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theropods8–11. Given this phylogeny (Fig. 4), some derived char-
acters of therizinosauroids other than Beipiaosaurus are most
parsimoniously interpreted as having evolved convergently with
some other dinosaur groups, sauropodomorphs in particular. Thus,
therizinosauroids re-evolved a robust first digit in which the
proximal end of metatarsal I articulates with the tarsals (79.1).

Feathers are complex structures. Their abrupt appearance in the
bird fossil record has been difficult to explain, mainly because no
intermediate structures are preserved in the related theropod taxa.
The integumentary filaments of Sinosauropteryx have been consid-
ered to be ‘proto-feathers’ by some, but this idea has been rejected
by others26. Such structures have not been preserved with any other
theropods26 until the discovery of Beipiaosaurus. The filamentous
structures in Beipiaosaurus are similar to, but longer than, those of
the compsognathid Sinosauropteryx. They are perpendicular to the
limb bones, and are unlikely to be muscle fibres or frayed collagen27.
Their presence in both therizinosauroids and compsognathids
indicates that there may be a broader distribution of similar
structures in theropod dinosaurs. This supports the idea that
these simple integumentary filaments may represent an intermedi-
ate evolutionary stage to the more complex feathers of
Protarchaeopteryx, Caudipteryx16 and more derived Avialae. The
absence of such structures in most theropod fossils is probably
attributable to the lack of such ideal preservation as is found in the
Yixian Formation. This again indicates that feathers preceded
flight16, because both therizinosaurids and compsognathids appar-
ently could not fly and did not descend from flying animals. M
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Figure 4 Phylogenetic relationships of Beipiaosaurus inexpectus. Beipiaosaurus

and other therizinosauroids share 18 synapomorphies, including the following

unique characters: a prominent dorsolateral shelf on the dentary (21.1), teeth that

increase in size anteriorly (25.1), tooth crowns with sub-circular basal cross-

sections that lack mediolateral compression (27.1), anteroposteriorly narrow and

dorsoventrally deep pubic peduncle of ilium (46.1 and 47.1), very deep proximal

end of manual unguals (70.1), short metatarsus (78.1) and reduced main body of

astragalus (82.1). It is less derived than other therizinosauroids because it lacks 13

characters of Therizinosauroidea (1.1, 36.1, 38.0, 43.0, 48.1, 49.1, 51.1, 52.1, 58.1, 60.0,

66.0, 77.1, 79.1), including the following unusual characters: a very small head (1.1),

the long and deep preacacetabular portion of ilium (48.1 nd 49.1) and absence of

the theropod first metatarsal (79.1).
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Population cycles that persist in time and are synchronized over
space pervade ecological systems, but their underlying causes
remain a long-standing enigma1–11. Here we examine the synchro-
nization of complex population oscillations in networks of model
communities and in natural systems, where phenomena such as
unusual ‘4- and 10-year cycle’ of wildlife are often found. In the
proposed spatial model, each local patch sustains a three-level
trophic system composed of interacting predators, consumers and
vegetation. Populations oscillate regularly and periodically in
phase, but with irregular and chaotic peaks together in abun-
dance—twin realistic features that are not found in standard
ecological models. In a spatial lattice of patches, only small
amounts of local migration are required to induce broad-scale
‘phase synchronization’12,13, with all populations in the lattice
phase-locking to the same collective rhythm. Peak population
abundances, however, remain chaotic and largely uncorrelated.
Although synchronization is often perceived as being detrimental



© 1999 Macmillan Magazines Ltd

letters to nature

NATURE | VOL 399 | 27 MAY 1999 | www.nature.com 355

to spatially structured populations14, phase synchronization leads
to the emergence of complex chaotic travelling-wave structures
which may be crucial for species persistence.

Ecological systems and their component biological populations
exhibit a broad range of non-equilibrium dynamics, from charac-
teristic natural cycles to more complex chaotic oscillations15–17. Here
we examine a common but intriguing class of ecological cycle in

which the frequency of a population remains relatively constant
over time but in which there are erratic changes in abundance. A
striking example of this is the well known hare–lynx cycle1–11.
Despite unpredictable population fluctuations from one cycle to
the next in the snowshoe hare (Lepus americanus) and the Canadian
lynx (Lynx canadensis), the overall oscillation tends to follow a tight
rhythm with a period of ,10 years11 (Fig. 1a). Hare and lynx

