. (b) A circuit model of the conceptual

neuron model. (c) TheIV -characteristics of circuit elements modeling both the passive and the

active channels. The pump characteristic of a particular ion is represented by an inductor symbol

with an arrow, meaning the “one-way” flow of the pumped ion.

can be substituted or modified by the inclusion of other ion species such as a Na+-Ca2+ pair or a

Na+-K+-Cl− triplet as long as they are permitted by neurophysiology.

The conceptual model consists of a set of assumptions on passive and active channels. Passive

channels are of two kinds: theelectro currentdriven by the electromagnetic force fromall charged

ions; thediffusive currentresulted from the concentration-induced transmembrane diffusion of a

particular ion species. The first type is equivalent to a resister whose current can be thought as

being passive in the presence of the electro field. The diffusive kind can also be thought as being

passive because it is not facilitated by any conversion of biochemical energy of the cell. As we

will see shortly that most nonlinear resisters can beequivalentlydecomposed into either a parallel

or a serial combination of an Ohmic resister (linear with a positive slope) and a nonlinear resister

with negative slopes (a diffusor). Symmetrically, such a resister can also be decomposed into a

parallel or serial combination of a nonlinear resister withpositive slopes and a linear diffusor (with

a negative slope). Because of the first kind equivalence, onecan also think from now on that

a conductor is always Ohmic (linear with a positive conductance) and that a diffusor is always
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nonlinear with negative resistances.

In contrast, anactive currentis due to the transmembrane transport of an ion species from an

energy-converting, i.e., ATP-to-ADP (ATPase), ion pump, hence referred to as an active channel.

The assumptions below are made for some conceptual and general properties of these channels,

for which an illustration is given by Fig.1. The conceptual model should apply to membranes with

the depicted structure, with small nerve fibers as an examplewhere ion pump can play functional

role in excitability.

Circuit Model – Generic Assumptions:

(a) Each electro currentIe through a channel is characterized by a monotonically

increasingfunctionIe = φ(Ve) of the voltageVe across the channel. The chan-

nel or any device or structure whose current-voltage relation is characterized by

such a monotonically increasingIV -characteristic curve is called aconductor

(following a convention in neurophysiology although it is called a resistor in the

general field of circuit).

(b) Each diffusive currentId through a channel is characterized by a monotonically

non-increasingfunction Id = φ(Vd) of the voltageVd across the channel. The

channel or any device or structure whose current-voltage relation is characterized

by a monotonically decreasingIV -characteristic curve is called adiffusor.

(c) Each active current through a channel has a fixed current direction and the time

rate of change of the current is proportional to the product of the current and the

voltage across the channel. The channel or device or structure whose current-

voltage relation satisfies this condition is called apump.

(d) All ion channels are resistive to electromagnetic force, large or small.

(e) Unless assumed otherwise, all active and passive currents between different ion

species are in parallel across the cell membrane.

(f) The impermeable bilipid cell membrane is modeled as a capacitor.

We note that by the term channel it can mean the whole, or a constitutive part, or just an intrinsic

property of a biophysical structure such as a voltage or protein mediated ion gate. Hypothesis (a)

is the standard Ohm’s law, but it can be considered to model the opening and closing of an ion

species’ voltage gate — the higher the voltage, the more openings of the gate, and the greater the

electro current from all ions. It is probably a less mechanistic but definitely a more circuit-direct

approach than that of Hodgkin-Huxley’s by which the openingprobability of the gate is modeled

as a passive time evolution.

Hypothesis (b) is justified by invoking the diffusion principle that ions have the propensity to

move against their concentration gradient. For ions the electrical effect of the diffusion is exactly

opposite the electromagnetic force: A net extracellular concentration of a cation (positive charged
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ion) generates an higher electromagnetic potential on the outside, giving rise to an outward di-

rection for the electro current. But the higher external concentration of the cation generates a

diffusion-induced inward current, giving rise to the non-increasingIV -characteristic of a diffusor,

see Fig.1(c). More specifically, letq be the net charge outside the cell, or equivalently the gradient

of the charge from the inside to the outside. Since diffusionforce moves in the opposite direction of

the gradient, the corresponding time change of the charge,Id = dq
dt

, is proportional to the negative

gradient−q, that is,Id = −kq. SinceV = q/C defines the voltage difference across the cell wall,

we haveId = −kCV , showing the negative characteristic of a diffusor. More realistically, the

linear dependence,Id = −kq, should be replaced by a nonlinear dependence which qualitatively

is similar to an odd function,f , that isf(V )V ≤ 0. We will be more specific about the diffusor’s

nonlinearity later. We also note that a particularIV -curve would be a phenomenological fit to the

analogous opening and closing of the diffusive type of ion gates.

Note that because voltage potential can be set against an arbitrary basal constant, we can require

without loss of generality that theIV -curves for both conductors and diffusors to go through the

origin for simplicity and definitiveness:

φ(0) = 0.

However, a particular passive channel may have a non-zero resting potential,Ē, which is modeled

as a battery for voltage source, and the combinedIV -characteristic curves will differ only by an

Ē-amount translation along the voltage variable. (More specific descriptions later.) We also note

that diffusive and drift parts of electro-diffusion may go through the same ion channels under

the influence of transmembrane electric field, but the conceptual models distinguishes the two for

mathematical analysis.

Hypothesis (c) is less immediately apparent, but can be justified at least conceptually as fol-

lows. Unlike passive ion channels, which have topologically straightforward pathways in most

cases, ion pumps have a more involved and convoluted geometry [21]. In particular, we can as-

sume that the ions wind through the pump in a helical path [13]. In other words, the energy

exchange between ATP and the pump sends the ions through a spiral path much like electrons

moving through a coiled wire. However, unlike a coiled wire inductor, individual ion current has a

fixed direction with Na+ going out and K+ going in. The simplest functional form for an ion pump

that captures both its inductor-like feature and its one-way directionality is the following

A′ = λAV (1)

whereV is the voltage across the pump,A is the particular ion’s active current through the pump,

andλ is referred to as thepump coefficient, see Fig.1(c). Proportionality between the derivative

of the current and the voltage models the pump as an inductor.Proportionality betweenA′ andA

preserves the directionality ofA, that is,A(0) > 0 if and only if A(t) > 0 for all t. In addition, the

smallerA(t) is, the fewer ions are available there for transportation, and hence the smaller the rate

of current change,A′(t), in magnitude becomes. In other words, this model of ion pumps can be
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considered as a nonlinear inductor mediated by its own current for fixed directionality and strength.

More importantly, the pump characteristic provides with the only direct link to energy exchange:

the rate of change of the pump current is proportional to the power,AV , of the pump. (For a more

elaborative approach, one can replace the linear factorA by a functional with saturation, such as

a Monod function A
1+bA

or some variants of it.) We should note that our current understanding is

that electrogenic pumps have kinetics with no inductance, but the conceptual model requires this

one-way inductance for excitability.

Hypothesis (d) is certainly true wherever electromagneticfield is present. A passive conductor

automatically takes it into consideration. A passive diffusor does not have to have this because

its IV -curve can be assumed to have already absorbed such a resistance implicitly. For the Na+-

K+ ion pump, we only need to wire such a parasitic resistor in series to fulfill this hypothesis,

see Fig.1(b). The resistance,γ > 0, will be assumed small for the paper. Hypotheses (e) is a

provisional assumption for this paper. It can be modified to allow different ions to go through

a same physical channel, see remarks on Hypothesis (2) of thespecific pK+
−sNa++ and pNa++sK+

−

models below. Hypotheses (f) is a standard assumption on electrophysiology of neurons.

1.2. Circuit Symbols and Terminology.For this paper, we will take the outward direction as the

default current direction for all passive channels. One exception to this convention is for active

currents whose directions are fixed and thus whose fixed directions are the default and the true

directions, see Fig.1(b). Another exception is for the external current (such as synaptic currents

or experimental controls with or without voltage clamp),Iext, whose default direction is chosen

inward to the cell. We will use standard circuit symbols wherever apply and follow them closely

when introducing new ones.

Mimicking the contour plot for mass concentration, the concentric-circle symbol, see Fig.1(b,c),

is used for diffusors. Here is a brief explanation for the choice. For a function of two variables

u(x, y), say the concentration of an ion species outside the cell wall, a local maximum occurs

usually at a point,(x0, y0). For any constantc smaller than the maximum valueu(x0, y0), the

equationu(x, y) = c usually defines a closed curve in thexy-plane, with circle being the simplest

example. Moreover, the gradient∇u(x, y) is perpendicular to its contour curveu(x, y) = c at the

point(x, y), and points towards the increasing direction of the contourvaluec. Diffusion moves in

exactly the opposite direction of the gradient, from high tolow concentration. It is because of this

connection of nested contour curves to anti-gradient diffusion that the concentric-circle is chosen

for the diffusor symbol.

In circuitry, a device having a decreasingIV -characteristics is called a negative resistor. In

practice, it usually comes with both positive and negative resistive regions, such as the combined

conductors and diffusors in series and parallel as illustrated in Fig.2. Electrical devices with a

purely decreasingIV -curve are not usually encountered in practice and hence have not acquired a

symbol in the literature. We use it here only to emphasize andto contrast the role of transmembrane

diffusion of ions in comparison to their electromagnetic effect.

The conventional symbol for a nonlinear (non-Ohmic) resistor with a non-monotonicIV -curve
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such as anS-shaped orN-shaped curve consists of a slanted arrow over a linear resistor symbol.

We will not use it here for our conductor-diffusor combinations in series or in parallel because

it has been used exclusively for the HH type circuit models ofneurons that combines both the

passive andthe activecurrents as one conductance-based channel. For this main reason, the serial

aggregation and the parallel aggregation each acquires a slightly modified symbol to the European

symbol of resistors, shown in Figs.2, 3. The symbol for aserial conductor-diffusoris a vertical box

circumscribing a letterS because the serial connectivity always results in anIV -curve withV as a

function ofI, V = h(I), by Kirchhoff’s Voltage Law, and usually in the shape of a letter S when

it becomes non-monotonic. Similarly, the symbol for aparallel conductor-diffusoris a horizontal

box circumscribing a letterN because the parallel connectivity always results in anIV -curve with

I as a function ofV , I = f(V ), by Kirchhoff’s Current Law, and usually in the shape of a letterN

when it becomes non-monotonic. We note that theIV -characteristic of a serial conductor-diffusor

and a parallel conductor-diffusor when both are again connected in parallel can be monotonic or

non-monotonic, a function ofV or a function ofI or neither, but most likely a curve implicitly

defined by an equationF (V, I) = 0. As a result, it is represented by a square circumscribing a

diamond symbolizing the typical fact that it may not be a function of V or I.

As mentioned earlier that once a common reference potentialis set, a given ion’s passive chan-

nel can have apassiveresting potential, denoted bȳEJ for ion J, which is defined by the equation

F (ĒJ, 0) = 0 if the equationF (V, I) = 0 defines the completeIV -characteristic, whether or not it

defines a function ofV , or I, or neither. However, when all ion species other than ion J are blocked

to cross the cell membrane, the dynamics of ion J may settle down to an equilibrium state. By

definition, the equilibrium state’s membrane potential component is called themembraneresting

potential or theactiveresting potential, denoted byEJ, if the corresponding active (pump) current

AJ > 0 is not zero. We will see later that the passive resting potential, ĒJ, can be alternatively

defined to correspond to an equilibrium state at whichAJ = 0.

