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ABSTRACT. We are working to create a stoichiometric model of organ and
tumor growth within a human system. The model we are looking at is fairly
general and can be modified for use with different organs. We establish a closed
system similar to a chemostat in order to trace the flow of phosphorus and the
effects of phosphorus deficiency and possibly toxicity on the organ. Our model
simulates a healthy, whole bodily system comprised of an organ, which will
eventually be the site of the new tumor growth, the effector or immune system
cells and the rest of the healthy cells in the body. The model is primarily based
on the flow of phosphorus in the bloodstream. The arteries supply the available
phosphorus to the organ, tumor, and other quantities considered. The organ
and tumor grow within the system based on the availability of phosphorus and
space. Phosphorus is also continually supplied into the system and a fraction
is continually flowing out of the system through the veins. The tumor in our
model is able to vascularize, thus we also track the growth and decay of the
tumor’s vascular system. Finally, we discuss the influence of naturally occur-
ring effector cells and immunotherapy to obtain the current state of the model.

An increasing number of models concerning tumor growth have surfaced in the
past few years. All but a handful of these take into account the stoichiometric
constraints of the system. It should be taken into account that some models begin
with existing data and engineer a model that fits those specific experimental results.
What we hope to do here is attack the problem from the opposite direction. That is;
present a model that is independent of empirical data and that can be easily mod-
ified to reflect different forms of tumor growth based on patient specific parameters.

In this paper, we are primarily concerned with the flow of phosphorus through-
out the system considered. Phosphorus was chosen because it is, after calcium,
the most abundant nutrient in the body. Phosphorus is essential for energy con-
version, providing the phosphate in ATP to run many metabolic cycles within the
body. Most importantly; the inorganic phosphate in ATP is required to produce
the nucleic acids and proteins used in DNA and RNA replication ([3], Haas, 1991).
We take into account that the immune system can, in some cancers, recognize the
tumor cells and target them for destruction. The immune system cells which do
this are called effector cells. Within the body the effect of these cells is minuscule,
but it can be isolated and then grown in a lab and re-introduced into the system
in forms of immunotherapy (University of Washington, 1997) thus amplifying its
power. We include the possible influence of effector cells and immunotherapy.
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The core of our model is the Holling disc equation. This equation is used to
represent growth rates of cell quantities that will be introduced in the succeeding
paragraphs.

We begin our model, which is ultimately the human body, by looking at the
healthy cells outside of the organ, H, healthy cells that make up the organ, O, and
the phosphorus cycling in the bloodstream, P. The mass of both sets of healthy
cells is measured in grams of phosphorus. This can be done as a result of the em-
pirical evidence of phosphorus content in a cell being constant. The measurements
are obtainable given that 1% of healthy cell matter and 2% of tumor cell matter is
phosphorus ([4], Kuang et al. 2004, [5], Williams, 2002). The cells grow by captur-
ing phosphorus from the bloodstream. This process can be looked at as predation
on phosphorus. We use the Holling disc equation to represent the growth rate of
healthy cells outside of the organ and the healthy cells making up the organ.

The general form of the growth rate terms will be:

dX _ cxP
dt = sx+P

Variables: X = cell quantity, P = phosphorus.
Constants: cx = maximum growth rate, sx = half saturation.
A constant rate of phosphorus ingestion and an excretion rate that is propor-

tional to the amount of phosphorus present in the bloodstream, is introduced into
the model. This biological process is approximated by 3 equations:

dH _ _cnP
dt  sg+P
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Both sets of healthy cells are assumed to have death rates that are proportional
to the quantity of the cells in the given set i.e. each cell has the same constant death
rate. The healthy cells also have a genetically determined maximum size hence we
include crowding rates. For a given cell, its crowding rate is a fraction of the size
of the population that the cell is part of. The healthy cells crowd themselves for
space and nutrients, however they are idependent of one another, with respect to
growth and space so neither crowds the other. The daily death rates of the cells are
generally attributed to apoptosis. In the equation for the dynamics of phosphorus
in the bloodstream we add the phosphorus that is liberated by the deaths in both
healthy cell masses, but we assume that only a fraction, r, is reusable i.e. recycled
by the human body. The remaining liberated phosphorus not used is either excreted
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from the system, or phagycytized during apoptosis. The bones contain a significant
amount of phosphorus. In order for us to study precisely the dynamics of the tissue
cells, we exclude the bones from our system. If we input these equations into Matlab
we find they do indeed exhibit stable behavior with each mass staying constant at
the initial healthy mass:

dH CHP 2
= g dyH - mpH
it~ S+ pld - dntl —mu
dO CoP 2
= 9% 0—_-dsO —

it = 5o pl G0 mo0
dP CHP C()P
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GRAPH SHOULD BE HERE.

We now introduce the tumor into the system. Since the tumor in consideration is
able to vascularize, we also insert the vascular system of the tumor into the model.
Tumors can grow without blood vessels, but researchers believe that a tumor will
not be able to grow much larger than the size of a pin head without the formation
of a vascular system i.e. angiogenesis, to bring nutrients and oxygen to the interior
of the tumor ([1], Cancer Research UK, 2001). We include only vessel dependent
tumor growth on the assumption that the tumor is already large enough to be vas-
cularized. The growth terms for the tumor and its vessels have the same flavor as
the previous growth rates. Death rates and genetic crowding rates also have the
same form. Unlike the previous quantities, the tumor can act directly upon the
healthy cells. The tumor physically crowds the healthy cells but the healthy cells
cannot physically crowd the tumor ([4], Kuang et al. 2004). Inserting the equations
for tumor and vascular system dynamics as well as the death and crowding rates,
the model takes the form:
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Note that the functions used to represent tumor and vascular growth do not fol-
low the pattern that was established for the growth of healthy cells. The function
used for tumor growth takes the form:

n4
CTP(&H+§O+;LV)
n4
st + P (aH+BO+uV)

As we mentioned previously, this term takes into account the vascular system. The
tumor growth depends on the phosphorus brought into the tumor by the blood
vessels. We take the amount of phosphorus available to the tumor to be propor-
tional to the ratio between tumor blood vessels and all blood vessels present. This
equation expresses a per capita growth rate.

From the model above, the function for the growth rate of vessels is:

v
sy + P

Unlike all of the previous equations, the growth of the vessels is not proportional to
amount of vessels, instead it is proportional to the amount of tumor cells present.
This is to represent the idea that vessel cells do not replicate independently. These
cells "need to be told” to replicate. Healthy cells have angiogenic genes that gov-
ern the state of blood vessel production i.e. they ”tell” the blood vessels when
to grow and when not to grow. Scientists assert that tumor cells either lack the
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anti-angiogenic genes or their angiogenic genes are permanently switched on (Can-
cer Research UK 2001). From this it is apparent that vessel growth in the tumor
needs to be regulated by the tumor cells. Blood vessels are healthy cells and so
they also have a constant death rate, however since vessels are induced to grow by
the tumor we do not include any crowding effects from the tumor on the vessels.
In tumor-induced vessel cells it appears that the vessel cells will keep growing if
such a right is granted to them by the tumor cells and there is enough phosphorus
present to support their replication.

We add one more equation to our model before we consider it complete. This is an
equation for the immune system response which includes a term for immunotherapy.
Various tumors produce proteins that act like antigens. The body can recognize
these antigens and mount a response to the growing tumor population. It seems,
however that the bodily immune response alone has little effect slowing the tumor
growth (University of Washington 1997). The cells we are concerned with here are
effector cells, specifically NK cells which are mainly involved in the elimination of
tumor cells. The exact mechanism with which these cells destroy tumor cells is
unknown, but is presumed to be similar to Cytotoxic T-Lymphocytes. This means
that the effector cells recognize the cancer through specific receptor cites, which
creates a perforin channel through the tumor cell’s membrane and causes it to lyse
(Douglas F. Fix 2004).

