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A MODEL FOR TROPHIC INTERACTION' 

D. L. DEANGELIS, R. A. GOLDSTEIN2 AND R. V. O'NEILL 
Environmental Sciences Division, Oak Ridge National Laboratory, 

Oak Ridge, Tennessee 37830 USA 

Abstract. A nonlinear function general enough to include the effects of feeding saturation 
and intraspecific consumer interference is used to represent the transfer of material or energy 
from one trophic level to another. The function agrees with some recent experimental data 
on feeding rates. A model using this feeding rate function is subjected to equilibrium and 
stability analyses to ascertain its mathematical implications. The analyses lead to several 
observations; for example, increases in maximum feeding rate may, under certain circum- 
stances, result in decreases in consumer population and mutual interference between consumers 
is a major stabilizing factor in a nonlinear system. The analyses also suggest that realistic 
classes of consumer-resource models exist which do not obey Kolmogorov's Criteria but are 
nevertheless globally stable. 

Key words: Consumer-resource models; Kolmogorov Criteria; limit cycle; predator-prey 
relation; trophic interaction. 

INTRODUCTION 

Development of ecosystem models has become an 
increasingly active area of research in ecology. The 
models produced almost universally consider con- 
sumer and macrodecomposer processes involving 
trophic interactions between components of the sys- 
tem. As a result of intensive modeling efforts, par- 
ticularly within the International Biological Program, 
numerous mathematical expressions have been pre- 
sented to simulate feeding relationships. Few of 
these expressions have been subjected to analysis 
sufficiently detailed to provide a clear understand- 
ing of the implications of the mathematical formu- 
lation of the model. As ecosystem models begin to 
be applied to environmental problems, it will become 
increasingly important to investigate the mathe- 
matical properties of individual functions in the 
models. 

The earliest expressions for trophic interaction 
(Lotka 1925, Volterra 1928) considered the feeding 
rate, F, as directly proportional to the product of 
the magnitudes of consumer supply, x2, and food 
supply, xi, 

F=fx=x2 (1) 

where f is a proportionality constant. The magnitudes 
were ordinarily expressed as numbers of individuals, 
but a similar relationship applies for units of bio- 
mass per unit area. Extensive analyses are available 
for models utilizing Eq. (1) (e.g., Goel et al. 1971). 

However, this formulation has serious conceptual 
shortcomings, as pointed out by Smith (1952) and 
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Minorsky (1962). Equation (1) appears inadequate 
under conditions of abundant food supply where 
feeding rate should become proportional only to the 
consumer population, x2. When food is super- 
abundant, consumers will feed at a maximum rate 
per unit consumer biomass, and further increases 
in food supply will not be reflected in increased 
feeding rates. Therefore, modifications of Eq. (1) 
have been suggested (Ivlev 1961, Gallopin 1971a, b) 
of the form 

F=fx2(1-e-cxl) (2) 

where f and c are constants. An alternative ex- 
pression, 

F =fxx21/(C + XI) (3) 

where f and c are constants, has been offered by 
Watt (1959) and Holling (1959a) and has recently 
been examined in the more general case where 
multiple food species are present (Marten 1973). 
Equations (2) and (3) both permit feeding rate to 
become proportional to consumer populations as 
food supply becomes abundant. Gallopin (1971a, b) 
has provided a mathematical analysis of a model 
utilizing Eq. (2). 

Equations (2) and (3) extend the range of values 
for xl and x2 over which the feeding term is realistic. 
However, situations can occur in which consumer 
population density increases, but F will not increase 
proportionally as a result of mutual interference be- 
tween consumers. Predation efficiency therefore 
decreases. Experimental studies on the feeding of 
the ciliate Woodruffia metabolica on species of 
Paramecium (Salt 1967) and Didinium nasutum on 
Paramecium aurelia (Salt 1974) indicate that feed- 
ing rates per unit consumer, Fix2, react strongly to 
changes in the density of the consumers. The reasons 
for this are not understood and may result from 
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behavioral characteristics. As Salt (1967, 1974) 
points out, such dependence of Fix2 on x2 is likely 
to be a general phenomenon. Hassell (1971) has 
shown that the searching efficiency of the insect 
parasite, Nemeritis canescens, decreases at high para- 
site densities. This appears to be primarily a result 
of mutual interference. Wynne-Edwards (1962) 
provides numerous examples of intraspecific social 
behavior, many of which appear to cause a depen- 
dence of Fix2 on consumer density. 

Therefore, both on intuitive and experimental 
ground, dependence of Fix2 on x2 is suggested. 
However, the feeding rate, F, defined by Eq. (2) 
or (3) has the property that Fix2 is independent of 
x2. It follows that a more general formulation, of 
F is necessary. 

INCLUSION OF CONSUMER INTERFERENCE 

The term introduced in this paper differs from the 
above-mentioned models by including negative effects 
of increased consumer biomass on the feeding rate. 
A model of two-species interaction based on this 
term is analyzed. The equilibrium values and sta- 
bility of the system are studied as functions of the 
parameter values of the model, and the ecological 
significance of the observed relations is discussed. 