The symbol for ion pumps is similar to inductors because of their functional similarity but

with an arrow for their one-way directionality. A standard linear inductor symbol with a slanted

double-arrow stands for a variable inductor.

Recall that theIV -curve for a conductor is increasing or nondecreasing and the IV -curve for

a diffusor is decreasing or non-increasing. However, this is a rather imprecise definition. Without

further constraint, even a linear conductorI = gV can be artificially decomposed into a conductor

and a diffusor in parallel:

gV = (g − d)V + dV

for any d < 0. Thus, to avoid such arbitrary cancelation between conductors and diffusors of

equal strength, we will follow a normalizing rule to decompose anIV -curve into either alinear

conductor, or alinear conductor and anonlineardiffusor with zero maximal diffusion coefficient.

This form of decomposition is calledcanonical.

More precisely, letI = f(V ) be anIV -characteristic which we want to decompose into a

canonical form in parallel. Letg = max{maxV f ′(V ), 0} ≥ 0 (with the maximum taken perhaps
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over some finite effective range). Then we have by Kirchhoff’s Current Law,

I = f(V ) = gV + [f(V ) − gV ] := fe(V ) + fd(V ),

for whichfd(V ) = f(V )−gV is non-increasing since its maximal diffusion coefficient is given by

max fd
′(V ) = max(f ′(V )− g) = 0, showing the decomposition is canonical. (Here by definition,

the rate of changef ′(V ) is thediffusion coefficientif f ′(V ) ≤ 0 and theconductanceif f ′(V ) ≥ 0.)

We can further write the diffusorIV -curve as

[f(V ) − gV ] = d
f(V ) − gV

d
, if d = min{min

V
[f ′(V ) − g], 0} ≤ 0,

with d being the maximal diffusion coefficient in magnitude. Similarly, if V = h(I) is theIV -

curve, then by Kirchhoff’s Voltage Law, the canonical decomposition in series is

V = h(I) =
1

g
I +

1

d
[d(h(I) −

1

g
I)] := he(I) + hd(I),

where1/g = max{maxI h′(I), 0} and1/d = min{minI [h
′(I) − 1/g], 0}. Note that parameters

g andd are the necessary minimum to determined a serial or parallelconductor-diffusor; and that

the parallel (resp. serial)IV -curve is nondecreasing if and only ifg + d ≥ 0 (resp.1/g + 1/d ≥ 0

or g + d ≤ 0). As an illustration of the procedure, one can check that thecanonical form for a

linear conductorI = gV is itself.

Note that the canonical decomposition has a symmetric form by exchanging the roles of con-

ductors and diffusors: to decompose anIV -characteristic into either alinear diffusor, or alinear

diffusor and anonlinearconductor with zero minimal conductance. A given conductor-diffusor

will be decomposed in one of the two forms but not necessarilyin both forms as in the case that a

linear conductorV = gI can only have the canonical decomposition and a linear diffusorV = dI

can only have the opposite. However, we will explain later that the canonical decomposition is

more probable for ions’ passive channels than its symmetriccounterpart because of the fact that

the electromagnetic force governs all ions while a particular ion’s diffusive current depends only

on that particular ion’s concentration gradient. Nevertheless, despite such differences in decom-

position of a nonlinearIV -characteristic when both decompositions apply, all circuit properties

derived from the characteristic will remain the same because of the circuit equivalence guaranteed

by Kirchhoff’s Laws. Thus, unless stated otherwise, allIV -characteristic decompositions dis-

cussed from now on are canonical. Note that the canonical conductors are always Ohmic (linear)

while the canonical diffusors, if not zero already, are always non-Ohmic (nonlinear with negative

conductance).

The cell membrane or a channel is said todepolarizeif its voltage moves towardV = 0. If

the voltage moves away fromV = 0 the membrane or the channel is said tohyperpolarize. Thus,

a negative increase or a positive decrease in a voltage is a depolarization of the voltage, and in

contrast, a negative decrease or a positive increase is an hyperpolarization of the voltage.

1.3. Model Classification and Result Summary.We will adopt a notation convention for our

neural models. Take for example, the model pK+
−sNa++ to be discussed below stands for the fol-

lowing. The lower case “p” before K+ means that the passive channels of K+’s are inparallel
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and that K+’s diffusive channel can be dominating in some effective region of the dynamical states

so that the combinedIV -characteristic of the parallel conductor-diffusor is notmonotonic in the

region. Similarly, the lower case “s” means the same except that the passive channels of Na+’s

are inseries. The subscript is used for ion pump information. In this case, for example, pK+−sNa++
symbolizes the assumption that K+ is pumpedinto the cell while Na+ is pumpedoutsidethe cell

by the Na+-K+ ion pump. On the other hand, a subscript “0” means the absenceof an ion pump for

its designated ion. So, model pK+
0 sNa++ denotes the same pK+

−sNa++ model except for the assump-

tion that the neuron does not have a K+ ion pump. Also, we will use subscripts−d, +d, such as

in pK+
−dsNa++d, to denote ion pumps not combined in structure but rather operating independently

on their own. A circuit diagram for such models, slightly different from Fig.1 in the ion pump

structure, will be given near the end of the paper.

As it will be shown later, the direction of an ion pump will fix the polarity of the ion’s passive

resting potentialif the ion species’ active resting potential exists. More specifically, if Na+ (resp.

K+) has an active (membrane) resting potential (which is usually the case), then the assumption that

Na+ (resp. K+) is pumped outward (resp. inward) implies̄ENa > ENa > 0 (resp.ĒK < EK < 0).

That is, the polarities of both passive and active resting potentials are fixed to be the same by the

directionality of the ion pumps.

This basic scheme can be extended in a few ways. In one extension, for example, if both

passive and active channels of the Na+ ion are blocked, the reduced system can be considered as a

pK+
− model. In another extension, for example, if in the effective region of the neuron’s dynamical

states, Na+’s diffusion does not dominate but its ion pump is nonetheless effective, we can use

pK+
−cNa+

+ to denote the model in that part of the effective region, withthe lower case “c” for the

conductivenature (i.e. monotonically increasing) of that part of itsIV -characteristic. Furthermore,

the notation for the corresponding serial conductor-diffusor can be reduced to a vertical box with

a diagonal line from the lower-left corner to the upper-right corner rather than a circumscribed

letter “S”. Similar notation and symbol can be extended to parallel conductor-diffusors without

diffusion domination. In another extension, more ion species can be included. For example, all

our simulations of this paper were actually done for a pK+
−sNa++cCl−0 (with g

Cl
= 0.01, d

Cl
=

0, ĒCl = −0.6), which, to become apparent later, is equivalent to a minimal pK+
−sNa++ model.

We remark that a pK+−pNa+
+ or cK+

−pNa+
+ model may fit well to the giant squid axon, but not

all models from the taxonomy can necessarily find their neurophysiological counterparts. Also, it

will become clear later that from the viewpoint of equivalent circuit, a pK+
−cNa+

0 model is usually

equivalent to a pK+− model, but a pK+−cNa+
+ or pK+

−sNa+0 model may not be so in general because

of the ion pump inclusion for the former and a possibleS-nonlinearity of the Na+ion for the latter.

In addition, the taxonomy is order independent: xXyY and yYxX denotes the same model.

There will be three types of neural dynamics considered: resting membrane potentials, mem-

brane action potentials (pulses or spikes), and spike-bursts. Resting potentials are stable equilib-

rium states in some membrane potential and current ranges where diffusion does not dominate

from any ion species. In other words, stable equilibrium states are prominent features of cX mod-
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Table 1: Dynamical Features

Models Resting Potentials Action Potentials Spike-Bursts

cX X x x

sX X – x

sXcY X – x

pX X X x

pXcY X X x

pXsY X X X

els. On the other hand, action potentials and spike-bursts are oscillatory states and their generations

require diffusion domination of some ion species in some finite range of the effective range of the

oscillations. More specifically, action potentials require diffusion domination from only one ion

species over its parallel conductive channel while spike-bursts require diffusion domination from

at least two ion species, one over its parallel conductive channel and another over its serial con-

ductive channel. Hence, for the purpose of distinction, a K+-mediated action potentialis the result

of K+’s diffusion domination in parallel, while a Na+-mediated action potential is the result of

Na+’s diffusion domination in parallel. That is, action potentials is the prominent features of pX

and pXcY models. Similarly, a Na+-K+ spike-burstis the result of a K+-mediated burst of Na+-

mediated spikes because of K+’s diffusion domination in parallel for the burst and Na+’s diffusion

domination in series for the spikes, respectively, the prominent feature of a pK+−sNa++ model. Simi-

lar description applies to K+-Na+ spike-bursts for a pNa++sK+
− model. We note that an xX model is

a subsystem of an xXyY model and as a result the prominent dynamical behavior of the xX system

will be a feature, though not prominent one, of the larger xXyY system. Thus, one should expect

resting potential state, action potential phenomenon in a pXyY model. A summary of the result is

listed in Table 1, in which a “–” entry means “possible but unlikely”.

All numerical simulations will be done in this paper for dimensionless models because of two

reasons. One, numerical simulations tend to be more reliable when all variables and parameters

are restricted to a modest, dimensionless range. Two, the dimensionless models can always be

changed to dimensional ones by scaling the variables and parameters accordingly.

2.1. Specific Models.We will consider several specific models in the paper, all based on two

specific models introduced here in this section: the pK+
−sNa++ model and the pNa++sK+

− model,

respectively. Their specific channel structures are illustrated in Fig.2(a,b) and Fig.2(c,d), respec-

tively. We now introduce them in detail one at a time.

The pK+
−sNa+

+ Model:

1. K+’s conductive and diffusive currents go through separate parallel channels for

which an increase (hyperpolarization) in a positive voltage range,0 < v1 < v2,

of the diffusor triggers a negative drop (inward flow) of its current, see Fig.2(a).
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Figure 2: The pK+−sNa++ model: (a) AnN-shapedIV -curve (solid) for a parallel conductor-

diffusor of the passive K+’s channels. It is the vertical sum of the conductor and diffusor curves.

(b) An S-shapedIV -curve (solid) for a serial conductor-diffusor of the passive Na+’s channels.

It is the horizontal sum of the conductor and diffusor curves. Dash curves are the solid curves’

horizontal translations to their respective nonzero passive resting potentials, giving rise to the final

IV -curves for the respective passive channels. (c, d) The samedescription but for the pNa++sK+
−

model. Both models retain the same polarities for the passive resting potentials,̄ENa > 0, ĒK < 0.

2. Na+’s conductive and diffusive currents go through the same channel for which

an increase in an outward (positive) current range,0 < i1 < i2, of the diffusor

triggers a negative hyperpolarization (decrease) in the voltage, see Fig.2(b).

3. Both ion species have an active resting potential each, satisfying ENa > 0 and

EK < 0.

4. There is an ion pump for each ion species with the active Na+ current,INa pump,

going inward and the active K+ current,IK pump, going outward. Both share a

common structure in the sense that they have the same pump parameter values:

λ
K

= λ
Na

= λ and a small resistanceγ > 0.