Box 1 The chaotic UPCA foodweb model

We used the following vertical foodweb model with vegetation (u), herbivores

(v) and predators (w):

u̇ ¼ au 2 a1f1ðu; vÞ

v̇ ¼ 2 bv þ a1f1ðu; vÞ 2 a2f2ðv;wÞ

ẇ ¼ 2 cðw 2 wpÞ þ a2f2ðv;wÞ

ð1Þ

Parameters a, b and c represent the respective growth rates of each

trophic species in the absence of interspecific interactions. Predator–prey

and consumer–resource interactions are incorporated into the equations

using either the Lotka–Volterra term, fiðx; yÞ ¼ xy, or the Holling type II term,

fiðx; yÞ ¼ xy=ð1 þ kixÞ, with strengths set by the coefficients ai. We also general-

ize the model by allowing the predator w to maintain a low equilibrium level

w ¼ wp even when its usual prey, v, is rare. This might arise when there are

alternative food sources available for the predator22, and is modelled by

linearizing the predators’ growth rate in equation (1) about the equilibrium

by using the term (w 2 wp). These equations might, for example, outline the

principal ecological transfers involved in the Canadian lynx–hare–vegetation

foodweb, whose dynamics are dependent on three vertical trophic levels3,28

and where alternative prey (such as the red squirrel) are considered to be

important for the lynx population29.

For the simulation runs reported here, we used the following parameters:

a ¼ 1, b ¼ 1, c ¼ 10, a1 ¼ 0:2, a2 ¼ 1, k1 ¼ 0:05, k2 ¼ 0, wp ¼ 0:006. f1 and f2

were taken as Holling type II and Lotka–Volterra interaction terms, respec-

tively, although different combinations have been used successfully in other

model variants. Chaotic dynamics were diagnosed from a study of the

model’s lyapunov exponent, calculated as in ref. 30.

In an N-patch system, migration to the ith patch is modelled as follows:

u̇i ¼ aui 2 a1f1ðui ; viÞ

v̇i ¼ 2 bivi þ a1f1ðui ; viÞ 2 a2f2ðvi ;wiÞ þ DSjðvj 2 viÞ

ẇi ¼ 2 cðwi 2 wpÞ þ a2f2ðvi ;wiÞ þ DSjðwj 2 wiÞ

ð2Þ

wi represents the predator population in the ith patch and D sets the

magnitude of diffusive migration summed over a predefined set of local

nearest neighbours {j}. Lattice simulations (as in Fig. 5), were obtained for free

and periodic boundaries in N 3 N lattices for N values of 20, 50 and 100, and

with coupling through 4 and 8 nearest neighbours. Results were robust to

these changes in model configuration.
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Figure 1 Time series analysis. a, Time series of lynx abundances (1821–1934)

from six regions in Canada. Data are from ref. 1. b, Reconstructed attractor of

hare–lynx system obtained by spatially averaging all regional lynx data and

embedding the resulting time-series w(t) using lagged coordinates, w(t) versus

wðt þ 3Þ versus wðt þ 6Þ after filtering and interpolating11. The dynamics of the full

three-dimensional system is reconstructed from the time series of the single lynx

variable. The attractor ‘folds’ in three-dimensional space, showing the chaotic

cycling between predator, prey and vegetation. c, Time series of model (equation

(1)) predator population w with chaotic dynamics. d, The model’s hare–lynx–

vegetation attractor, obtained by plotting u versus v versus w, has a similar

structure to that found in a.
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populations from different regions of Canada synchronize in phase
to a collective cycle that manifests over millions of square kilo-
metres1–10. Similar spatially synchronized fluctuations are seen in
many biological, ecological and epidemiological contexts and may
involve disparate animal taxa across widely separated sites7–10,18.

There are many possible explanations for spatially synchronized
population oscillations. It has been suggested that extrinsic large-
scale climatic forcing may often be responsible for entraining
populations over vast geographic distances7. Intrinsic predator–
prey and consumer–resource relationships within the foodweb,
including density-dependent and time-delayed effects, may also
generate population cycling, with local migration enhancing spatial
synchronization6,9,10. The large number of ecological processes
involved underscores the need to develop a deterministic ‘strategic
model’2 that can realistically reproduce these complex population
dynamics. A simply formulated robust tritrophic foodweb model
achieves this goal and provides the necessary framework for study-
ing ecological synchronization effects. The minimal model consists

of a three-level ‘vertical’ food chain with predators (w) feeding on
herbivores (v), which consume vegetation (u), and is described in
Box 1.

