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Lecture Notes on Predation Functional Forms
Bo Deng1

Holling’s original derivation:
X – number of prey, Y = 1 – number of predator
T – total time
h – handling time per prey
a – encounter rate or discovery rate
Xc – number of captured prey (in T ) by the single predator
Then the time left for searching

Ts = T − h ·Xc

and Holling’s equation follows

Xc = Ts · a ·X = (T − h ·Xc) · a ·X

Solve it to get the so-called Holling’s Type II functional form, or disc function:

Xc =
TaX

1 + haX
⇔ Xc

T
=

aX

1 + haX

with the latter being the per-predator predation rate.
****
Generalize Holling’s equation to Y ≥ 1 many predators to get

Xc = TsaX = (T − hXc)a(X −Xc(Y − 1))+ = (T − hXc)aX

(
1− Xc(Y − 1)

X

)
+

where x+ = x if x ≥ 0 and x+ = 0 if x ≤ 0. Denote by ε = Xc(Y−1)
X

, and substitute X(1− ε) for X in
Holling’s disc function to get

Xc =
TaX(1− ε)+

1 + haX(1− ε)+

:= f(ε).

This is equivalent to a quadratic equation in Xc and Xc can be solved exactly. However, it is a compli-
cated form, but can be simplified under one condition that ε � 1. Use Taylor’s approximation to get
Xc = f(ε) ≈ f(0) + f ′(0)ε which is a linear equation in Xc. Solve it to have

Xc =
TaX

1 + haX + Ta(Y−1)
1+haX

=
TaX(1 + haX)

(1 + haX)2 + Ta(Y − 1)
.

The per-predator predation rate becomes

Xc

T
=

aX(1 + haX)

(1 + haX)2 + Ta(Y − 1)
.

We note that Y = 1 reduces it to Holling’s Type II form, and replacing the factor Ta
1+haX

of Y − 1

by Beddington’s constant interference factor btw gives Beddington’s form. Here b is Beddington’s
predator’s interference encounter rate and tw is the wasted interfering time per predator per encounter.
Our result shows that such interference decreases with the prey density, which seems more realistic.
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