These hypotheses are formulated mainly from a minimalisticprinciple. This includes: (i)

the ion species do not duplicate each others functions; (ii)a diffusor is included only if it can

fundamental change the combinedIV -characteristic to a non-monotonic curve; (iii) theS-shaped

and theN-shapedIV -characteristics overlap in an effective or common voltageregion; and (iv) the

polarities,ENa > 0 andEK < 0, for the active resting potentials are fixed, which are approximately

in the ranges of∼ 80 mV and∼ −90 mV, respectively. All alternative configurations that we have

checked have violated at least one of the four minimalistic criteria for the pK+
−sNa++ model above.

More detailed comments on the hypotheses follow below.

By Hypothesis 1 and Kirchhoff’s Current Law, the passive K+ currentIK is the sum of its

conductor current,IK,e, and its diffusor current,IK,d, with the same passive voltageVK across
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the conductor and the diffusor in parallel. Thus, theIV -characteristic curve for the parallel K+

conductor-diffusor (Fig.2(a)) is

IK = IK,e + IK,d = fK,e(VK) + fK,d(VK) := fK(VK) (2)

where functionsfK,e andfK,d define the individual monontoneIV -curves for the conductor and

diffusor, respectively. After adjusted for the passive resting potential (battery source)̄EK = VC −

VK, we have,

IK = fK(VC − ĒK). (3)

Throughout most of the paper, we will consider anN-shaped nonlinearity as shown in Fig.2(a),

which is the result of the diffusion domination of K+ in the range[v2 + ĒK, v2 + ĒK]. This

hypothesis can be interpreted like this. When the membrane potential lies in this range, it is mainly

due to a correspondingly uneven distribution of K+ across the cell wall, which in turn triggers the

diffusion-driven flow of the ion. However, when the membranepotential lies outside the range, its

characteristic is mainly due to factors other than K+’s uneven distribution across the membrane.

More specifically, all conductor-diffusor decompositionsof Fig.2 are canonical. A justification

of this choice is based on a key distinction between the electro force and the diffusive force. The

former is defined by all ion species, while the latter is defined only by a particular ion which is a

constituent part of the former. Because of a fixed amount of that given ion species, its diffusive

effect occupies only a subrange of the whole electro range. This gives a conceptual justifica-

tion for the ramp-like functional form for the diffusor characteristic. That is, outside the ramping

voltage range, a given ion’s biased concentration on one side of the cell wall approaches an all-

or-nothing saturation, inducing an approximately constant diffusive current flux through the mem-

brane. Within the ramping range, however, the diffusive current is more or less in proportion to the

membrane potential. The ramp-like functional form can alsobe justified even if the constitutive

ion consists of the majority of all ions. The reason is that anion’s diffusive movement is limited by

the maximal porosity of the cell membrane that in turn definesthe maximal flow of the ion because

of its diffusion. Again, the requirementφ(0) = 0 for the characteristics is set against some basal

references collected into the passive resting potential parametersĒJ.

It will become clear later that action potential depolarization from rest cannot be easily gener-

ated without theN-nonlinearity. The left and right branches of anN-curve have positive slopes,

corresponding to the voltage region where the conductive current dominates the diffusive current.

They are referred to as theconductive branchesor theconductor dominating branches. Although

it is possible for both branches to intersect theV -axis in a so-called bistable configuration, we

will consider for most of the exposition the case of a unique intersection by only one of the two

branches, for which the branch that intersects theV -axis is called theprimary branch. We will

see later that the intersection is the passive resting potential ĒK. The middle branch is called the

diffusive branchor thediffusor dominating branch.

By Hypothesis 2 and Kirchhoff’s Voltage Law, the passive Na+ voltageVNa is the sum of its

conductive voltage,VNa,e, and its diffusive voltage,VNa,d, with the same passive Na+ currentINa
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going through the conductor and the diffusor in series. TheIV -characteristic curve for the serial

Na+ conductor-diffusor (Fig.2(b)) is

VNa = VNa,e + VNa,d = hNa,e(INa) + hNa,d(INa) := hNa(INa), (4)

where functionshNa,e andhNa,d define the individual monotonicIV -curves for the conductor and

diffusor, respectively. After adjusted for the passive resting potential (battery source)̄ENa, we have

VC = VNa + ĒNa = hNa(INa) + ĒNa. (5)

Throughout most of the paper, we will consider anS-shaped nonlinearity as shown in Fig.2(b).

Again, a similar interpretation can be made for the diffusion domination of Na+ in the current

range[i1, i2] as that of K+ in the voltage range[v1 + ĒK, v2 + ĒK] from Hypothesis 1.

It turns out from our analysis of our minimalistic models that the models will not produce spike-

bursts without anS-shapedIV -characteristic of one ion species or some combination of different

ion species. One the other hand, anS-shaped characteristic can only be generated from a conductor

and a diffusor in series, but not in parallel. Therefore, it is the spike-burst phenomenon and the

circuit imperative that imply the serial structure of a conductive current and a diffusive current.

It is not important whether the conductive current and the diffusive current are from a single ion

species or from different ion species to share a same physical channel. It matters only that the

serial combination produces such anS-shaped characteristic. However, in the case that a different

ion species (such as K+, or Ca2+, or Cl−, or a combination thereof) is involved, this hypothesis

can be generalized to have Na+’s conductivecurrent and that other ion’sdiffusivecurrent, in part

or whole, to go through the same channel, and the same resultsto be obtained will remain true.

In other words, assuming the serial channel sharing for Na+ of this model and for K+ of the next

model is simply a sufficient way to guarantee such a necessarycondition for spike-bursts. As we

will show later that this hypothesis is not needed for the existence of resting potentials, passive or

active, nor for the generation of action potentials.

Similar terminology applies to theS-nonlinearity. Specifically, the top and bottom parts have

positive slopes, resulted from the conductor’s dominatingIV -characteristic in the respective cur-

rent ranges. They are referred to as theconductiveor conductor dominating branches. Of the two

branches, the branch that intersects theV -axis is referred to as theprimary branch or the primary

conductive branch. Again we will see later that the intersection is the passive resting potential

ĒNa. In contrast, the middle branch with negative slopes is referred to as thediffusive branchor

thediffusor dominating branch.

Hypothesis 3 was already commented above. Hypothesis 4 is a well-known property of most

neurons. We note that although there is a frequently-cited 3:2 stoichiometric exchange ratio for the

Na+-K+ ATPase, we do not tie the active currentsINa pump, IK pump to the same ratio, especially

not at a non-equilibrium state of the membrane potential. The exchanger certainly has an optimal

exchange ratio for each ATPase, but it does not have to operate at its optimal capability all the

time because one can envision a situation in which a severelydepleted extracellular concentration
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of K+ just cannot meet the maximal demand of 2 potassium ions for every exchange. The same

argument applies to Na+. This non-constant-exchange hypothesis for Na+-K+ ATPase is also the

basis to segregate the net ion pump currentIpump into theINa pump andIK pump currents:

Ipump = INa pump − IK pump.

Exchanging the roles of Na+ and K+ in the pK+
−sNa++ model with a few modifications results

in the pNa++sK+
− model below. More specifically, we have

The pNa+
+sK+

− Model:

(1) Na+’s electro and diffusive currents go through separate parallel channels for

which a depolarization (increase) in a negative voltage range,v1 < v2 < 0, of the

diffusor triggers a positive drop in its outward (positive)current, see Fig.2(c).

(2) K+’s electro and diffusive currents go through the same channel for which an

increase in an outward (positive) current range,0 < i1 < i2, of the diffusor

triggers a negative hyperpolarization (decrease) in its voltage, see Fig.2(d).

(3) Both ion species have an active resting potential each, satisfyingENa > 0 and

EK < 0.

(4) There is an ion pump for each ion species with the active Na+ current,INa pump,

going inward and the active K+ current,IK pump, going outward. Both share a

common structure in the sense that they have the same pump parameter values:

λ
K

= λ
Na

= λ and a small resistanceγ > 0.

In addition to the role reversal, there is a marked difference between these two models for Hy-

pothesis (1) in the diffusor-dominating voltage range: forthe pK+
−sNa++ model, the range satisfies

0 < v1 < v2 whereas for the pNa++sK+
− model, the range satisfiesv1 < v2 < 0, see Fig.2(a,c).

This specific range assumption for each model is based on the minimalistic criterion (iii) so that

the model’sS-characteristic and theN-characteristic can affect each other in a common and close

proximity possible. Hypothesis (2) remains the same from the previous model except for the role

exchange between the ions. On the other hand, Hypotheses (3,4) are identical for both models,

which are listed here for the completeness of the second model. Because of the symmetrical simi-

larities between the pK+−sNa++ model and the pNa++sK+
− model, detailed analysis from now on will

be given mainly to the pK+−sNa++ model. Note also, the depiction of neuromembrane of Fig.1 isin

fact for the pK+
−sNa++ model.

2.2. Equivalent Circuits. There are different but equivalent ways to represent the circuit model

Fig.1(b) depending on how individual channels are selectively grouped. The ones that will be used

and discussed in this paper are illustrated in Fig.3 for the pK+
−sNa++ model, but we remark that the

main equivalent circuit to be used for the analysis and simulation of the paper is that of Fig.3(b).
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Figure 3: Equivalent Circuits.

Except for Fig.3(f), not all analogous circuits for the pNa+
+sK+

− model are shown since they can be

derived similarly.

More specifically, Fig.3(a) is the same circuit as Fig.1(b) except that the passive electro and

diffusive K+ channels are grouped together and the optional external inward current or voltage

source is redrawn simply as another parallel channel.

Fig.3(b) is the same as (a) except that both ions’ passive channels are represented by a com-

bined conductor-diffusor in series (Eq.(5)) and a combinedconductor-diffusor in parallel (Eq.(3)),

respectively. And for most of the analysis and discussion, we will assume theS-nonlinearity and

theN-nonlinearity of Fig.2 for Na+’s IV -curve and K+’s IV -curve, respectively.

Circuit Fig.3(c) is the same circuit as (b) except that all passive channels are combined into one

super passive channel whoseIV -curve is defined by an equationFp(Vp, Ip) = 0 of Eq.(7). There

is no conceptual nor practical difficulty to construct such compositorialIV -curvesgeometrically

based Kirchhoff’s Voltage Law, see [4]. However, it seems not very practical to have a general

algorithm for the defining equations of theIV -curves of such equivalent conductors and diffusors

in arbitrary numbers. For example, it is rather straightforward to do so for the parallel combina-

tion of one serial-conductor-diffusor and one parallel-conductor-diffusor, which is the case here.

Specifically, by Kirchhoff’s Current Law,Ip = INa + IK. Also from IK = fK(VC − ĒK) we first

have

INa = Ip − IK = Ip − fK(VC − ĒK).
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Second, sinceVC − ĒNa = VNa = hNa(INa), we have

VC − ĒNa = hNa(Ip − fK(VC − ĒK)).

Rearrange this relation to have

F (VC, Ip) := VC − ĒNa − hNa(Ip − fK(VC − ĒK)) = 0.

This equation does not necessarily satisfyF (0, 0) = 0. As a result, we define thepassive resting

potential, Ēp, to be the solution of

F (Ēp, 0) = 0. (6)

Finally, becauseVC = Vp + Ēp we have theIV -curve’s defining equation

Fp(Vp, Ip) := F (Vp + Ēp, Ip) = Vp + Ēp − ĒNa − hNa(Ip − fK(Vp + Ēp − ĒK)) = 0. (7)

For the mathematical analysis to be carried out later, however, we will not use this equivalent form

because it is more convenient to use individual ions’IV -curves in their segregated forms as for the

cases of Figs.3(b,d). (But, a comparison simulation for a consistency check is given in Fig.10.)