The effector cells have a growth term that depends on the amount of tumor
present. Effector cells are always present in the body, though at very small levels.
As they float through the system they are "turned off ,” but still growing, as re-
sembled by:

CE1P

—F
Sg, + P

Contact with a tumor cell (i.e. recognition of the antigen) switches these cells
on. By "switch on” we mean two things. First they begin proliferating to mount
an attack on the tumor cell. Second, they are activated to be able to attack
the tumor/foreign cell with the appropriate antigen/lack of antigen. The rate
at which each effector cell attacks does not only depend on the amount of tumor
cells present but also on time. Each effector cell has a rate of discovery of tumor
that will change as time passes. If we use the regular Holling derivation we see that:

Tqestroyed = (t— tthestroyed)aT

With previous derivations for growth terms, a has always been a constant but with
the effector cells things are a little different. The term a is directly related to
the rate of discovery of prey. This term will now depend on time. This is be-
cause as time passes, the tumor becomes more differentiated and the effector cells
will recognize the tumor cells quicker. Again we use a Holling equation for the term:

ST +1
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Substituting this value for a:

T _ CETTt2 o
destroyed = ot (smr + O LTt

A(T, 1)

Where cgr, agr, sgr are constants.

As we mentioned when the effector cells are ”turned on”, they are able to prolifer-
ate much quicker. The rate of proliferation actually depends on the rate at which
the effector cells destroy the tumor cells. We assume that again the rate per capita
will be a Holling equation but now only a fraction of our capita are working. This
fraction is directly proportional to the rate of destruction. The term appearing in
the equation for this growth will be:

CE2P . 8A(T, t)
—2 .ind —12Z
Sg, + P mn ot

The two sorts of immune system cells that are most active in tumor detection are
the cytotoxic T-cells and Natural Killer cells, both here referred to as effector cells.
They compliment each other in that cytotoxic T-cells recognize infected cells by the
antigen present, while NK cells look for tumor cells that are missing a healthy cell
receptor (Thornthwaite, 20007). Here we assume they both work in very similar
manners and so can both be modelled under immune response.
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In our calculations we can take the I(t) term to be zero, if there is no immunother-
apy, or alter it according to the agressiveness of the tumor and the frequency of
immunotherapy. Immunotherapy is when effector cells, specific for the identified
cancer are removed from the system, replicated in large quantities in vitro and
introduced back into the system in hopes of boosting the body’s own defense mech-
anism. We include immunotherapy here because it has less of an effect on the
remaining healthy and organ tissues compared to other tumor treatments such as
chemotherapy and radiation which are both cytotoxic to the healthy cells as well as
the immune cells. Also, we note that the I(t) term does not take any phosphorus
out of the system because these cells were replicated in vitro. They will, however,
contribute to the phosphorus flow when they expire.

The difficulty with running this model to obtain graphical representations of
the dynamics, is the amount of parameters. After hours of searching we have
determined the values of many of these parameters, albeit not to the exact accuracy
we would hope. This is because much research has not examined these parameters
exactly. The growth rates and death rates for particular organs were fairly easy
to identify. In our models we use growth and death rate data of the liver for
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the parameters of the organ. For those of the whole body, or rest of the cells
we reviewed many different cell growth and death rates and approximated the
value for the body as a whole. Dialy intake of phosphorus into the system was
taken from information on daily recommended values of phosphorus and how much
the average American usually intakes. With the advent of soda it seems that
the phosphorus uptake has increased dramatically. We note in our model that
the intake of phosphorus remains fairly constant throughout the duration. It is
reasonable to assume that one’s eating habits do not change dramatically from day
to day.

For tumor growth we note that our model assumes that the tumor has already
reached a detectible size, approximately 10 grams, and has thus already vascu-
larized. The tumor can also be located anywhere in the body, and with slight
modifications may also be used to model non-tumorous cancer growth. This isn’t
so far a stretch as we only include the phosphorus flow to the tumor through the
vessels. Another sort of cancer, a lyphocytic cancer like leukemia, is already found
in the bloodstream, so to alter the model we only need to remove the tumorous
vascular term and alter the term for tumor growth slightly.

The following are simulations made using Matlab:

GRAPHS SHOULD BE HERE.
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