This novel skeleton model generates surprisingly complex
dynamics, including equilibrium and limit-cycle behaviour, and
large parameter ranges for which there is an interesting class of
chaotic oscillation. Figure 1c shows a time series of the predator
population (w) for a typical model run in the chaotic regime. The
predator, like all model populations, oscillates with a frequency Ω
that is practically constant12, as the community trajectory rotates at
a uniform phase rate around the ‘attractor’ (Fig. 1d). Despite this
regular rhythm in phase, the peak population abundance in each
cycle appears to be highly unpredictable. These twin features of
uniform phase evolution and chaotic amplitude (UPCA) are similar
to those of the Canadian hare–lynx system11, as is evident from
comparing their respective time series and underlying ‘attractors’
(Fig. 1). The model lynx population achieves a cycle-amplitude
variability (ratio of maximum to minimum population density) of
12–150, which is very close to recorded field values9. Although other
deterministic tritrophic models also yield chaotic oscillations4,19–21,
none reproduces both the regular recurring rhythm and the smooth
but irregular rises and falls in population abundances (the UPCA)
fundamental to equation (1) and the observed hare-lynx data.

The population model (Box 1, equation (1)) represents a single
isolated ‘patch’ or community. We add a spatial structure by
analysing a set of tritrophic UPCA patch models interconnected
by diffusive migration of strength D to form what might constitute a
‘metacommunity’22 (Box 1, equation (2)). We first examine the
mutual interaction of two different patches (u1, v1, w1) and (u2, v2,
w2) that show UPCA which, in the absence of migration (D ¼ 0),
would normally be unsynchronized. As the natural frequency Ωi

(i ¼ 1; 2) of each uncoupled chaotic community is approximately
a linear function of herbivore growth bi, in our scheme
different communities are specified by differences in bi. Thus,
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Figure 2 Model time series of predator populations in a two-patch system

(b1 ¼ 1:1, b2 ¼ 1:055) under different synchronization regimes. a, D ¼ 0:0 , Dc

(unsynchronized); b, D ¼ 0:035 . Dc (phase synchronized); c, D ¼ 0:07 . Df (full

synchronization). d, Population time series were decomposed into time-varying

phase f(t) and amplitude A(t) components (Box 2). For the two-patch system,

the relative frequencies, DΩ ¼ 100 3 ðΩ2 2 Ω1Þ=Ω1, per cent (solid line), deter-

mined using equation (3), together with the correlation r between peak population

abundances A1 and A2 (dashed line), are plotted as a function of coupling D.

Three different regimes are seen: D , Dc (left)—the patches are unsynchronized

(DΩ . 0) and slowly drifting in and out of phase, with correlation between peak

population abundances r ¼ 0; Dc , D , Df (middle)—the patches are ‘phase

synchronized’ (DΩ ¼ 0), with peak population abundances chaotic but weakly

correlated r p 1; D , Df (right)—the patches are almost fully synchronized

ðDΩ ¼ 0), with nearly identical populations and r . 1.
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Figure 3 Phase analysis. a, Phase growth in two coupled patches. D ¼ 0:

unsynchronized with linear growth in phase difference between the two patches:

DfðtÞ ¼ f1ðtÞ 2 f2ðtÞ, as described by equation (3) (Box 2); D ¼ 0:025 ¼ Dc: phase

synchronized with constant inter-patch phase difference, DfðtÞ ¼ const;

D ¼ 0:023 & Dc: just before the onset of phase synchronization (D & Dc ¼

0:025), Df is generally constant, but sporadically jumps in value as ‘phase slips’

occur12. b, Phase growth of the lynx data (from Fig.1a). For each year, the mean

phase growth f̄ðtÞ ¼ 〈fiðtÞ〉 is calculated as an average over all six regions,

i ¼ 1:6. For each region, the deviation of the phase growth from the mean

(dfiðtÞ ¼f̄ðtÞ 2 fiðtÞ) is plotted. The phase growth of the filtered sunspot data,

fs(t), in the same years (1821–1934) is compared to the mean lynx phase growth,

f̄(t), by plotting dfsðtÞ ¼f̄ðtÞ 2 fsðtÞ (Box 2).
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DΩ ¼ Ω1 2 Ω2 . b1 2 b2 is the frequency difference between two
uncoupled unsynchronized communities.