Circuit Fig.3(d) is the same as Fig.3(b) except that the ion pump currents are combined into

one active current according to the following relation:
{

Ipump = INa pump − IK pump

IS = INa pump + IK pump

equivalently

{

INa pump = 1
2
(IS + Ipump)

IK pump = 1
2
(IS − Ipump)

(8)

whereIpump is the net active current through the ion pump andIS is the sum of absolute currents

exchanged by the ion pump. LetVA be the voltage across the pump corresponding to the outward

net currentIpump. SinceγIpump is the voltage across the resistive component of the pump andby

Kirchhoff’s Voltage Law,VC = VA + γIpump. Now from theIV -characteristic of the ion pump

Eq.(1), we have
{

INa pump
′ = λ

Na
INa pumpVA = λINa pump[VC − γIpump] = λINa pump[VC − γ(INa pump − IK pump)]

IK pump
′ = λ

K
IK pump[−VA] = λIK pump[−VC + γIpump] = λIK pump[−VC + γ(INa pump − IK pump)],

(9)

whereλ
Na

= λ
K

= λ by Hypothesis 4 of both models. The equivalent equations forIpump, IS are

{

Ipump
′ = λIS[VC − γIpump]

IS
′ = λIpump[VC − γIpump].

(10)

It is useful to note that we always haveIS > 0 and that the nontrivial part (Ipump 6= 0) of IS’s

nullcline is exactly the same asIpump’s nullcline,VC = γIpump. Furthermore, the equation forIS

is rather simple and it can be solved explicitly in terms of the net currentIpump as

IS(t) = IS(0) +

∫ t

0

λIpump(τ)[VC(τ) − γIpump(τ)] dτ. (11)
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As a result, the net active current satisfies

Ipump
′ =

1

L(t)
[VC − γIpump], with L(t) =

1

λ[IS(0) +
∫ t

0
λIpump(τ)[VC(τ) − γIpump(τ)] dτ ]

.

(12)

In other words, the parallel ion pumps from circuit Fig.3(b)are equivalent to a nonlinear inductor

of Fig.3(d) withL being the nonlinear inductance defined above. For the remainder of the paper,

we will use both circuit (b) and circuit (d) interchangeablydepending on whichever is simpler for

a particular piece of analysis or simulation.

Circuit Fig.3(e) is the same circuit as (a) except that all passive and active K+ channels are

combined into one K+ channel,IK = IK + IK pump, and all passive and active Na+ channels are

combined into one Na+ channel,INa = INa + INa pump, as conventionally done for all HH type

models. Here one uses instead the ions’ active resting potentials, ENa, EK, as the battery source

offsets for the congregated ion channels. The precise relationship between the active and passive

resting potentials will be derived later. We will not explore any quantitative comparison between

these two types of models further in this paper except to notethat it is not clear how to extract from

circuit (e) some of the properties to be derived in this paper.

Fig.3(f) is a circuit diagram for the pNa+
+sK+

− model. It is exactly the same as (a) except that

the passive Na+ channel is a parallel conductor-diffusor while the passiveK+ channel is a serial

conductor-diffusor.

Notice that the circuit diagram (b) and (f) each is in a one-to-one qualitative correspondence

to the pK+
−sNa++ model and the pNa++sK+

−, respectively. In other words, a circuit diagram can be

uniquely constructed qualitatively from a model taxon and vice versa.

2.3. Equivalent Circuits in Differential Equations. We now cast the circuits in terms of their

differential equations for simulation and analysis later.Because of the equivalence, a neuron model

can be qualitatively described by its model taxon, or its circuit diagram, or its system of differential

equations, with progressively greater details in description.

To begin with, all circuit models follow Kirchhoff’s Current Law for all transmembrane cur-

rents:

IC + INa + IK + INa pump − IK pump − Iext = 0,

for which, as noted earlier, the directions of the active currents are fixed, andIext is directed

intracellularly. With the capacitor relation

CVC
′(t) = IC

whereC is the membrane capacitance in a typical range ofC ∼ 1µF/cm2, the first differential

equation for all circuits is

CVC
′(t) = −[INa + IK + INa pump − IK pump − Iext].

The K+ passive current can be replaced by itsIV -curveIK = fK(VC − ĒK) from (3). But the

Na+ passive current cannot be solved from its non-invertible,S-shapedIV -curve (hysteresis),
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Table 2: Equivalent Differential Equations

Circuit Fig.3(c)



















CVC
′ = −[Ip + INa pump − IK pump − Iext]

INa pump
′ = λINa pump[VC − γ(INa pump − IK pump)]

IK pump
′ = λIK pump[−VC + γ(INa pump − IK pump)]

ǫI ′
p = Fp(VC − ĒP, Ip) = VC − ĒNa − hNa(Ip − fK(VC − ĒK))

Circuit Fig.3(d)



















CVC
′ = −[INa + fK(VC − ĒK) + Ipump − Iext]

Ipump
′ = 1

L
[VC − γIpump]

ǫINa
′ = VC − ĒNa − hNa(INa)

with L > 0 defined by (12)

Circuit Fig.3(f)

(The pNa++sK+
− Model)



















CVC
′ = −[fNa(VC − ĒNa) + IK + Ipump − Iext]

Ipump
′ = λIS[VC − γIpump]

IS
′ = λIpump[VC − γIpump]

ǫIK
′ = VC − ĒK − hK(IK).

VC − ĒNa = hNa(INa). SinceVC is not redundantly defined by the Na+ passive current, but rather

the other way around, theIV -relationship

FNa(VC − ĒNa, INa) := VC − ĒNa − hNa(INa) = 0

defines an ideal voltage-gated relationship for the passivecurrentINa. A standard and practical

way ([4]) to simulate and to approximate this idealIV -curve is to replace the algebraic equation

above by a singularly perturbed differential equation as below,

ǫINa
′ = FNa(VC − ĒNa, INa),

where0 < ǫ ≪ 1 is a sufficiently small parameter. More specifically, the positive sign (or lack of it)

in front of FNa is chosen so that the conductor-dominating branches of theIV -curve,VC − ĒNa =

hNa(INa), are attracting and the diffusor-dominating middle branchis repelling for this auxiliary

differential equation. It is useful to note that the nullcline, or theINa-nullcline, of this equation is

exactly the serial conductor-diffusorIV -curve of the passive Na+ channel. Now combining the

VC, INa equations and those for the active pumps (9), the system for circuit Fig.3(b) is


















CVC
′ = −[INa + fK(VC − ĒK) + INa pump − IK pump − Iext]

INa pump
′ = λINa pump[VC − γ(INa pump − IK pump)]

IK pump
′ = λIK pump[−VC + γ(INa pump − IK pump)]

ǫINa
′ = VC − ĒNa − hNa(INa).

(13)
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Figure 4: (a) Continuous and piecewise linearIV -curves for K+’s parallel conductor-diffusor. The

solid curve is the vertical sum of the dash curves. (b) Continuous and piecewiseIV -curves for

Na+’s serial conductor-diffusor. The solid curve is the horizontal sum of the dash curves. (c) An

equivalentIV -curve in bold solid when anS-shaped Na+ conductor-diffusorIV -curve and anN-

shaped K+ conductor-diffusorIV -cure are combined in parallel. It is obtained as the vertical sum

of Na+’s IV -curve and K+’s IV -curve. The result may not be a function ofV or I as shown but

instead described implicitly by an equation such as Eq.(7).ĒP is the joint passive resting potential

at which the current sum from the constituentIV -curves is zero.

In terms of the net and absolute active currentsIpump, IS from Eq.(10), the same system becomes


















CVC
′ = −[INa + fK(VC − ĒK) + Ipump − Iext]

Ipump
′ = λIS[VC − γIpump]

IS
′ = λIpump[VC − γIpump]

ǫINa
′ = VC − ĒNa − hNa(INa).

(14)

The equivalent systems of equations for circuit Fig.3(c) and circuit Fig.3(d) can be derived simi-

larly and they are listed in Table 2.

2.4. Piecewise LinearIV -Characteristics. We are now ready to specify a functional form for

the conductive and diffusiveIV -curves, Eq.(2, 4), for the purposes of analyzing and simulating

the circuit equations. As illustrations, we use continuousand piecewise linear functions for all

conductive and diffusiveIV -curves, and show later how to generalize the construction to smooth

functionals. The functions are listed in Table 3.

We first describe theN-shapedIV -curve for the passive K+ channel. The component conduc-

tive and diffusive curves are given as follows in their canonical forms.

I = fK,e(V ) = g
K
V, with g

K
> 0

I = fK,d(V ) =











0 if V < v1

d
K
(V − v1) if v1 < V < v2,

d
K
(v2 − v1) if v2 < V

with d
K

< 0, 0 < v1 < v2.

Here parameterg
K

is the conductance of K+’s electro channel and ther
K

= 1/g
K

is the corre-

sponding resistance, and parameterd
K

< 0 is K+’s maximal diffusive coefficient. It is easy to
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Table 3:IV -Characteristic Curves

S-Nonlinearity N-Nonlinearity

V = hNa(I) I = fK(V )

pK+
−sNa++

• piecewise linear curve:

V =
1

g
Na

I +
1

d
Na

(I − i1)(i1 < I < i2)

+
1

d
Na

(i2 − i1)(i2 < I)

I = g
K
V + d

K
(V − v1)(v1 < V < v2)

+d
K
(v2 − v1)(v2 < V )

• smooth curve:

V =
1

g
Na

I +
1

d
Na

ρ tan−1 I − im
ρ

+
1

d
Na

ρ tan−1 im
ρ

, with

im =
i1 + i2

2
, ρ =

i2 − i1
2

√

|d
Na
|

g
Na

+ d
Na

I = g
K
V + d

K
µ tan−1 V − vm

µ

+d
K
µ tan−1 vm

µ
, with

vm =
v1 + v2

2
, µ =

v2 − v1

2

√

g
K

|g
K

+ d
K
|

V = hK(I) I = fNa(V )

pNa+
+sK+

−

piewise linear curve:

V =
1

g
K

I +
1

d
K

(I − i1)(i1 < I < i2)

+
1

d
K

(i2 − i1)(i2 < I)

I = g
Na

V + d
Na

(v1 − v2)(V < v1)

+ d
Na

(V − v2)(v1 < V < v2)

Conditions: Conditions:

g
J
> 0, d

J
< 0, g

J
+ d

J
> 0

with J = Na, or K

g
J

> 0, d
J

< 0, g
J
+ d

J
< 0

with J = Na, or K

see from Fig.4(a) that theIV -curve for the parallel conductor-diffusor,I = fK,e(V ) + fK,d(V ), is

N-shaped if and only if the diffusor can dominate in the range[v1, v2] in the following sense,

g
K

+ d
K

< 0 with g
K

> 0, d
K

< 0. (15)

When this condition is satisfied, theN-shaped parallel conductor-diffusor combo has the desig-

nated critical pointsV = v1 andV = v2 with the middle diffusive branch having a negative slope,

g
K

+ d
K
. In practical terms, there is a net concentration-dominating intracellular current if the

potential difference across the parallel conductor-diffusor is in the range of[v1, v2].