A term which is simple enough for detailed 
analysis yet which might adequately simulate many 
cases of trophic interaction characterized by con- 
sumer interference is the following: 

F = f12x1x2/(b2 + x2 + W12xI) (4) 

where f12, b2, and W12 are parameters of the model 
measured in units of time-', consumer population 
density, and consumer population density/food pop- 
ulation density, respectively. The food and consumer 
populations, xl and x2, may be measured either in 
units of density of individuals or density of biomass. 
The parameters of Eq. (4), discussed in detail below, 
will be considered as constants throughout our 
analyses. Application of Eq. (4) to real situations 
would require that the parameters be expressed as 
functions of environmental variables such as tem- 
perature or population characteristics such as age 
structure. 

We present the trophic interactions function as 
an empirical relationship and, therefore, we will not 
make an attempt to derive the term. The parameters 
of the term can be evaluated by fitting the term 
to experimental data. We have found the function 
to be consistent with the data of Salt (1974) for 
Didinium nasutum feeding on Paramecium aurelia. 

The parameters can be interpreted ecologically 
by examining what happens to the trophic inter- 
action function as each of the terms in its denomi- 
nator becomes large relative to the other terms. 

The parameter W12 is an empirical weighting 
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FIG. 1. Feeding rate per unit consumer density, Fix,r 
vs. food density, x. F/x2 approaches a different limiting 
value, as x2-f 00, for each of two arbitrarily selected 
parameter values, W12*, and Wi,**. 

factor which is a measure of the abundance of food 
relative to the consumer population and the en- 
vironment in which the food and consumer interact. 
If WI2X1 > b2 ? X2, then food is superabundant; 
i.e., an increase in food density, xl, will not increase 
the rate of feeding per unit consumer, FiX2. For 
this condition, F/xr2 is a constant equal to .12/W12. 
Hence, if we examine feeding rate per unit con- 
sumer as a function of food density for different 
values of W12 (Fig. 1), we note that as W12 in- 
creases, feeding rate per unit consumer saturates at 
lower food densities and the maximum value of 

F/X2 decreases. 
If consumer population density, x2, is increased 

while the food population density, XI, is held con- 
stant, then when X2 > W12x ?l b, the trophic inter- 
action term, F, becomes Jl2xO, a linear donor- 

dependent function where 112 is the rate constant. 
Also, the feeding rate per unit consumer population 
density varies inversely with consumer population 
density (Fig. 2). If this behavior is a result of 
mutual interference among consumers, then this 
mutual interference is affected by food density as 
well as consumer density, since X2 must be much 
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FIG. 2. Feeding rate per unit consumer density, Fix2, 
vs. consumer density, X2. The limiting value of Flix2 as 
X2 .-> 0 is a function of x1. Flx2, --> 0 as X2 -> co.- 
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greater than W12 xl before mutual interference be- 
comes most effective in reducing the feeding rate 
per unit consumer. 

The parameter f12 can be determined directly by 
measuring feeding rate at high consumer population 
densities. If f12 has been determined, W12 can be 
estimated by measuring feeding per unit consumer 
at high food densities. 

The parameter b2 relates the densities of food and 
consumer to the environment in which they interact. 
If the b2 parameter were not present in the de- 
nominator of the trophic interaction term (Eq. 4), 
then the feeding rate per unit consumer, F/x2, would 
be solely a function of the relative densities of food 
and consumer populations, xl/x2, and independent 
of the absolute densities of the populations. The 
feeding rate per unit consumer density should de- 
pend on the absolute as well as the relative densities 
of the populations. Feeding rate is affected by 
whether food and consumer densities are high or 
low within the environment in which interaction 
occurs. For instance, even if the weighted density 
of food, W12x1, greatly exceeds the consumer den- 
sity, x2, the food may not be superabundant to the 
consumer unless the density of food is high within 
the environment. The magnitude of b2 is a measure 
of the abundance of food and consumer relative to 
the environment in which they interact. When 
b2 > W12xI + x2, the trophic interaction term, F, 
becomes functionally identical to the standard Lotka- 
Volterra interaction term (Eq. 1). 

In order to investigate the behavior of an eco- 
logical model based on Eq. (4), it is necessary to 
incorporate the trophic interaction term into a set 
of differential equations which expresses the rate of 
change of trophically related populations. Analyses 
are performed on the special case of a two-level, 
two-population system. 

xli= [al- b2 + x + W12X1 

-K1(xl, X2)X1 (5) 

=~ r lf121 d - g2Xol X2 L b2 + x2 + W12x1 2 

_K2(X1,X2)X2. (6) 

The feeding input to species one is alxl; that is, 
species one is assumed to feed on an autotroph in 
abundant supply. The parameter e12 is a conversion 
factor measured in units of population density of 
species two/population density of species one. The 
conversion factor equals the fraction of species two 
produced per unit of species one as a result of a 
predation event. In the numerical calculations in the 
text, we assume that the conversion factor cannot 
exceed unity. This is obviously true when population 

densities are measured in quantities that are con- 
served, such as energy or biomass. However, for 
a nonconserved quantity such as number of indi- 
viduals, it is possible that the conversion factor could 
exceed unity. The analytical inequalities related to 
stability that are derived in the next section are valid 
for all values of e12 > 0. 