Might these chaotic foodweb systems mutually synchronize after
coupling and, if so, how? Although much is known about the
synchronization of periodic oscillators, chaotic systems are less well
understood12. Consider the two-patch UPCA model (Box 1,
equation (2)) under conditions of extremely weak coupling.
When migration between patches is less than a numerically deter-
mined critical value (D , Dc ¼ 0:025), the two patches retain their
own intrinsic chaotic dynamics, and their populations remain
completely independent and unsynchronized, both in amplitude
and phase (Fig. 2a). It can be seen and quantitatively shown (Fig. 3a;
Box 2) that the two communities cycle at different natural frequen-
cies. In contrast, relatively strong coupling (above a numerically
determined threshold; D . Df ¼ 0:053) induces a state of ‘com-
plete’ or ‘full’ synchronization23. Here, comparable populations in
different patches are identical (that is, u1ðtÞ ¼ u2ðtÞ, v1ðtÞ ¼ v2ðtÞ,
w1ðtÞ ¼ w2ðtÞ), or very close to identical, even though the dynamics
remain chaotic in time (Fig. 2c). Now the two communities entrain
one another and cycle chaotically at the same frequency.

A more unusual form of synchronization emerges at weak or
intermediate coupling levels (Dc , D , Df ). In this case, the pre-
dator populations (wi) in each patch remain synchronized or locked
in phase, but their peak population abundances appear to be

independent, having very weak correlation (Fig.. 2b). This phase
synchronization implies that populations may be synchronized only
in phase but not in amplitude12. Because of its subtle nature, phase
synchronization has been overlooked in population studies before
now, but it may be very important because it occurs in the
biologically realistic situation of weak coupling. The foodweb
model provides one illustration of phase synchronization that
closely matches the observed long-term dynamics of lynx popula-
tions (Fig. 1a). Although they are synchronized in phase, the
populations of each patch nevertheless differ by a theoretically
predicted24 time lag (t), the implications of which are discussed
below. A summary of all synchronization regimes of the foodweb
model is given in Fig. 2d.

Various realistic extensions of the foodweb model were analysed
to check the robustness of our results. For example, when the system
was simulated with hares and lynx migrating at different speeds,
phase synchronization was still achieved over wide parameter
ranges (see Supplementary Information). Given that stochasticity
is ubiquitous in natural ecologies, we examined the response of the
model to different types of noise forcing. When the parameters of
the model were selected to give a regular periodic cycle and it

Box 2 Analysing phase dynamics in model and natural time series

We devised a practical method to identify subtle forms of synchronization

in irregular or chaotic population time series. A cyclic variable

xðtÞ ¼ AðtÞ sinðfðtÞÞ may be decomposed into a time-dependent amplitude

A(t) and phase f(t), although the decomposition is non-trivial for a chaotic

signal12,13. We calculate growth in phase f in a time-varying (possibly

chaotic) signal x(t) simply by noting that the time between two successive

peaks or maxima of x(t) corresponds to an increase of 2p. Hence the

instantaneous phase f(t) at time t may be determined through linear

interpolation after calculating the local rates at which maxima occur in the

population time series. The amplitude A(t) of the signal is defined here as

the peak population abundance measured stroboscopically as each

maximum occurs.

This decomposition technique can be used for detecting phase

synchronization in two different population time series, with phases f1(t)

and f2(t), respectively. Synchronization may be observed by monitoring

the growth in time of the phase difference DfðtÞ ¼ f1ðtÞ 2 f2ðtÞ. When

synchronized, Df(t) is, on average, constant in time and the two popula-

tions lock to the same frequency (frequency difference DΩ ¼ 0). The

patches areunsynchronized (DΩ . 0) when the average phasedifference

Df(t) grows with time according to:

DfðtÞ ¼ DΩ⋅t þ t ð3Þ

where the time-lag t acts as a constant offset.

Monitoring phase evolution has many practical applications. For

example, it provides an alternative test for checking whether the sunspot

cycle entrains the hare–lynx populations5,25,26. We analysed the phase

growth of the Canadian lynx data over six geographically disparate

regions (Fig. 1) and found it to be significantly faster than the phase

growth of the sunspot cycle (P , 0:01; Fig. 3b). The average period

lengths of the lynx and sunspot cycles were determined by regression

as Tl ¼ 9:5 6 0:04 (s.e.) and Ts ¼ 11:14 6 0:015 (s.e.) years, respectively.