For an easier access to numerical simulation and a simpler notation, we will use aMatlab

notation for Heaviside-type functions as follows

(a < x < b) =

{

0 if x < a or b < x

1 if a < x < b

wherea, b are parameters with−∞ ≤ a < b ≤ +∞. If eithera = −∞ or b = +∞, we simply
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write (x < b) or (a < x), respectively. Now K+’s parallel conductor-diffusor can be expressed as

I = fK(V ) = fK,e(V )+fK,d(V ) = g
K
V +d

K
(V −v1)(v1 < V < v2)+d

K
(v2−v1)(v2 < V ). (16)

Na+’s serial conductor-diffusorIV -curve can be similarly constructed. Specifically, we have

V = hNa,e(I) =
1

g
Na

I, with g
Na

> 0, and

V = hNa,d(I) =















0 if I < i1
1

d
Na

(I − i1) if i1 < I < i2,
1

d
Na

(i2 − i1) if i2 < I

with d
Na

< 0, 0 < i1 < i2.

and in terms of theMatlab notation,

V = hNa(I) = hNa,e(I) + hNa,d(I)

= 1
g
Na

I + 1
d
Na

(I − i1)(i1 < I < i2) + 1
d
Na

(i2 − i1)(i2 < I).
(17)

TheV -to-I slope of the middle diffusive branch is

1

1/g
Na

+ 1/d
Na

=
g

Na
d

Na

g
Na

+ d
Na

,

which will results in anS-nonlinearity if and only if the slope is negative or equivalently

g
Na

+ d
Na

> 0 with g
Na

> 0, d
Na

< 0. (18)

In such a case,I = i1, i2 are two critical values, and in practical terms, there is a net concentration-

dominating depolarizing voltage across the serial conductor-diffusor if the outward current in-

creases in the range of[i1, i2]. See Fig.4(b).

To conclude this section we note that bothN-shapedIV -characteristic and the more general

kind with F (V, I) = 0 have been observed in dendrites ([2, 14]). From our analysisabove we can

see that the latter must contain some canonical diffusiveIV -characteristics in serial.

3. Circuit Properties. The analysis carried out below is for the equivalent circuitequations

Eqs.(13, 14) and those listed in Table 2 with the continuous and piecewise linearIV -curves (16,

17). For the existence of steady states, theS-nonlinearity and theN-nonlinearity are not needed

but only their primary conductive branches. For the generation of action potentials, Na+’s S-

nonlinearity is not needed but its primary conductive branch which can alter K+’s N-nonlinearity

qualitatively but only for large conductance. For the generation of spike-bursts, both nonlinearities

are required. In all types of the behaviors, the ion pump dynamics are indispensable.

3.1. Pump Dynamics.We begin with the analysis of a minimum circuit consisting ofa capacitor,

a resister, and a pump in series. The circuit and its phase plane portrait are shown in Fig.5. In

particular, the corresponding ordinary differential equations are given as follows
{

CV ′ = I

I ′ = λI(−V − E − γI).
(19)
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Figure 5: (a) A minimum circuit for the dynamics of a pump. (b)The phase plane portrait of the

circuit equation.

TheV -axis consists of entirely equilibrium points for which those withV < E are unstable and

those withV > E are stable. Also, every unstable one is connected to a stableone. This means the

following. Suppose that there is initially a net chargeq0 deposited on the lower side of the capacity

so thatV0 = −q0/C < −E andI = 0. Then because the equilibrium point(V0, 0) is unstable and

the regionI < 0 is forbidden, soon or later the pump starts to work whenI(t0) > 0 at some time

t0, setting off the transport of the right amount of charges to the top side of the capacitor, and the

circuit dynamics eventually settles down at the equilibrium point(V (+∞), 0). (In the case that the

resistanceγ = 0, the equilibrium point can be expressed explicitly asV (+∞) = −2E − V0, see

below.) This shows that our assumed pump characteristic Eq.(1) indeed captures what we think a

pump should do qualitatively — to transport and store up charges unidirectionally.

Analytically, the minimum pump circuit equation Eq.(19) can be solved explicitly by changing

it first to its phase equation as below

dI

dV
= −λCγI − λC(V + E),

whose solution with initial conditionI(0) = I0 > 0, V (0) = V0 is

I =

[

I0 +
1

γ
(V0 + E) −

1

λCγ2

]

exp(−λCγ[V − V0]) −
1

γ
(V + E) +

1

λCγ2
.

In the limit γ → 0, the solution is on a parabola

I = I0 +
λC

2

[

(V0 + E)2 − (V + E)2
]

= I0 +
λC

2
(V0 − V )(V + V0 + 2E).

With the limiting initial equilibriumlimt→0+ I(t) = I0 = 0, limt→0+ V (t) = V0, the stable equilib-

rium point opposite toV0 < 0 is−V0 − 2E as pointed out above.

Dynamics of subcomponents of the circuit equations Eqs.(13, 14), especially those without the

pumps, can be considered similarly, but they are well-understood elementary circuits which can be

found in almost all undergraduate textbooks for circuitry.

3.2. Passive and Active Resting Potentials.We now consider the whole circuit equations with the

piecewise linearIV -curves (16, 17). The steady state equilibriums considerednow are all stable.
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They lie on the primary conductive branches of both ions’ passive IV -curves, with the diffusive

effect of inward ion flow not dominating these steady states.Hence, the result of this subsection

does not depend on Hypothesis (1) and Hypothesis (2) of the two models. In other words, it is the

primary feature of a cK+−cNa+
+ model. For this reason, we will restrict the effective rangeto the

primary conductive branches and assume instead the following

IK = fK(VC − ĒK) = g
Na

(VC − ĒK) andVC = hNa(INa) + ĒNa =
1

g
Na

INa + ĒNa

We will also use the following notation interchangeably forresistance and conductance

g
K

=
1

r
K

, g
Na

=
1

r
Na

, g
A

=
1

γ
, g

P
= g

K
+ g

Na
.

Under the restriction to primary conductive branches, the active membrane equilibrium point,

VC
′ = Ipump

′ = IS
′ = INa

′ = 0, is solved from the following equations using the equivalent circuit

equation (14):


















INa + IK + Ipump − Iext = 0

VC − γIpump = 0

IK = g
Na

(VC − ĒK)

VC = r
Na

INa + ĒNa.

(20)

It is a linear system, simple to solve exactly. Several casesare considered below.

We first consider the equilibrium states when one of the ions is blocked. When K+ is blocked,

the equilibrium for the reduced Na+-system, i.e. the cNa++ model, is solved from the same equation

(20) with the third equation deleted and the K+-currents set to zeroesIK = IK pump = 0 in the first

equation. The reduced system becomes,










INa + INa pump − Iext = 0

VC − γINa pump = 0

VC = r
Na

INa + ĒNa,

Since there are 4 variables,VC, INa, INa pump, andĒNa to determine from 3 equations, one of the 4

variables can be used to determine the others. Solutions to the equations can be explicitly expressed

as follows:

VC = ENa :=
g

Na

g
Na

+ g
A

ĒNa +
1

g
Na

+ g
A

Iext

INa pump = g
A
ENa

INa = −g
A
ENa + Iext.

(21)

SinceINa pump > 0 for the pump current, for the K+-blocked system to have an active membrane

resting potential (with external forcingIext = 0) we must have from the second expression that

ENa > 0

which also gives the same polarity to the passive resting potentialĒNa > 0 from the first expression

whenIext = 0. Notice from Eq.(21) above, that when the voltage is clampedat zero,VC = ENa =
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0, the external current isIext = −g
Na

ĒNa, that is, the passive resting potential can be measured if

the conductanceg
Na

is known.

For the Na+-blocked equilibrium, the analysis is exactly the same for the reduced pK+− system.

Specifically, after deleting the fourth equation in (20), setting INa = INa pump = 0, and dividing

the third equation byg
Na

and equating the role of−IK pump to that ofINa pump, the equation form is

exactly the same as the K+-blocked equilibrium equations above. As a result, K+’s active resting

potential can be solved as

EK =
g

K

g
K

+ g
A

ĒK +
1

g
K

+ g
A

Iext. (22)

Again, with Iext = 0, bothEK andĒK have the same polarity and the corresponding ion pump

equilibrium current is

IK pump = −g
A
EK

in order for which to be positive we must haveEK < 0. Similarly, the passive resting potentialĒK

can be measured from an equilibrium which is voltage-clamped at zero wheng
K

is known:

VC = EK = 0, ĒK =
1

g
K

Iext.

The result above is summarized below.

Proposition 1. For both thepK+
−sNa++ andpNa+

+sK+
− models, the directionality of an ion species’

pump from Hypothesis 4 determines the polarity of the ion species’ active resting potential from

Hypothesis 3, which in turn implies the same polarity for theion species’ passive resting potential.

Also,ĒNa (resp.ĒK) can be measured by the external current if the voltage is clamped at zero and

K+ (resp.Na+) is blocked.

Note that this result can be easily generated to other ions’ resting potentials. For example, if the

cell has a Cl− ion pump and hasECl < 0, the same polarity asEK, then the cell should pump

Cl− ion outward, in the opposite direction to K+’s pump direction. This is because Cl− is negative

charged whereas K+ is positive charged, but both result in a net inward pump current to which the

same analysis above then applies. Similarly,ECl > 0 iff Cl − is pumped inward.

Now consider the full steady state equilibrium from equation (20) without any ion blockage.

Upon simplification, it is straightforward to derive or to check that the active membrane resting

potential is

Em =
g

Na
ĒNa + g

K
ĒK

g
Na

+ g
K

+ g
A

+
1

g
Na

+ g
K

+ g
A

Iext. (23)

This relation has several equivalent form. First, the totalpassive resting potential̄EP introduced

in (6) is another conductance-weighted linear combinationof the passive resting potentials of both

ions:

ĒP =
g

Na
ĒNa + g

K
ĒK

g
Na

+ g
K

,
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see Fig.4(c) for an illustration and derivation. With this relation, the active membrane resting

potential is

Em =
g

P

g
P

+ g
A

ĒP +
1

g
P

+ g
A

Iext.

Also, using the relations obtained above between the activeand passive resting potentials of both

ions, it can be expressed as another conductance-weighted average of active resting potentials,

Em =
g

Na
ĒNa + g

K
ĒK

g
Na

+ g
K

+ g
A

+
1

g
Na

+ g
K

+ g
A

Iext

=
(g

Na
+ g

A
)ENa + (g

K
+ g

A
)EK

g
Na

+ g
K

+ g
A

+
3

g
Na

+ g
K

+ g
A

Iext

=
g

Na
ENa + g

K
EK + g

A
EA

g
Na

+ g
K

+ g
A

+
3

g
Na

+ g
K

+ g
A

Iext,

(24)

whereEA is simply defined as the sum of the active resting potentials of the ions:EA = ENa+EK.

As a concluding note, we recall that the nullcline for the total absolute active currentIS equation

coincides that of the net active current’s nullcline,VC − γIpump = 0. As a result, the membrane

steady state equilibrium is not dynamically fixed. In fact, the resting potentials form a line parallel

with theIS-axis in the observable state space of(VC, IC + INa + IK + Ipump) of the circuit. This is

a new and interesting property:

Proposition 2. For both thepK+
−sNa++ and pNa+

+sK+
− models, the membrane can maintain the

same observable steady state by pumping the potassium and sodium ions at different individual

rates as long as the ion pump maintains the same net active current Ipump at the corresponding

steady state rate. Also, the conductance weighted passive resting potentials can be measured by

the external current when the membrane potential is clampedat zero:g
Na

ĒNa + g
K
ĒK = Iext.