The parameters di and gi are measured in units 
of time-' and (time X population density of species 
i)-', respectively. The parameter di is the rate con- 
stant for linear (i.e., density-independent) non- 
predatory losses of population i. The parameter gi 
is the rate constant for quadratic (Verhulst, density- 
dependent) nonpredatory losses of population i. The 
use of a quadratic loss term produces a sigmoid 
growth curve for x] in the absence of predation. If 
the populations are measured in units of individuals, 
then nonpredatory losses would only refer to mor- 
tality. If the units were biomasses, then the losses 
would include other processes, such as respiration. 

The parameters di and gi can be determined by 
considering the nonpredatory loss rate per unit pop- 
ulation density, di + gixi. As xi approaches zero, 
the loss rate per unit population approaches a con- 
stant di, which is the density-independent loss rate. 
The parameter gi is the slope of the line showing 
increasing loss per unit population density with in- 
creasing density, xi. Both parameters can therefore 
be estimated from linear regression of nonpredatory 
loss rate per unit population density as a function 
of population density. Note that the estimation of 

gi does not depend on the measurement of a param- 
eter corresponding to carrying capacity of the en- 
vironment, a measurement which is difficult or 
impossible to make for most situations. 

MATHEMATICAL ANALYSIS 

The major goal of this and the next few sections 
is the determination of the biomass equilibrium 
values, xI* and x2*, and stability of the system. 

Investigation of the pair of nonlinear Eq. (5) and 
(6) is most conveniently carried out in a two- 
dimensional state space in which xl and x2 form 
the coordinate axes. 

The mathematical analysis of Eq. (5) and (6) that 
follows will lack generality only in that the g2x2 
term, representing intraspecific density-dependent 
effects on the consumer, will be considered negli- 
gible; however, its qualitative effects will be con- 
sidered. If x] represents herbivores and x2 represents 
carnivores, it seems valid to assume that food is the 
principal limiting factor on x2 (Hairston et al. 1960). 

From Eq. (5) and (6) it is obvious that the co, 
ordinate axes are zero isoclines, curves in the state 
plane where the derivative of one or the other of 
the variables vanishes. But the most important zero 
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FIG. 3. State plane diagrams. (a) is appropriate to 
Eq. (7) and (8) when the maximum possible feeding 
rate by x2 on xi is greater than the intrinsic growth rate 
of xi (fl, > a, - d1). (b) is appropriate to the case when 
Eq. (9) is used as the trophic interaction term. In both 
cases g2 is assumed negligible. K1 and K2 are abbreviations 
for K1(x1,X2) and K2(x1, x2); note they alternate signs in 
the four regions defined by the zero isoclines K1 = 0 
and K2 = 0. A, B, C, and E are defined in the text and 
P denotes the position of the peak of the K1 = 0 isocline. 

isoclines characterizing the state plane are the 
following: 

K1(xl, X2) = 0 

X2 f2 - a, + di + glxl() 

and 

K2(X1, X2) = 0 

x2 -b2 + (1/d2) (el2f12 - W12d2)xI. (8) 

The zero isoclines divide the plane into regions in 
which the variables xl and x2 are either increasing 
or decreasing (Fig. 3a and 4). 

When f12 > a, - d, (which means that the maxi- 
mum feeding rate by x2 is greater than the intrinsic 
growth rate of xl), the isoclines (Fig. 3a) are similar 
to those pictured by Rosenzweig (1971) (see his Fig. 
1 and our Fig. 3b). One noticeable difference is 
the slope of the line defined by K2(xl,x2) = 0. In 
Rosenzweig's model this isocline is represented by 
xl = C, where C is a constant. This latter behavior 
is characteristic of models where the feeding rate, 

fI2X1X2/(b2 + X1), (9) 

of Holling (1959a) and Watt (1959) is used. The 
positively sloping curve of the K2(x1,x2) = 0 iso- 
cline in our model reflects the additional effects of 
consumer interference. 

If the intrinsic growth rate of the food is greater 
than the maximum consumption rate of x2 (i.e., 
f12 < a, - dl), there exists a certain minimum level, 
xIl=-(a, - d- - f12)/gl, below which the equilibrium 
density of species one cannot fall (Fig. 4). 
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FIG. 4. State plane diagram appropriate to Eq. (7) 
and (8) when the maximum possible feeding rate by 
x2 on xl is smaller than the intrinsic growth rate of 
xl (f12 < a, - di). K1 and K2 are abbreviations for 
K,(x1,x2) and K2(xI,x2). A, B, C, and E are defined in 
the text and x2 .- o as xi approaches D from the right. 

BIOMASS EQuILIBRIA 

The point at which the two zero isoclines inter- 
sect (Fig. 3 and 4) is the biomass equilibrium point, 
denoted by E = (xl*,x2*). There are several other 
important points on the graphs at which the isoclines 
intersect the coordinate axes or approach asymptotes. 
These are noted in Fig. 3 and 4 and are easily de- 
rived from Eq. (7) and (8): 

KJ A) = A 2-(al - dl) (lOa) 

K1(B, 0) = O B = (a - dl)/g (lOb) 

K2(C, 0) = O C = d2b2/(el2f12- W12d2) (IOC) 

for f12 < a, - dl, 

X2 ->oo as x->D = (al-di-f12)/g1 (lOd) 

Points B and 0 in Fig. 3 and 4 are also equilibrium 
points, since both derivatives vanish. However, B 
represents a condition where x2 is extinct and 0 
represents a condition where both xl and x2 are 
extinct. In this paper, we will confine our discussion 
to the properties of E. 