Hence, in the long term, sunspot activity is unlikely to be involved in the

continual entrainment of the hare–lynx cycle6,7. On the other hand, the

patterns in phase evolution between the six lynx populations were not

significantly different, indicating phase synchronization over all six

regions. In addition, the correlations between peak population abun-

dances examined over all pairs of lynx populations were weak, with

average 〈r〉 ¼ 0:3, making this synchronization akin to the phase synchro-

nization observed in the model runs above.
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Figure 4 Effects of noise and seasonality. a, Noise-induced chaos. When the

foodweb model is parametrized according to Box 1, but with b ¼ 0:2, a limit-cycle

solution results. At t ¼ 50, environmental noise was added to the parameters a, b,

c in equation (1) with, for example, a9ðtÞ ¼ að1 þ eðtÞÞ, where eðtÞ . Nð0; 0:05Þ, and

so on. The time series exhibited noise-induced chaos with the same UPCA

dynamics as the deterministic model (equation (1)) (Fig. 1c). b, Robustness of

phase synchronization to seasonal forcing. Seasonal forcing was added to the

growth rates a, b, c in equation (1) with, for example, a9ðtÞ ¼ að1 þ 0:1 sinðwotÞÞ for

the two patch model parametrized as in Fig. 2b. The frequency, wo, of the forcing

was chosen so that the intrinsic population cycle of the foodweb comprised ten

seasonal cycles. The resulting population dynamics realistically portray seasonal

dynamics, and the lynx populations (w) of the two-patch system remain in phase

synchronization. c, Robustness of phase synchronization to noise. Demographic

noise was added to all populations in the two-patch chaotic model (by adding

noise to the right-hand side of all equations in equation (1)) parametrizedas in Fig.

2b. The noise has mean zero and j ¼ 0:08 but is restricted so that at any instant

the sum of the noise perturbation and the population level remains positive.

Despite the noise forcing, the populations remain in phase synchronization.
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was forced with environmental or demographic stochasticity, an
unusual form of noise-induced chaos resulted (Fig. 4a). The
population dynamics exhibited the same UPCA oscillations as the
purely deterministic model (Fig. 1c). In the coupled two-patch
foodweb model, neither short-term noisy fluctuations (such as
measurement, demographic or environmental noise) nor long-
term seasonal changes interfered with the transition to phase
synchronization (Fig. 4b, c). In all cases that showed phase syn-
chronization, the actual transition to synchronization was rapid and
emerged after only two or three population cycles. Synchronization
transitions were found to be complex functions of parameter values
(see Supplementary Information).

Finally, we constructed a spatial lattice of N 3 N non-identical
patch foodwebs (where N was 20, 50 or 100), with each patch
consisting of a single tritrophic model (equation (1)) linked by
migration to its eight nearest neighbours. All patches were given

random consumer growth rates, bi, uniformly distributed to lie
within 610% of the mean 〈bi〉 ¼ 1. As expected, with no migration
between patches (D ¼ 0), the populations displayed independent
and unsynchronized chaotic oscillations which varied by 65% from
the mean frequency (Fig. 5a). However, with very low migration
(D ¼ 0:035), the entire lattice became phase synchronized to a
common coherent frequency (Fig. 5a). Despite the strong phase-
locking, the ‘amplitudes’ of patch populations were only weakly
correlated (〈r〉 ¼ 0:2 between all patch pairs).

Note that if all patches were in ‘full synchronization’, their phase
and amplitude dynamics would be identical and populations across
the entire lattice would increase and decrease simultaneously.
However, when they are phase-synchronized, inter-patch popula-
tions peak almost, but not quite, concurrently, with the peaks of
pairs of populations being temporally separated by a time lag (as in
Fig. 2b). When viewed over a large metacommunity, the time lags
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Figure 5 Simulation results in a square lattice of 20 3 20 sites with periodic

boundary conditions (Box 1). a, For the 20 sites along the lattice diagonal with

mean frequency Ω̄, we define the relative frequency of each patch as

DΩi ¼ 100 3 ðΩi 2 Ω̄Þ=Ω̄ . The relative frequencies DΩi along the diagonal are

plotted for D ¼ 0 (blue) and D ¼ 0:035 (black). Superimposed is a plot of ti (red),

the time lag between the maximum of the predator abundance in the ith patch

and the maximum of a central reference patch, for the 20 diagonal patches

determined when D ¼ 0:035 (phase synchronization). Hence ti is measured as a

fraction of the period length T ¼ 2p=Ω̄ . The distribution of the ti confirms the