More importantly, this continuum of equilibrium states arestructurally stable to be shown later, the

sole consequence to the existence of the dual ion pumps. In this case, changing the total absolute

currentIS can leave the steady state fixed.

3.3. Action Potential Generation With Ion Blockage. We now consider the neuron models

with either the sodium ion or the potassium ion blocked, i.e.the pK+
− or the sNa++ subsystem,

respectively. For the first case,INa = INa pump = 0, the reduced model equation (13) becomes

{

CVC
′ = −[fK(VC − ĒK) − IK pump − Iext]

IK pump
′ = λIK pump[−VC − γIK pump].

(25)

It is a 2-dimensional system inVC, IK pump. As shown in (15), forg
K

+ d
K

< 0, K+’s IV -

curve admits anN-shaped nonlinearity. As a result, the system above behavessimilarly like

the FitzHugh-Nagumo equations, see Fig.6(a) for a phase plane illustration. However, unlike the

FitzHugh-Nagumo equations, the effective range of the Na+-blocked K+-system is restricted to the

upper half planeIK pump > 0 since theVC-axis,IK pump = 0, is invariant for the system through
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Figure 6: (a) Na+-blocked phase portrait. (b) K+-blocked phase portrait. It is clear from the phase

portraits that active resting potentials do not always exist if ĒK > 0 or ĒNa < 0.

which no solutions originated above can cross. Because of the fact thatIK pump’s nontrivial null-

cline, IK pump = −VC/γ, lies only in the second quadrant, any active equilibrium stateEK with

IK pump > 0 must be negative. From the phase portrait, we can clearly seethat the active equi-

librium point is a stable node while the passive equilibriumpoint is a saddle, which is stable only

in the complete absence of active currentIK pump = 0. Also, we can see that the passive resting

potentialĒK is always smaller than the active resting potentialEK, both are related by Eq.(22).

The phase portrait Fig.6(a) shows a stable active equilibrium state base withIext = 0 as well as

a nonstable active equilibrium state case with a positiveIext > 0 for which a limit cycle emerges.

For the limit cycle case to occur, two conditions need to hold: (i) the critical voltage value for

the N-nonlinearity must be negative,̄EK + v1 < 0, and (ii) the combined diffusive coefficient,

g
K

+ d
K

< 0, must not be too large in magnitude so that the two criticalIK pump-current values of

theN-nonlinearity lie entirely above theVC-axis.

The active steady state is stable for a range ofIext and it gives rise to anIext-forced limit

cycle, or action potential, when it loses its stability. TheIext-threshold for the action potentials is

determined when the active resting potential equilibriumEK crosses the first critical value of the

N-shapedIV -curve atv1 + ĒK into the diffusion-dominating region. Solving from the equation

(22) and the threshold conditionEK = v1 + ĒK, we have the threshold value

Iext > IK,thr :=
γ

1 + g
K
r

[

v1 +
1

1 + g
K
γ
ĒK

]

,

which is small for smallγ. It implies that action potentials can be readily generatedfor modest

external forcing. The type of action potentials are K+-mediated. This result can be summarized as

follows.

Proposition 3. For theNa+-blockedpK+
−sNa++ model, theK+-mediated action potentials can be

readily generated forIext > IK,thr if γ > 0, g
K

+ d
K

< 0 are relatively small in magnitude each,

and if the left critical value of theN-nonlinearity in voltage is negative,̄EK + v1 < 0. However,

whenĒK + v1 > 0, no amount of stimuliIext can induceK+-mediated action potentials. For the

K+-blockedpNa+
+sK+

− model, theNa+-mediated action potentials can be readily generated when

ĒNa + v1 < 0 or ĒNa + v1 > 0 but small because of the smallness of the ion pump’s resistanceγ.
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We now consider the K+-blocked model of Eq.(13),










CVC
′ = −[INa + INa pump − Iext]

INa pump
′ = λINa pump[VC − γINa pump]

ǫINa
′ = VC − ĒNa − hNa(INa).

(26)

In the case that the active resting potential does not lie on Na+’s diffusive branch, we can consider

the system restricted on its primary conductive branch as before. For the piecewise linear case, the

primary branch of theINa-nullcline is0 = VC−ĒNa−hNa(INa) = VC−ĒNa−r
Na

INa, from which

INa = g
Na

(VC − ĒNa).

Substitute it into Eq.(26) gives the reduced 2-dimensionalsystem
{

CVC
′ = −[g

Na
(VC − ĒNa) + INa pump − Iext]

INa pump
′ = λINa pump[VC − γINa pump].

It can be seen from its phase portrait Fig.6(b) the following: the system is restricted to the upper

half planeINa pump ≥ 0; if exists the active resting potentialENa must be positive; and only in the

absence of the active pump currentINa pump = 0 is Na+’s passive resting potential̄ENa stable; and

the relationship0 < ENa < ĒNa must hold as concluded already from the last subsection. Also,

when restricted on the primary conductive branch, the active resting potentialENa has been solved

explicitly in (21) as

VC = ENa =
γg

Na

1 + γg
Na

ĒNa +
γ

1 + γg
Na

Iext.

andINa pump = ENa/γ > 0, INa = −INa pump + Iext.

In order for the neuron to generate action potentials, i.e. for the circuit to oscillate, the active

resting potential equilibrium needs to lose its stability.For this to happen, it have to enter Na+’s

diffusive branch of its passiveIV -curveVC = hNa(INa) + ĒNa through the lower critical point

INa = i1. Using this relation to determine the needed external forcing threshold from the equation

i1 = INa = −INa pump + Iext = −ENa/γ + Iext, we have

Iext > INa,thr :=
1 + γg

Na

γg
Na

i1 +
1

γ
ĒNa.

For fixedi1 andĒNa but smallγ, this threshold can be too large a current to be injected to the neuron

to realistically generate K+-blocked, Na+-mediated action potentials, in contrast to the relative

ease to generate Na+-blocked, K+-mediated action potentials as shown above. In summary, we

have the following.

Proposition 4. For the K+-blockedpK+
−sNa++ model,Na+-mediated action potentials cannot be

easily generated with modest external forcing since it needsIext > INa,thr but limγ→0+ INa,thr = ∞.

For Iext < INa,thr the circuit settles down at a stable equilibrium whose corresponding resting

potentialENa is always positive. The same is true forK+-mediated action potentials in theNa+-

blockedpNa+
+sK+

− model.
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Figure 7: (a) K+’s hysteresis loop of the pK+−sNa++ model. (b) Na+’s hysteresis loop of the

pK+
−sNa++ model. (c) The translatedIV -curves by their corresponding passive resting potentials,

showing a configuration satisfying condition (27) and condition (28). The newN-hysteresis loop

is the result of the vertical sum of K+’s IV -curve and the primary resistive branch of Na+’s IV -

curve.

3.4. Action Potentials Without Ion Blockage. We now consider a configuration between K+’s

N-characteristic curve and Na+’s S-characteristic curve in such a way that the diffusive branch

of Na+’s IV -curve does not affect the circuit dynamics, i.e. the K+
−cNa+

+ model. The following

notation is used, see Fig.7,

k1 = fK(v1) = fK(v∗
1), with v1 < v∗

1, andk2 = fK(v∗
2) = fK(v2), with v∗

2 < v2

n1 = hNa(i1) = hNa(i
∗
1), with i1 < i∗1, andn2 = hNa(i

∗
2) = hNa(i2), with i∗2 < i2

The oriented loop with vertices(v1, k1), (v
∗
1, k1), (v2, k2), (v

∗
2, k2) hugging K+’s IV -curve is called

K+’s hysteresisloop. Similarly, the oriented loop with vertices(n1, i1), (n1, i
∗
1), (n2, i2), (n2, i

∗
2)

hugging Na+’s IV -curve is called Na+’s hysteresis loop. We note that whether or not anIV -curve

forms an hysteresis is context-dependent. Take the K+’s N-shapedIV -curveI = fK(V ) as an

example. As the nullcline for the equationV ′ = I − fK(V ), the curve forms an hysteresis because

a V -phase line can intersect the curve multiple times, and the intersecting points on the two end

branches are stable equilibrium points of the equation and the intersection with the middle branch

is an unstable equilibrium point. However, the curve does not form an hysteresis for the equation

I ′ = I − fK(V ) because everyI-phase line intersects the curve at most once.

Upon translation by their respective passive resting potentials, K+’s loop is shifted parallel to

theV -axis leftwards byĒK amount and Na+’s loop is shifted parallel to theV -axis rightwards by

ĒNa amount. The mutual configuration of the shifted loops for this subsection is defined by the

following condition:

v∗
1 + ĒK < n1 + ĒNa. (27)

See Fig.7(c). Under this condition, K+’s N-characteristic lies in the voltage range,V < n1 + ĒNa,

of the primary conductive branch of Na+’s S-characteristic. As a result, the former will persist if
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Figure 8: Dimensionless simulations of Eq.(14) with parameter values: g
Na

= 0.17, d
Na

=

−0.06, i1 = 0.5, i2 = 1, ĒNa = 0.6, g
K

= 1, d
K

= −1.25, v1 = 0.5, v2 = 2, ĒK = −0.7, C =

0.01, λ = 0.05, γ = 0.1, Iext = 0, ǫ = 0.001. (a) A phase plane view of the oscillation. (b) A time

series plot for whichINa total = INa +INa pump, IK total = IK +IK pump = fK(VC− ĒK)+IK pump.

the latter is not too steep in slope, i.e.,g
Na

is modest. More precisely, under the following condition

g
K

+ d
K

+ g
Na

< 0, (28)

the combined K+-Na+ IV -characteristic,I = fK(V − ĒK) + g
Na

(V − ĒNa), with K+’s hysteresis

loop and Na+’s primary resistive branch in parallel again permits a newN-shapedIV -curve in

the rangeVC < n1 + ĒNa. That is, K+’s-diffusive channel not only dominates its own conductive

channel in its[v1, v2] range, but also dominates the combined passive parallel channels in the same

range. In fact, the conductance sum of Eq.(28) is the new diffusive coefficient for the combined

IV -curve, see Fig.7(c). When condition (27) is violated, K+’s N-loop may not persist, as such is

a case illustrated in Fig.4(c).

It turns out that under condition (27), the circuit dynamicsdo not extend into the region beyond

VC > n1 + ĒNa andINa > i1. Hence, we can restrict the analysis to the effective regionfor Na+

in {VC < n1 + ĒNa, INa < i1}. As a result, we only need to consider the primary branch of Na+’s

IV -curve to beVC − ĒNa = hNa(INa) = r
Na

INa or INa = g
Na

(VC − ĒNa) as we have done for

condition (28). This restriction solves the last equation of (14) for the ideal situation whenǫ = 0,

and as a result, Eq.(14) is reduced to a 3-dimensional systembelow










CVC
′ = −[g

Na
(VC − ĒNa) + fK(VC − ĒK) + Ipump − Iext]

Ipump
′ = λIS[VC − γIpump]

IS
′ = λIpump[VC − γIpump].