Examination of Fig. 3 and 4 leads to the following 
conclusion: for the equilibrium point E to exist in 
the first quadrant (xI* > 0, x2* > 0), it must be 
true that both 
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FIG. 5. Equilibrium biomasses xii' and x2,' as functions of parameters of the model. Each of seven parameters 

,is varied; in the graphs where particular parameters are not varied, they have the values (in arbitrary units): 
a:, - di~ = 2.0, g. -_ 0.002, g2 =0.0, f12 = 2.6, e12 = 0. 6, W,2= 1.0, d2= 1.0, and b2 =10- Hatched regions represent 
parameter values for which x2 becomes extinct. Dotted regions represent parameter values for which equilibrium point 
is unstable and a stable limit cycle solution exists. 

el2f12 > W12d2 (1la) 

and 

B > C. (lib) 

Ecologically, (lla) asserts that maximum conver- 
sion by x2 must be greater than respiration and mor- 
tality. The second inequality can be interpreted to 
mean that, in the presence of abundant prey, the 
rate of increase in predator density resulting from 
feeding must exceed the loss rate caused by mor- 
tality. These are obvious constraints, but they verify 
that the model is reasonable. 

Biomass equilibrium can be expressed analytically 
from Eq. (7) and (8): 

a, - d el2f12 -W12d2 

2X 1 = gje12) 

+ [1 
- 

d1 el2f12-W12d2) 2 

4b2d2 1. 

gje12 (12a) 

(a, - d,- glxl*) (b2 ix* X2 = ( 1 / 1 glxl ) (b2 + W12Xl*) (12b) 

We examine the effects on the equilibrium values 
of variations of the model's parameters (Fig. 5) by 
choosing a set of values for the parameters and then 
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varying each parameter while holding the rest con- 
stant. 

Intrinsic Growth Rate, aj-dl (Fig. 5). 

An increase in a, - dl, the intrinsic growth rate 
of xl, while the ,other parameters are held constant 
is accompanied by an increase in the value of the 
equilibrium point xj*. Because of the coupling 
through predation, x2* increases as well, though at 
a slower rate. There is a value of a, - d, below which 
E does not exist; at this point the equilibrium bio- 
mass of x2* goes to zero. There is also a range of 
values of the intrinsic growth rate for which E is 
unstable. What is very interesting is that E is stable 
for values of intrinsic growth rate both below and 
above this range. (It will be shown later that if E 
exists, the equations are globally stable; hence, when 
E is unstable, there exists a stable limit cycle.) 

Density-dependent Mortality and Respiration, g, 
(Fig. 5). 

As g, is increased, the density-dependent feedback 
on xl increases, and both xj* and x2* decrease. 
There is a value of g, at which x2* goes to zero and 
above which E vanishes. Since a, - d, and g, are 
closely related to the so called "r" and "K" param- 
eters, respectively, connections can be drawn be- 
tween our results and the extensive body of knowl- 
edge on r and K parameters. 

Feeding Parameter, f12 (Fig. 5). 

There is a value of f12 at which x2* is zero and 
below which E does not exist. As f12 increases above 
this value, xj* decreases monotonically whereas x2* 
increases at first and then decreases; the equilibrium 
point eventually becoming unstable. The criteria 
for such instability is discussed in the next section. 
The reason for the peak in x2* has to do with the 
nature of the feedback relationship between xl and 
x2. The population of x2 which can be sustained 
depends on xl and f12, which Holling (1959b) would 
call "basic" and "'subsidiary" components, respec- 
tively. If f12 is increased to a large enough value, 
x1* decreases significantly and, through feedback, 
causes x2* to decrease. There is a particular value 
of f12 for which a maximum value of x2 exists. 

Mortality and Respiration Rate, d2 (Fig. 5). 

There is a value of d2 below which E is unstable; 
an increase in d2 above this value causes both xi* 
and x2* to increase. The fact that x2* increases as 
its rate of loss increases is counterintuitive but can 
be explained in terms of feedback from xi*. An 
increased loss rate of x2 allows xj* to reach high 
population levels, which is of net advantage to in- 
creased x29 As d2 exceeds a certain value, how- 

ever, the increased attrition begins to reduce x2* . 

Again, there is a particular intermediate parameter 
value which maximizes x2*. If d2 is continued to 
be increased, eventually x2* goes to zero. 

The last two results may be of importance to both 
ecological theory and the practical problems of re- 
source management. An increase in the mortality 
rate of a species, or a decrease of its maximum 
feeding rate, can, according to this model, lead to 
an increase in the equilibrium biomass of the species 
in question. The fact that there is a value of f12 

for which x2 is maximized is suggestive of the 
"prudent predator" concept of Slobodkin (1962); 
it is advantageous to x2 not to overexploit xl. The 
increase in x28 with increased d2, over certain ranges, 
indicates the complex effects that feedback intro- 
duces into predator control. A one-species model 
would not show this. 