characteristic ‘U’shape found in analysesof the field data10,25–27. b–i, Evolution of a

chaotic travelling wave: snapshots of predator abundance in the lattice at 8

consecutive time steps over one period (D ¼ 0:035). The wave pattern in b–i

repeats in an endless cycle, with patches having chaotic amplitudes, making

each cycle different from the next. j, Colour bar shows abundance levels.
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show a characteristic ‘U’ shape (Fig. 5a). This gives rise to a
remarkable chaotic travelling-wave structure which may be seen
in the eight lattice ‘snapshots’ of Fig. 5b–i. Population abundances
in the meta-community remain chaotic, but periodic circular waves
continuously expand and contract radially as they spread in time
across the spatial landscape. Field and model population studies of
the Canadian hare–lynx cycle and European vole cycles have found
similar travelling-wave structures with spatially distributed U-
shaped phase lags10,25–27. Different types of realistic diffusion barrier
were introduced into the model but, in general, they failed to
destroy the spatial circular wave structure (B.B. et al., manuscript
in preparation).

The spatio-temporal structures associated with phase synchro-
nization have important implications for conservation ecology.
Even if a disturbance perturbs a local patch population to the
brink of extinction, the periodicity of spatial phase syncrhonization
guarantees the recurring arrival of wave fronts in which new
colonizers will buffer the endangered population. In contrast to
the common view of population synchronization as a cause of
global population extinctions14, it appears that phase synchroniza-
tion can be important for maintaining species persistence. Our
findings indicate that synchronization is a powerful process that has
the potential to shape the distribution and abundance of species
over all scales, from local to continental. We expect that the complex
synchronization phenomena identified here will provide new
insight into the dynamics of spatial ecologies and will have impor-
tant applications to the study of biological rhythms in general. M
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The discrepancies between measured frequency responses of the
basilar membrane in the inner ear and the frequency tuning found
in psychophysical experiments led to Békésy’s idea of lateral
inhibition in the auditory nervous system1. We now know that
basilar membrane tuning can account for neural tuning2, and that
sharpening of the passive travelling wave depends on the mech-
anical activity of outer hair cells (OHCs)3, but the mechanism by
which OHCs enhance tuning remains unclear. OHCs generate
voltage-dependent length changes at acoustic rates4–8, which
deform the cochlear partition9–11. Here we use an electrical
correlate of OHC mechanical activity, the motility-related
gating current, to investigate mechano-electrical interactions
among adjacent OHCs. We show that the motility caused by
voltage stimulation of one cell in a group evokes gating currents
in adjacent OHCs. The resulting polarization in adjacent cells is
opposite to that within the stimulated cell, which may be indicative
of lateral inhibition. Also such interactions promote distortion
and suppression in the electrical and, consequently, the mechanical
activity of OHCs. Lateral interactions may provide a basis for
enhanced frequency selectivity in the basilar membrane of
mammals.

The mechanical response of the OHC is mirrored by an electrical
signature, a motility-related charge movement, similar to the gating
charge movements that control ion-channel conductance12,13. Both
gating currents arise from a redistribution of charged voltage
sensors across the membrane. The magnitude of the gating current
reflects the rate of charge redistribution. In the OHC, the redis-
tribution of motility-related charge is controlled by both voltage
and membrane tension; consequently, either can evoke gating
currents14–16. Within the organ of Corti, OHCs are indirectly
mechanically coupled to each other through contacts with support-
ing Deiters’ cells. The apical regions of OHCs and Deiters’ cells are
joined by tight junctions and form the plate-like reticular lamina.
Basally, the OHCs sit in the cups of Deiters’ cells, and the strength of
these attachments varies along the length of the basilar membrane17.
This morphology makes it likely that the voltage-induced mechani-
cal responses of one OHC will affect surrounding OHCs. Determin-
ing the nature of this interaction may provide insight into the
process of fine frequency tuning by OHCs. We studied this inter-
action by simultaneously recording from adjacent OHCs under dual
whole-cell voltage and current clamp.

In isolated pieces of Corti’s organ, where cellular relations remain
intact, voltage stimulation of an OHC induces mechanical
responses and gating currents in that cell (Fig. 1). Transient outward
currents are generated by the onset of depolarization, which causes
the cell to contract (Fig. 1b). These currents correspond to the
displacement of positive charge to the extracellular aspect of the
lateral plasma membrane, which holds motility/voltage sensors18,19.
The charge–voltage (Q–V) function is well described by a two-state