Because the absolute active currentIS can be solved in terms ofVC, Ipump as in (11), and thus

decoupled from the first two equations, the system above is essentially 2-dimensional. Fig.8(a)
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Figure 9: (a) The action potential cycle on the primary conductive branch ofINa-nullcline surface

in the VCIpumpINa-space when conditions (27, 28) are satisfied. (b) The same view except for

condition (30) or (31). The equilibrium point (filled circle) on both K+’s primary conductive

branch and Na+’s primary conductive branch is always stable.

shows a phase portrait in theVCIpump space for allIS > 0. The invertedN-curve is theVC-

nullcline

Ipump = −(g
Na

(VC − ĒNa) + fK(VC − ĒK) − Iext),

forming an hysteresis, and the line is theIpump-nullclineIpump = VC/γ.

Depending on the external forcing currentIext, the circuit can have a stable equilibrium point

lying on both primary conductive branches of the two ions whose corresponding resting potential

is given by formula (23). In order for the neuron to generate action potentials, this steady state

resting potential must lose its stability by entering into the combined diffusive branch of the K+-

Na+ IV -curve through the same left critical pointv1 + ĒK (which remains the same for piecewise

IV -curves but may shift for smoothIV -curves.) Hence, the action potential threshold for the

external current is solved fromv1 + ĒK = Em and equation (23) as below

Iext > Im,thr := (g
Na

+ g
K

+ g
A
)(v1 + ĒK) − (g

Na
ĒNa + g

K
ĒK). (29)

Fig.8 shows a simulation of action potentials when the threshold condition above and the configu-

ration conditions (27, 28) are satisfied. A 3-dimensional view of the action potential is also shown

in Fig.9(a), showing it lies entirely on the primary branch of INa’s S-shaped nullcline surface. The

type of action potentials is K+-mediated, the result of diffusion domination by K+ ion only.

Proposition 5. ThepK+
−sNa++ model can generateK+-mediated action potential oscillations under

the conditions (27, 28), which reduce the model to apK+
−cNa+

+ model.

3.5. Termination of K+-Mediated Action Potentials. We now consider the case in which K+’s

diffusive channel is either not dominating or completely absent in the effective region of interest.
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In the non-dominance situation we assume the opposite to condition (28)

g
K

+ d
K

+ g
Na

> 0 (30)

for which K+’s N-characteristic does not persist as in Fig.7(c). In the absence situation we can

assume

n1 + ĒNa < v1 + ĒK (31)

for which Na+’s S-characteristic lies in the primary conductive region of K+’s passive channels.

In both situations, we can assume for simplicity that K+’s passiveIV -characteristic in the

effective region of interest to be simply

I = fK(V ) = g
Na

V.

In this case, the system of equations (14) remains 4-dimensional inVC, Ipump, IS, INa. However,

since theIS-equation is decoupled from the rest equations, the nullcline structures of the other

variables remain fixed for all values ofIS. As a result, the system is essentially 3-dimensional.

Fig.9(b) shows the nullcline surfaces of theVCIpumpINa-system. Adding to this advantageous

feature of dimension reduction, the nontrivial part of theIS-nullcline coincides with that ofIpump’s.

Notice further that because both theVC-nullcline andIpump-nullcline surfaces are planes given as

Ipump = −(INa + g
K
(VC − ĒK) − Iext) and Ipump = VC/γ, respectively,

the relative configuration of these surfaces becomes even simpler as shown. These two planes inter-

sects along a line, which in turn intersects theS-shapedINa-nullcline at one, or two, or three points.

However, it is straightforward to show that the equilibriumpoints on the conductive branches are

stable and that the one on the diffusive branch is unstable ifthere are indeed multiple equilibrium

points. Fig.9(b) shows the case that there is only one equilibrium point which lies in Na+’s primary

conductive branch. Because of the existence of such stable equilibrium points on Na+’s conductive

branches, action potentials, i.e., oscillations, cannot be generated. When cast in terms of selective

blockage of K+’s diffusive channel, we can state the following:

Proposition 6. It is not possible to generateK+-mediated action potentials for thepK+
−sNa++ model

if K+’s diffusive channel is not dominating in the sense that either condition (30) or condition (31)

or both hold, in which cases the reduced system is acK+cNa+ model.

3.6. Spike-Burst Generation.We now consider the case in which the combined passive channels

from both ions result in anIV -characteristic curve like the one depicted in Fig.4(c). The analytical

conditions for the configuration is the following:

(a) TheĒNa-shifted Na+ hysteresis loop lies in the diffusive region of theĒK-shifted

K+ hysteresis loop:

v1 + ĒK < n2 + ĒNa < n1 + ĒNa < v2 + ĒK. (32)
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(b) K+’s diffusive channel dominates K+’s conductive channel and Na+’s conductive

channel combined:

g
K

+ d
K

+ g
Na

< 0. (33)

(c) Na+’s diffusive channel dominates its serial conductive channel in the region

[i1, i2] to have anS-hysteresis:

1

g
Na

+
1

d
Na

< 0. (34)

(d) Burst (action potential) excitation condition:

Iext > Im,thr := (g
Na

+ g
K

+ g
A
)(ĒK + v1) − (g

Na
ĒNa + g

K
ĒK). (35)

Condition (d) is the same as the action potential threshold condition (29) so that the equi-

librium point on the primary conductive branch of Na+’s is unstable. This condition allows the

generation of K+-mediated action potentials or bursts, a more appropriate term in the context of

this subsection. Condition (c) is what it says. Condition (b) is more than enough to guarantee

K+’s IV -curve to have anN-nonlinearity which only requiresg
K

+ d
K

< 0. In fact, in K+’s

diffusive range,[v1 + ĒK, v2 + ĒK], the combined passive channel from both ions in parallel is

still dominated by K+’s diffusion. This condition is the same as the second condition (28) for

the generation of K+-mediated action potentials or bursts. However, it is the condition (a) that is

critical for the generation of spike-bursts considered here. More specifically, it violates the other

sufficient condition (27) for the generation of K+-mediated action potentials to prevent them from

completion. This is because the lower knee point of Na+’s S-hysteresis cuts into the K+-mediated

action potential in K+’s diffusive range. In another words, at the lower knee of theS-hysteresis, the

INa-equation takes over and the K+-mediated burst is interrupted by Na+-mediated spikes around

Na+’s S-hysteresis.

Fig.10 gives an illustration on the geometric mechanism of spike-burst generation for this

model. The mathematical method to study and to understand such problems has developed and

matured through a series of works [5, 6, 7, 8, 9, 10, 11]. The key of the method is to utilize the

fast-time scale ofINa’s equation for sufficiently smallǫ > 0. More specifically, at a near ideal situ-

ation whenǫ ≈ 0, all solutions of the system are quickly equilibrating on the conductive branches

of Na+’s S-hysteresis, thus reducing the analysis to the system restricted to the lower dimensional

conductive branches ofINa’s nullcline surface. BecauseIS’s non-trivial nullcline coincides with

Ipump’s nullcline, the analysis is further simplified into a 2-dimensional phase plane analysis of

the reducedVCIpump-subsystem on the two branches. A full picture of the orbitalstructure is

then pieced together from the subsystem’s 2-dimensional phase portraits on the branches together

with fast transitions from theS-hysteresis’ lower knee edge to its upper conductive branchand,

similarly, from its upper knee to its primary conductive branch.

Here is a more detailed description of the illustration. Fig.10(a) shows the nullcline-surfaces

in the VCIpumpINa-state space. Because of the domination by K+’s diffusive channel by condi-
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Figure 10: Na+-K+ spike-bursts. The same parameter values as Fig.8 except fori1 = 0.1, i2 = 0.3

for which the conditions (32, 33, 34, 35) are satisfied for Eq.(14). For consistence check, the dash

spike-burst of (d) tracing the solid spike-burst in variable VC is generated from circuit Fig.3(c)’s

equations from Table 2 with exactly the same parameter values and initial conditions.

tion (33), the intersection of theVC-nullcline surface and theINa-nullcline surface, or theVCINa-

nullcline, on the primary conductive branch of Na+’s IV -characteristic or theINa-nullcline surface

has a fold point, giving rise to one of the two necessary conditions for the K+-mediated bursts. Be-

cause of the excitation condition (35), theIpump-nullcline surface goes through K+’s new diffusive

dominating branch of theVCINa-nullcline, giving rise to the other necessary condition for K+-

mediated bursts. Fig.10(b) is a zoom-in view on the effective region of spike-bursts. The condi-

tion (32) prevents any K+-mediated burst from becoming a K+-mediated action potential, circling

around a would-be FitzHuge-Nagumo-like hysteresis on Na+’s primary conductive branch like the

case of Fig.9(a) if the condition (27) is not violated by condition (32). As a result, the burst contin-

ues, heading towards the lower knee edge of Na+’s S-hysteresis. Once an orbit reaches the lower

knee, it must jump upward to the upper conductive branch of the S-hysteresis. On the top branch
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Figure 11: (a) Simulation for Eq.(14) with smoothIV -curves of Table 3. Parameter values:g
Na

=

0.2, d
Na

= −0.1, i1 = 0.1, i2 = 0.33, ĒNa = 0.6, g
K

= 5, d
K

= −5.5, v1 = 0.55, v2 =

1.5, ĒK = −0.7, C = 0.01, λ = 0.1, γ = 0.1, Iext = 0, ǫ = 0.001. (b) Simulation for the

pNa+
+sK+

− model from Table 2 with parameter values:g
Na

= 1, d
Na

= −1.21, v1 = −0.7, v2 =

−0.2, ĒNa = 0.6, g
K

= 0.17, d
K

= −0.67, i1 = 0.18, i2 = 0.5, ĒK = −0.7, C = 0.01, λ =

0.05, γ = 0.1, Iext = 0, ǫ = 0.0005.

and in the effective region shown, all solutions moves down (VC
′ < 0) in VC, up (Ipump

′ > 0) in

Ipump, and towards the top knee of theS-hysteresis before falling from the edge down to the lower

branch of theS-hysteresis. On the lower branch, solutions moves up in theVC-direction when

in the region outside the fold of theVCINa-nullcline (VC
′ > 0). Otherwise when inside the fold

(VC
′ < 0), they move down inVC. Also, they move down in theIpump-direction if in the region left

of theIpumpINa-nullcline (Ipump
′ < 0), and move up inIpump if otherwise (Ipump

′ > 0). Hence, the

train of Na+’-mediated spikes moves in the increasing direction ofIpump when it is to the right of

theIpumpINa-nullcline and above the fold of theVCINa-nullcline as shown. It will end upon enter-

ing theVCINa-fold. The termination of spikes can also be taken as the end of the burst. However,

once an orbit crosses into the left side of theIpumpINa-nullcline (Ipump
′ < 0), another episode of

spike-burst is set in motion, heading to the fold, turning around the fold, and heading to the lower

knee edge of theS-hysteresis again. Fig.10(c) shows the 3-dimensionalVCIpumpINa phase portrait

projected onto theIpumpVC-plane, and Fig.10(d) shows the time series of the spike-burst solution.

Notice that the absolute ion pump currentIS oscillates in time as well.

Proposition 7. ThepK+
−sNa++ model can generateNa+-K+ spike-burst under the conditions (32,

33, 34, 35).

3.7. SmoothIV -Curves. There are various ways to construct smoothIV -characteristic curves for

both ions’ passive channels. A brute-force way is just to approximate the piecewise linear curves

fK, hNa by polynomials of degree 3 and higher without decomposing them into their respective

conductive and diffusive channels. Here instead we describe another systematic and direct way.
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Take theN-shaped curveI = fK(V ) for example. It is simpler and more direct to specify

instead the derivativefK
′(V ) of the curve. Letg

K
, d

K
, v1 < v2 be the same parameters as above

and assume the diffusive domination in[v1, v2]. Letvm = v1+v2

2
be the middle point of the diffusive

range. AfK
′(V ) similar to the derivative of the piecewise linear curve satisfies the following:

(i) V = v1, v2 are the only critical point:fK
′(v1) = fK

′(v2) = 0.