Conversion Efficiency, e12 (Fig. 5). 

As the efficiency of conversion increases from 
zero to unity, a point is reached where species x2 
can exist. Continued increase of efficiency causes 
xl* to decrease while x2* first increases then levels 
off and decreases. The same type of feedback 
mechanisms discussed in connection with f12 is at 
work here in causing the peaking effect in x2*. 

Food Weighting Factor, W12 (Fig. 5). 

Increasing W12 is assumed, in this model, to cor- 
relate with lowering the food density at which feed- 
ing saturation occurs and the feeding rate per unit 
consumer at which saturation occurs for high food 
densities. As W12 increases from zero, xj* increases, 
since the feeding rate per unit consumer population 
is decreased. The equilibrium point x2* increases 
initially due to increasing xj* and then decreases 
due to decreased feeding rate per unit consumer. 
Finally a point is reached where x2* goes to zero. 

Normalization Coefficient, b2 (Fig. 5). 

As b2 increases, it causes an increase in xj* and 
a decrease in x2* since it increases the denominator 
of the trophic interaction term. In biological terms, 
an increase in b2 decreases the abundances of food 
and consumer populations relative to the environ- 
ment in which they interact and thus decreases the 
magnitude of the trophic interaction. 

The model based on (9) can be shown to exhibit 
some of the same behavior as ours does, for example, 
in the peaking of x2*. However, one strong differ- 
ence is in the behavior of xl- [using (9) in place 
of Eq. (4) in Eq. (5) and (6)] given by 

xj* = (b2d2)/(e12f12- W12d2). (13) 

This expression would indicate that xj* is indepen- 
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dent of both the intrinsic rate of growth, a, - dl, of 
xl and its density-dependent parameter, gl. Thus, 
xl* is completely determined by consumption pa- 
rameters. This seems an unlikely situation in nature. 
There is abundant evidence, given by Errington 
(1967) and Wynne-Edwards (1962) among others, 
that the equilibrium density of many animal popu- 
lations is closely related to the carrying capacity of 
the environment. The equilibrium density of many 
opportunistic species should bear some relation to 
their growth rates. This information is not embodied 
in the simpler equation. The more general term, 
Eq. (4), appears to be more realistic because it 
predicts a dependence of x1* on a, - d, and g, as 
well as on the predation parameters. 

STABILITY OF THE EQUILIBRIUM POINT 

The equilibrium point is asymptotically stable if 
the system tends to return to equilibrium as t -o oo 
following a minor perturbation. The conditions 
under which E is asymptotically stable can be de- 
rived by expanding the derivatives xl and x2 about 
E and examining the eigenvalues of the resulting 
linear equations. 

The equilibrium point is asymptotically stable for 
those situations where the real parts of both eigen- 
values are negative. The eigenvalues are given by 

,2 =S.{ (X*+ aK2*) + [,(alXl* + aKX2*)2 

_K2 aKa * K2 aK} 
aXl aX2 ax2 aXl 

where 
aK1/ax, = - *2gf2 W12X2*- 91, (15a) 

aK1/ax2 =-a*2 fti2(b2 + W12xI*), (15b) 

aK2/ax1 = a*2e12f12(b2 + X2*), (15c) 

aK2/ax2 =-a*2e_2f l2Xl*, (15d) 
and 

1.0/(b2 + X2* + W12XI*)2. 

Examination of equation set (15) indicates that the 
following inequalities are always true: 

aK,_ < aK2 > 0, aK2 O. 
aX2 ' ax, aX2 

Hence, E will be asymptotically stable for those 
sets of parameters for which the inequalities 

aK1_ aK2 
axI + a2x2 < O (16) 

and 

aK1 aK2 aK2 aK1 
axl ax2 aXl a(X2 

are satisfied at the point (xI", x2*). The latter con- 
dition (17) is automatically satisfied if Kolmogorov's 
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FIG. 6. Computer simulation of Eq. (5) and (6) for 
parameter values (in arbitrary units): ai - d 2.0, 
f12 =6. 0, e12 =0.4 W12 =1.0, gi 0.002, g2 =0.0, 
Apeni2.5, and b2 =f10. For these values the equations 
describe a limit cycle. In (a) the time behavior of xi 
and X2 is plotted. In (b) the corresponding state plane 
diagram is exhibited. 

Criteria hold. Kolmogorov's Criteria are useful tools 
in the analysis of sets of nonlinear equations like 
Eq. (5) and (6) (see Appendix I). If these criteria 
are satisfied, an equilibrium point, E, exists and the 
equations are globally stable; that is, no perturbatiohb 
can cause one or both variables to become negative 
or to approach zero asymptotically with time. In 
our model Kolmogorov's Criteria hold except for 
some cases explicitly accounted for below and in 
Appendix I. Therefore, the system is always globally 
stable, implying that neither species can become 
extinct. If (16) is true, the equilibrium point is also 
"locally" stable in the sense mentioned at the be- 
ginning of this section. If (16) is not true, the local 



888 D. L. DEANGELIS ET AL. Ecology, Vol. 56, No. 4 

instability of E will develop into a stable limit cycle 
(Fig. 6). 

