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Mathematical modelling of avascular-tumour growth II: Modelling
growth saturation

J. P. WARD AND J. R, KING

Department of Theoretical Mechanics, University of Nottingham,
Nottingham, NG7 2RD, UK

[Received 19 December 1997 and in revised form 5 June 1998]

We build on our earlier mathematical model (Ward & King, 1997, IMA J. Appl. Math Appl.
Med. Biol., 14, 35-69) by incorporating two necrotic depletion mechanisms, which results
in a model that can predict all the main phases of avascular-tumour growth and heterogen-
eity. The model assumes a continuum of live cells which, depending on the concentration
of a generic nutrient, may reproduce or die, generating local volume changes and thus pro-
ducing movement described by a velocity field. The necrotic material is viewed as basic
cellular material (i.e. as a generic mix of proteins, DNA, etc.) which is able to diffuse and is
utilized by living cells as raw material to construct new cells during mitosis. Numerical so-
lution of the resulting system of partial differential equations shows that growth ultimately
tends either to a steady-state (growth saturation) or becomes linear. Both the travelling-
wave and steady-state linits of the model are therefore derived and studied. The analysis
demonstrates that, except in a very special case, passage of cellular material across the
tumour surface is necessary for growth saturation to occur. Using numerical techniques,
the domains of existence of the large-time solutions are explored in parameter space. For
a particular limit, asymptotic analysis makes explicit the main phases of growth and gives
the location of the bifurcation between the long-time outcomes.

Keywords: tumour growth; mathematical modelling; numerical solution; asymptotic anal-
ysis.

1. Introduction

The growth of tumours can be divided into two main phases, namely avascular and vas-
cular. Initially the nutrient (oxygen, glucose, etc.) supplied by diffusion from the existing
vasculature is adequate for growth and it is this avascular stage that we consider here.
An in vitro analogue for tumour growth is provided by multicell spheroid cultures, pro-
duced by growing colonies of cells suspended in a nutrient matrix. The growth of multicell
spheroids is determined mainly by the extent of nutrient penetration by diffusion from the
growth matrix. Growth starts off by being exponential due to all cells being adequately
nourished, but retards to a lincar growth phase due to a developing region of quiescent
cells and necrosis in the core (Congar & Ziskin, 1983). Following the linear phase, growth
retards further ultimately reaching a saturation level at which it apparently ceases (Inch
et al., 1970; Folkman & Hochberg, 1973; Carlsson, 1977). The saturated spheroid has a
characteristic three-layered structure consisting of an outer rim of adequately nourished
reproducing cells, an intermediate layer of quiescent cells and a relatively large central
necrotic core (Freyer & Schor, 1989).

© Oxford Universily Press 1999



172 J. P. WARD AND J. R. KING

In an earlier paper (Ward & King, 1997) a mathematical model for the growth of avascu-
lar (spheroid) tumours is proposed and studied in detail. This model succeeds in capturing
the first two stages of growth, namely the initial (exponential) and the intermediate (lin-
ear) phases. The lack of any growth-retardation mechanism, other than volume loss at cell
death, means that a saturation state is never attained, except in the special case of zero
dead-cell volume. This continued growth results from the products of cell death remaining
within the spheroid without decaying or escaping, with the living cells continually adding
to the volume through cell birth. Despite this deficiency, the analysis offers insight into key
characteristics of growth such as the time scales on which exponential growth ceases and
on which necrosis starts and length scales for the proliferating and quiescent layers. In the
special case of zero dead-cell volume, the resultant saturated spheroid consists entirely of
living cells, lacking a necrotic core, which contradicts experimental observation. The aim
in this paper is to extend this model by employing physical mechanisms that can result in
growth saturation.

Although there are several studies investigating the effects of environmental factors on
the eventual saturation size (Mueller-Klieser et al., 1985; Freyer & Sutherland, 1986; Tan-
nock & Kopelyan, 1986a,b), there is very little information on what actually causes the
saturation of growth. Mitotic inhibitors have been extracted from the necrotic core (see,
for example, Freyer, 1988; Levine et al., 1984), and these presumably diffuse through the
spheroid affecting the mitotic behaviour of some of the cells; however, this mechanism
alone cannot be responsible for saturation since it requires that all the cells be completely
inhibited from dividing if a continued increase in volume due to cell reproduction is to be
prevented, contradicting experimental observation. During mitosis, the reduced strength
of the binding between cells may cause individual cells to be shed into the surrounding
matrix (Landry er al., 1981; Weiss, 1978); however, the cells that remain will still repro-
duce, so this mechanism on its own explain cannot growth saturation either, unless all
new born cells are ultimately shed. The processes of mitotic inhibition (see Greenspan,
1972; Shymko & Glass, 1976; Adam, 1986) and cell shedding (see Landry et al., 1982;
Casciari et al., 1992) have been studied extensively using mathematical models. These
aspects have also been incorporated into an extension of the model proposed here and
are discussed in Ward (1997); this will be the subject of a future publication. Mathemati-
cal models that predict the saturation phase have, as their crucial assumption, a continual
process of necrotic-volume loss. They typically include an expression whereby either the
necrotic core contracts (Greenspan, 1972; Maggelakis & Adam, 1990) or the viable re-
gions contract, reflecting apoptosis (McElwain & Morris, 1978; Byrne & Chaplain, 1995)
or a combination of these processes (Byrne & Chaplain, 1996). The terms introduced to
model contraction are somewhat ad hoc and are intended to represent the disintegration
of necrotic material or the breakdown products of apoptosis into simpler permeable com-
pounds which quickly diffuses out of the tumour, with a subsequent loss in its volume. This
approach to modelling necrotic-volume loss, while simplistic, makes the resulting model
more tractable. However, such models provide little understanding of the manner in which
the material is lost.