(ii) Diffusion dominates the middle range[v1, v2], with d
K

+ g
K

< 0 being the com-

bined maximal diffusive coefficient:fK
′(vm) = d

K
+ g

K
.

(iii) Electromagnetic force dominates the range outside the interval[v1, v2] with g
K

being the saturated conductance:sup
−∞<V <+∞

fK
′(V ) = g

K
> 0.

It is straightforward to check that the following form satisfies these conditions:

fK
′(V ) =

|g
K

+ d
K
|(V − v1)(V − v2)

(v2−v1

2
)2 +

|g
K

+d
K
|

g
K

(V − vm)2
.

Integrating the derivative gives the function

fK(V ) =

∫ V

0

fK
′(v)dv

= g
K
V + d

K
µ

[

tan−1 V − vm

µ
+ tan−1 vm

µ

]

, with µ =
v2 − v1

2

√

g
K

|g
K

+ d
K
|
,

which is a canonical decomposition by definingfK(V ) = fK,e(V ) + fK,d(V ) with fK,e(V ) = g
K
V

andfK,d(V ) = fK(V ) − fK,e(V ).

A function form forhNa is similarly constructed from its derivative,

hNa
′(I) =

| 1
g
Na

+ 1
d
Na

|(I − i1)(I − i2)

( i1−i2
2

)2 +
| 1
g
Na

+ 1
d
Na

|

1
g
Na

(I − im)2

,

whereg
Na

+ d
Na

> 0 (equivalent to1/g
Na

+ 1/d
Na

< 0) andim = (i1 + i2)/2. BothfK andhNa

are listed in Table 3.

In fact, this is a general technique that can be used to generate the continuous piecewise linear

IV -curves. For example, for the continuous piecewise linear functionalI = fK(V ), its derivative

at points other than the critical pointsv1, v2 is

fK
′(V ) = g

K
+ d

K
(v1 < V < v2).

Imposing the continuity offK at the critical points to the integralfK(V ) =
∫ V

0
fK

′(v)dv results in

the functional we have been using.

Note that the configuration conditions (a,b,c,d) of the previous subsection are sufficient for

spike-burst generation for the models with the piecewise linearIV -curves. However, they are not

sufficient enough for the smoothIV -curves because unlike the linear case the critical points of the
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Figure 12: (a) Circuit diagram for the pK+−dsNa++d type models whose equations are given by

Eq.(36). (b) The same parameter values as Fig.10 except forγ
Na

= 0.1, γ
K

= 0.05, λ
Na

=

0.05, λ
K

= 0.1 for Eq.(36).

smooth curves will shift when combined in parallel. We will lose the precise strategic control on

the locations of the new critical points. However, these conditions do give a good approximation

of the new points that can lead us to the right nullcline configurations after a few trials-and-errors.

Fig.11(a) is a Na+-K+ spike-burst simulation with the smoothIV -curves from Table 3.

3.8. pNa++sK+
− Model Simulation. A pNa+

+sK+
− model is exactly the same as the pK+

−sNa++ model

except that K+’s passive channel is a serial conductor-diffusor and Na+’s passive channel is a

parallel conductor-diffusor as illustrated in Fig.3(f). The polarities of the passive resting potentials

and the directionalities of the ion pumps remain the same. The system of equations is listed in

Table 2 with continuous piecewise linear functionals for both ions’ passive channels as listed in

Table 3. Fig.11(b) is a K+-Na+ spike-burst simulation of the pNa+
+sK+

− model.

3.9. pK+
−dsNa+

+d Model Simulation. With disjoint ion pumps, the pump parameter valuesλ
Na

, λ
K

are not necessarily equal, nor are the parasitic resistances γ
Na

, γ
K
. The circuit equations corre-

sponding to Eq.(13) become instead as below



















CVC
′ = −[INa + fK(VC − ĒK) + INa pump − IK pump − Iext]

INa pump
′ = λ

Na
INa pump(VC − γ

Na
INa pump)

IK pump
′ = −λ

K
IK pump(VC + γ

K
IK pump)

ǫINa
′ = VC − ĒNa − hNa(INa).

(36)

Fig.12 shows a circuit diagram and a spike-burst simulationfor this type of models.

3.10. Termination of Action Potentials and Spike-Bursts byShutting Off Ion Pumps. Fig.13

shows typical dynamics regarding spike-bursts when one of the ion pumps in a pK+−sNa++ model is

blocked. When the Na+-pump is shut off, the model reduces to a pK+
−sNa+0 model, and the bursts
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Figure 13: Na+-K+ spike-bursts. The same parameter values as Fig.10 for Eq.(14). (a) The Na+-

pump is shut off with initial conditionINa pump(0) = 0 but IK pump(0) > 0. Spike-bursts persist.

(b) The K+-pump is shut off withIK pump(0) = 0 but INa pump(0) > 0. Spike-bursts terminate.

persist. Thus, the Na+-pump is not necessary. On the other hand, when the K+-pump is rendered

inoperable, all bursts are turned off, a typical outcome of pK+
0 sNa++ models. Similar results are

found from pNa++sK+
− models and pK+−dsNa++d models. In terms of cellular metabolism, neuron’s

electrical pulses and spikes can be completely turned off byshutting down the intracellular ATPass.

Proposition 8. To generate action potentials and spike-bursts, it is necessary to have one ion

species to have parallel electro and diffusive channels andto have an ion pump at the same time.

4. Discussions.We have described here a reductionistic approach to construct circuit models for

neurons. Basic components include serial conductor-diffusors, parallel conductor-diffusors, and

ion pumps. A minimal number of model parameters are summarized in Table 4. The parameter

list alone suggests that if the models are good approximations to real neurons then most of their

structures but their passive resting potentials and their ranges of diffusion domination follow from

circuit imperatives. The question of why those exceptionalparameters become what they are is

perhaps a question of evolution which certainly cannot be addressed here within the framework of

circuitry.

Circuit properties of our pXsY models can be summarized and generalized as follows.

1. For cXz
α models, wherez = + (resp. −) if X z is positive (resp. negative)

charged, andα = + (resp. −) if X z is pumped outward (resp. inward), the

active resting potentialEX and the passive resting potentialĒX must satisfy

0 < zαEX < zαĒX

provided thatEX exists.
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Table 4: Circuit Parameters

g
J

max. conductance of ion J

g
J
+ d

J
max. diffusion coefficient for parallel conductor-diffusors

g
J
d

J
/(g

J
+ d

J
) max. diffusion coefficient for serial conductor-diffusors

ĒJ passive resting potential

EJ active resting potential withEJ =
g
J

g
J
+1/γ

J

ĒJ

(v1 + ĒJ, v2 + ĒJ) diffusion dominating voltage range for parallel channels

(i1, i2) diffusion dominating current range for serial channels

γ
J

ion pump resistance of ion J

λ
J

ion pump coefficient of ion J in the unit of1/[ampere · Henry]

C membrane capacitance

2. Ion X’s passive resting potential is not stable in cX± models but can be mea-

sured by the external currentIext when other ions’ currents are blocked and the

membrane potential is clamped at zeroVext = 0.

3. The membrane resting potentialEm can be maintained at a fixed value in cX±cY∓

models but with different ion pump currents for X and Y.

4. Action potentials mediated by ion X can be generated in pX±yY models only if

X’s diffusive channel can dominate all ions’ conductive channels in parallel in a

finite voltage range. Moreover, X-mediated action potential depolarizes (starts)

most probably at a negative membrane potential.

5. Spike-bursts can be generated in pX±sY∗ models only if ion X’s diffusive chan-

nel can dominate all ions’ conductive channels in parallel for burst generation

and ion Y’s diffusive channel can dominate its conductive channel or other ion’s

conductive channel in series for spike generation.

6. Action potentials and spike-bursts may not be generated in pX0sY∗ models which

do not have an ion pump or only have an inoperable ion pump for ion X.

The model, the analysis, and the result can be extended in many ways. In one aspect, the

conductive branches need not symmetrically have the same maximum conductance for theS-

curve, nor for theN-curve. Also, theIV -characteristic curves for passive channels need not be

either piecewise linear or smooth, but can be a mixture of both. In another aspect, additional

ion channels can be incorporated into the minimal two-ions models as pointed out in Sec.2. In

fact, all the simulations above were actually done for a corresponding pXsYcCl−0 model with

g
Cl

= 0.01, d
Cl

= 0, ĒCl = −0.6, but the smallness in magnitude of the conductance and diffusion

parameters did not qualitatively change the dynamics of theminimal models. It is conceivable

that some nontrivial extensions may alter the minimal channel structures described here in some

fundamental ways that are not yet understood. We also note that most of the results on action
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potential and spike-burst generations have been obtained for the pK+
−sNa++ models. Similar work

is yet to be done for the pNa+
+sK+

− models.

We have categorized some basic dynamical behaviors of the models as summarized above. Yet

there are some more features left unexplored. The existenceof a junction-fold point leading to

a period-doubling cascade ([7, 8]), the existence of Shilnikov’s orbit ([9]), and the existence of

a chaotic attractor with a canard point ([11], but for a smooth S-hysteresis only) are distinctive

possibilities for our models because our models and the foodchain models cited in the references

share a fundamentally similar geometry for the said phenomena. However, these features may not

be as prominent as the three kinds analyzed above for neural dynamics.

We have given a general yet design-specific method to construct neuron models. Given the

multitude, flexibility, and robustness in choosing the ion species in a model, the serial/parallel

configurations of the ion channels, the individual shapes ofthe IV -characteristics of the passive

ion channels, the functional characteristics of ion pumps,and the parameter values, one should be

able to use our method to customize a model to fit a particular type of neurons.

We anticipate little difficulty to implement the models in real circuits. This is especially true

for circuit Fig.3(d) with a linear inductor with constant inductanceL. (The simulations of Fig.10

and Fig.11 demonstrated thatIS is approximately constant, implying thatL = 1/(λIS) can be fixed

at a constant as well.) Electronic devices withS-hysteresis andN-hysteresis are almost as com-

mon as other elementary components of resistors, inductors, and capacitors. For example, a tunnel

diode has anN-shapedIV -characteristic like our parallel conductor-diffusor. The middle negative

resistive region of a tunnel diode is the result of quantum tunneling by which electrons can cross

an energy barrier because the probability, by means of the electron’s wave function, to find them

in the classically forbidden side is substantial. AnS-characteristic can be constructed by flipping

and rotating anN-characteristic, and the necessary operations can be easily implemented by el-

ementary circuit networks ([4]). The only non-standard component for our circuit models is the

one-way ion pump whose characteristic is given by (1). But there should be no practical difficulty

to realize the characteristic by some circuit network. Lastly, dimensionalizing the variables and

parameters is straightforward. For example, if we wantmV to measure the voltageVC andms for

the time, then the capacitanceC is measured in farad if the current is measured in Ampere, ormF

if the current is measured inmA, etc. In other words, we can set the variables to any dimensions

we want and then scale the parameter dimensions accordingly.

Acknowledgement:Special thanks to Jack Hale and Shui-Nee Chow who believed inthe project

in its inception when the outcome was nothing but uncertain.
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