In terms of the model's parameters, (16) becomes 

f12[W12 -elXlX* 
g-:*< (8 

(b2 + X2* + W12Xi*)2 -g1x1* <0 (18) 

which is a necessary and sufficient condition for 
stability. Examination of (18) shows that a sufficient 
condition for E to be stable is that the conversion 
efficiency exceeds the weighting factor, 

e12 > W12. 

Since e12 < 1, this requires that W12 be less than 
unity. 

A second condition sufficient for stability is 

aK1/ax, < 0. 

Inspection of Fig. 3 and 4 shows that this inequality 
is always true when f12 < a - dl, and also for 
fl2 > a, - d1 when the equilibrium point, E, lies to 
the right of the peak, P (Fig. 3a). Models based 
on (9) can show unstable equilibria. If Kolmo- 
gorov's Criteria are satisfied, the unstable equilibria 
are evidence of stable limit cycles. Such systems 
have state plane diagrams of the form illustrated in 
Fig. 3b. Rosenzweig (1973) proved that state plane 
configurations of this form are stable for all equi- 
librium points to the right of P and unstable for all 
equilibrium points to the left of P. In our model, 
equilibrium points to the left of P may or may not 
be stable, depending on whether or not inequality 
(18) is satisfied. The algebraic stability criterion, 

{[Wl2fl2x2*xl*]/[(b2 + W12Xl*)2]}- gXl* < 0, (19) 

for the interaction term (9) can be compared to 
the new stability criterion, (18). The factor 
W2- e12 in (18) increases the range of parameters 
over which the system is stable. Thus, mutual in- 
terference between consumers, which reduces con- 
sumption efficiency as x2* increases, leads to 
increased stability of the system. It is less likely, 
therefore, that limit cycle oscillations will occur. 
Models based on (9) may seriously overestimate 
the probability of limit cycles. 

Inequality (18) contains all information concern- 
ing stability of the system as a function of parameter 
values. Since xj* and x2* are functions of the 
parameters, this expression is more complex than it 
appears. To consider the effects of variations of 
all the parameters, one should imagine a multi- 
dimensional space in which the parameters form the 
coordinates. For regions in that space in which in- 
equalities (lla), (llb), and (18) are true, there 
exists a stable equilibrium point. For regions where 
(lla) and (llb) hold but (18) does not, the 
equilibrium point is unstable but the solution con- 

verges to a stable limit cycle (Appendix I). If either 
(lla) or (llb) is violated, then the equilibrium 
point, E, does not exist, x2 goes extinct and the 
system is unstable. Intuitive feelings about stability 
lead us to classify the system when limit cycle solu- 
tions exist to be qualitatively less stable than when 
there is a stable equilibrium point. As May (1972) 
points out, limit cycle trajectories often approach 
the coordinate axes so closely that one would ex- 
pect that in a real system x2 would become extinct. 

Since it is impossible to display conveniently more 
than two dimensions, the results presented are in 
the form of two-dimensional projections, with f12 

plotted on the abscissa and other parameters plotted 
on the ordinate (Fig. 7). 

A most intriguing feature is revealed in Fig. 7; 
for most of the parameters there are regions where, 
for a given f12, there exists a range of parameter 
values for which the equilibrium point is unstable, 
bounded on both ends by ranges where the equi- 
librium point is stable. If the system lies in this 
type of region, then the equilibrium point can be 
made stable by both increasing and decreasing a 
single parameter while holding the other parameters 
constant. For example, consider the weighting fac- 
tors, W12. If f12 = 4.0, then the equilibrium point 
is unstable in the range .64 < W12 < 1.5 and stable 
in the ranges 0.0 < W12 < .64 and 1.5 < W12 < 2.4. 
Assume that W12 = 1.0, then the equilibrium point 
is unstable. The equilibrium point can now be 
stabilized by either increasing or decreasing W12 
while holding the other parameters constant. 

Such regions, as described above, may give rise 
to misleading interpretations of simulation results 
of complex nonlinear ecosystem models. "Sensitivity 
analysis" is a method frequently employed to under- 
stand the significance of parameters in complex 
ecosystem simulation models. In this method, after 
parameter values are determined on the basis of 
how well the model simulates either experimental 
data or the ecologist's intuitive feelings about how 
the system operates or some combination of the 
two, individual parameters are varied in order to 
assess how the parameters effect the simulation. 
Let us assume that this method is being applied to 
a total ecosystem model which contains trophic 
interactions employing the nonlinear term introduced 
in this paper and that a weighting coefficient, W12, 
has been chosen to be varied. Assume that, under 
the initial setting of the parameters, the system is 
in a region of parameter space that is analogous to 
fl2 = 4.0, 1.5 < W12 < 2.4 in Fig. 7. If W12 is 
decreased gradually, the behavior of the system 
changes from an asymptotically stable equilibrium 
point to an unstable equilibrium point. At this stage 
it might be concluded that decreasing W12 (i.e., 
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removing the effect that when food becomes 
superabundant, the feeding rate per unit consumer 
population saturates) decreases stability, and the 
sensitivity analysis of W12 would be terminated. How- 
ever, in reality, lower values of W12 would have re- 
established the stability of the equilibrium point; in 
fact, the greatest range of the feeding rate constant, 
f12, for which both the system and the equilibrium 
point are stable occurs when W12 = 0. The above 
discussion demonstrates the desirability of applying 
analytical techniques to the major components of 
complex simulation models. 

Because of the existence in parameter space of 
regions of an unstable equilibrium point surrounded 
by regions of a stable equilibrium point, it is difficult 
to make generalizations about how minor changes 
in the values of parameters will alter the basic sta- 
bility of the system. One can conclude that, for a 

given f12' there are always values of W12, gl, b2, and 
d2 above which x2 becomes extinct. The greater f12 
is, the greater are W12, gl, b2, and d2 at which the 
extinction of x2 occurs. The upper bounds on global 
stability placed by W12 and b2 are a result of limit- 
ing the consumption rate to levels below which x2 
can be supported. The upper bound placed by g, 
is a result of limiting the population of xl to levels 
below which x2 can be supported. The upper bound 
placed by d2 is a result of increasing the rates of 
mortality and respiration of x2 to the point where 
they can no longer be compensated by feeding on xl. 

It has already been pointed out that when W12 is 
allowed to vary, then the greatest range of f12 for 
which both the equilibrium point and the system 
are stable occurs at W12 = 0. This indicates that 
saturation of feeding rate per unit consumer popu- 
lation for high food densities is not a stabilizing 
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mechanism in the model. The major factor in the 
trophic interaction term that stabilizes the model is 
the mutual interference between consumers as ex- 
pressed by the consumer population density in the 
denominator. 

As W12 decreases, Eq. (5) and (6) approach the 
form of linear, donor-dependent equations for a 
wide range of values of xl and x2; that is, 

f12x2x1/(b2 + W12X1 + X2) *f12X 

for a wider range of the variables. Since linear, 
donor-dependent systems are stable, one might ex- 
pect nonlinear systems to exhibit increasing stability 
when they approach this condition. The result is 
also suggestive of situations for which linear, donor- 
controlled models are a reliable assumption; i.e., 
feeding rate of consumer population is limited by 
abundance of food supply. 

The effects of g, and b2 on stability are similar. 
For increases in either g, or b2, both the width of 
the region in which the equilibrium point is stable 
and the width of the region where x2 becomes 
extinct increase monotonically. Considering that the 
rate of increase in the width of the former is greater 
and that a stable equilibrium point implies quali- 
tatively a more stable system than a stable limit 
cycle, increases in g, and b2 can be considered to 
enhance the stability of the system. 

Another general observation that can be made 
from Fig. 7 is that increasing the feeding rate con- 
stant, f12, expands the range of the other parameters 
for which a stable limit cycle exists. Wiegert and 
Owen (1971) have pointed out that in terrestrial eco- 
systems, it is often true that f12 > a, - d,; i.e., the 
maximum consumption rate of an herbivore popula- 
tion, especially insects, is much greater than the 
growth rate of the dominant autotrophs, trees. How- 
ever, insect control by predation or density-dependent 
mortality would tend to stabilize such systems and 
prevent limit cycle behavior. 

It should be cautioned that, although the prop- 
erties of the parameters discussed in connection with 
Fig. 7 seem to be true rather generally, not all com- 
binations of parameter values have been explored, 
and contrary behavior is possible in some regions 
of parameter values. 

NONZERO VALUES OF g2 

When consumer mortality includes intraspecific 
density-dependent effects (i.e., g2 > 0), Kolmogorov's 
Criteria are no longer satisfied (see Appendix I) 
and it would appear that global stability of the sys- 
tem cannot be proven. However, a detailed study 
shows that inclusion of nonzero g2 can only increase 
both the local stability of E and the global stability 
of the system. 
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FIG. 8. State plane diagram which can occur when 
g2 > 0. There are three equilibrium points. E3 is always 
stable. E2 is always unstable. Et may or may not be 
stable, depending on whether conditions (16) and (17) 
are or are not satisfied at E1. 

If the K2 - 0 isocline intersects the K1 = 0 iso- 
cline to the left of its peak, there is the possibility 
that three equilibrium points can exist, as pictured 
in Fig. 8. The equilibrium point on the right-hand 
side of the peak is, of course, stable, while the point 
farthest left may be stable or unstable. Since Kol- 
mogorov's Criteria are not satisfied, inequality (18) 
cannot be used alone but only in combination with 
(17) to determine the stability of this point, but its 
likelihood of being stable increases with increasing 
values of g2. The middle equilibrium point is always 
a saddle point and, therefore, unstable. 

CONCLUSIONS 

This paper has introduced a trophic interaction 
model suitable for a wider range of ecological con- 
ditions than previously published models. To increase 
the utility of this model as a component of eco- 
system models, extensive analysis was performed to 
make the behavior of this trophic interaction term 
explicit and to illustrate what behavior could be 
expected of a larger-scale model which employed 
this function as a component. As large-scale eco- 
system models are produced, the critical problem 
becomes our lack of ability to analyze and under- 
stand the total model, which may contain scores of 
parameters. In order to understand the behavior 
of the total system model, a clear understanding of 
the behavior of its major component parts and their 
interactions is valuable. 

Analysis of the model revealed several ecological 
implications, some specific to the model and some 
not. Since these implications may indicate the use- 
fulness of model analysis for increasing our under- 
standing of system behavior, they are summarized 
here. (1) In a two-consumer system, the biomass 
of the higher trophic level may display counter- 
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intuitive behavior as a function of some of the pa- 
rameters. Increases in feeding rate and in con- 
version efficiency and decreases in mortality plus 
respiration of the higher trophic level may, under 
certain circumstances, result in a decrease rather 
than an increase of x2 (2) The assumption of de- 
creased feeding per unit consumer population with 
increased consumer population density leads to 
increased system stability. (3) The decrease in 
feeding rate per unit consumer population as a 
result of mutual interference between consumers is 
a more effective mechanism for producing stability 
than is the saturation of feeding rate per unit con- 
sumer population density for superabundant food 
supplies. (4) If the maximum consumption rate 
per unit food biomass, f12, is less than the intrinsic 
growth rate of the food, a, - dl, there is some mini- 
mum value below which the equilibrium food supply 
cannot be decreased, no matter how large the con- 
sumer population is. (5) Increasing values of the 
density-dependence factors, g, and g2, tend to sta- 
bilize the system. The argument over the rela- 
tive importance of density-dependent and density- 
independent population control has been active for 
a number of years (Nicholson and Bailey 1935, 
Smith 1935, Andrewartha and Birch 1954). The 
present analysis suggests that populations with domi- 
nant density-independent mechanisms will tend to 
destabilize a system. Such populations might occur 
in highly stable natural systems, such as complex 
forest communities, where their destabilizing effect 
is suppressed naturally and kept from disrupting the 
entire system. (6) Kolmogorov's Criteria are useful 
in the formulation of globally stable species inter- 
action models. However, globally stable models can 
be formulated which violate the criteria. 

It should be kept in mind that some of these con- 
clusions are implications of the particular model 
presented here and do not necessarily have general 
validity. This model, like any other model, presents 
a hypothesis about the real system which, provided 
its basic assumptions are kept in mind, is useful in 
increasing our understanding of complex systems. 
A major theme of the paper has been development 
of a thorough understanding of the properties of 
the model. This is just as important as a well- 
motivated formulation. In elucidating the behavior 
of the model as fully as possible, one hopes to 
evaluate its strengths and weaknesses. Where the 
model conflicts with observations, or where hypoth- 
eses generated by the analysis are proven incorrect, 
one can more easily determine the invalid assump- 
tions which must be modified. It appears to us 
that such a careful analysis is required for the full 
scope of models utilized in ecosystem analysis as 
an important step in understanding a total system 

model and in demonstrating that development and 
analysis of complex models will be an increasingly 
important component in the advancement of eco- 
logical theory. 
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APPENDIX I: Application of Kolmogorov's theorem 

Kolmogorov (1936) proved that under a certain 
set of conditions the set of differential equations 

xl=K1(xl, x2)xl (a) 

x2 = K2(xl, x2)x2 (b) 

will have either a stable equilibrium point or stable 
limit cycle in the first quadrant. A limit cycle is an 
isolated closed trajectory in the phase plane (Fig. 5) 
and is stable if all nearby trajectories approach it 
as t-* oc (Minorsky 1962). Minorsky (1962) and 
Rescigno and Richardson (1967) have discussed the 
relevance of Kolmogorov's theorem to population 
dynamics modeling. In a recent paper May (1972) 
has shown that the conditions of the theorem can 

be satisfied by several hypothesized predator-prey 
models. As May notes, instability of the point of 
equilibrium has often been assumed to result neces- 
sarily in the extinction of one or both species. If 
a stable limit cycle surrounds the unstable equi- 
librium point, however, periodic fluctuations of the 
population variables short of extinction may result. 
The importance of studying the existence of limit 
cycles is that, for many systems, populations undergo 
almost periodic fluctuations in size. Such fluctua- 
tions resemble limit cycles. Both Minorsky (1962) 
and May (1972) present lucid discussions as to why 
the observed fluctuations are more likely to cor- 
respond to limit cycles than to be the well-known 
periodic solutions of the Lotka-Volterra equations. 

In this section Kolmogorov's Criteria are applied 
to the model under study, and a set of conditions 
is derived which prescribe the parameter ranges for 
which Kolmogorov's Criteria are satisfied. The 
conditions are: 

a,l- dj-f12 < ? (c) 

el2f - W12d2 > 0 (d) 

(a, - dl)) g > d2b2/(el12 - W12d2) (e) 

a*2e12f12b2xj > g2X2 (f) 

Conditions (d) and (e) are identical to (lla) and 
(llb) in the text. Although May and others (e.g., 
Rescigno and Richardson 1967) have stressed the 
importance of Kolmogorov's Criteria, ecologically 
interesting systems can also be constructed which do 
not obey these criteria. For example, Gallopin's 
model (1971 a, b), like many other models with 
extrinsically controlled inputs to the lowest trophic 
level, fails to satisfy the criteria and yet is a very 
stable system. Our model, for the case f12 < a1 - dl, 
violates condition (c), yet is stable. Inequality (f) 
is true everywhere in the positive quadrant only if 

g2 = 0. However, the model remains globally stable 
if (d) and (e) are satisfied and g2 > 0. 
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