In this paper it is assumed that cells require basic cellular material (such as proteins,
DNA, and lipids), as well as nutrients, in order to reproduce. This cellular material is
provided by the breakdown products of necrosis and by the external medium (neighbouring
tissues in vivo or the growth medium in vitro); for simplicity the material from the two



MATHEMATICAL MODELLING OF AVASCULAR-TUMOUR GROWTH II 173

sources is here treated as being the same. Two pathways for the depletion of the cellular
material, causing volume loss, result from the mechanisms proposed; the first involves
the leakage of the cellular material by diffusion to the external matrix and the second
involves the consumption of cellular material for the construction of new cells. Evidence
related to the latter mechanism is given in Kerr ez al. (1987), where neighbouring cells are
observed to consume cells that have undergone apoptosis. It is anticipated that typically
smaller molecules may leak out, whereas larger ones (with relatively low diffusivities) will
be consumed. A natural development to the current model (Ward, 1997) accounts for two
distinct species, but the resulting behaviour is qualitatively similar to that described below.
The basic approach to the modelling in this paper follows that of Ward & King (1997) and
is based on the assumption that the tumour consists of a continuum of cells; depending
on the local nutrient concentration, volume changes through cell birth and death generate
a velocity field in the tumour, so the role of convection needs to be considered. In the
next section the details of the necrotic volume-loss mechanisms are given and the model
is derived in terms of a system of partial differential equations, with spherical symmetry
assumed. The numerical solutions in Section 3 demonstrate that the long-time outcomes
can either be growth saturation or linear growth, depending on the parameters’ values.
These long-time outcomes are studied in detail in Sections 4 and 5, where the steady-
state and travelling-wave limits of the model are derived and studied. In Section 4 it is
established that, except in a special case, passage of material across the spheroid surface
is a necessary condition for growth saturation. Conditions for the bifurcation between the
two types of long-time behaviour are established and, in the numerical solutions of Section
5, the regions of existence of these solutions in parameter space are determined.

2. Model formulation

On the death of a cell, its constituents are assumed to immediately dissociate into necrotic
material which is free to diffuse through the tumour, The necrotic products include basic
cellular material (such as DNA, proteins, water, and lipids) which can be utilized by the
living cells to construct new ones. Assuming the volume of a molecule of the (generic)
basic cellular material to be Vp, we have

,LLVP = VD, (1)

where Vp is the volume of a dead cell and the dimensionless constant x is the number of
these molecules released at cell death. It is assumed that the time scale for this dissociative
process is very much shorter than that of tumour growth. For mitosis it is assumed that a
total volume of AV, of cellular material is required, which leads to the expression

volume change during mitosis = V; — AVp, 2)

where the constant V,, is the average volume of a living cell and the dimensionless constant
A is the number of molecules consumed. Here, for simplicity, we treat the time scale for
the growth phase of each cell as small compared to that of the complete cell cycle. For
there to be no voids in the tumour, with all space being occupied by cither the living cells
or cellular material, we require the no-void condition

Vin+ Vpp = 1, €))
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where n and p are the concentrations of the living cells and the cellular material, respec-
tively. We note that p is related to the concentration of necrotic material m, used in the
model of Ward & King (1997), by m = p/u.

Using the above relations and the assumptions of Ward & King (1997), the following
system of equations can be derived:

an

a7 + V.(vn) =k (c, p) — kq(c)]n, 4)
%; + V.(vc) = DV%c —k(c, p)n, (5)
Z—’t’ 4 V.vp) =D,V p + ka(On — Men(c, ), ©)

Vv = (VL = AWVplkm(c, p)n — (Vi = VpYka()n + VD, V2p,  (7)

where c is the nutrient concentration and v is the velocity field. Equation (4) states that the
rate of change in live-cell density is the difference in birth k., (¢, p) and death k4 (c) rates,
the form of which are given below. We have also assumed that the cell-cell contacts are
sufficiently strong that cell motion by diffusion or chemotaxis is negligible. The evolution
of the nutrient concentration is given by (5), where Fick’s law for diffusion is assumed to
apply (with a constant diffusion coefficient D) and the nutrient is consumed by the living
cells at a rate k(c, p), given below. The diffusion of the cellular material is also assumed
to satisfy Fick’s law, with constant coefficient D), and its generation and consumption are
determined by expressions (1) and (2), yielding equation (6). The velocity field equation
(7) involves the volume generated by birth, that consumed on death, and that transferred
by the diffusion of the cellular material; it can be derived from equations (3), (4), and (6).
In the application of radial symmetry in the spheroidal geometry adopted below, equations
(4)~(7) suffice for a closed system, so the further constitutive relations needed to determine
the velocity field for multidimensional problems are not required.

Since cellular material needs to be present for new cells to form we postulate that the
mitotic rate is dependent on p. It is assumed that k,,(c, p) is bounded and monotonic
increasing in both ¢ and p, such that £, = O when ¢ = 0 or p = 0. To capture this type of
dependence on ¢ and p, we extend the form for &, adopted in Ward & King (1997), again
using a Michaelis-Menten-type expression, to

M pm3
e p)=A<CZ"‘+C””> (pﬁ"3+p’”3)' ®

where ¢, and p, are critical nutrient and cellular material concentrations, respectively, and
the exponents m) and m3 are non-negative constants which govern the sharpness of change
of k,, around these critical concentrations. We again adopt the expression given in Ward &
King (1997) for the death-rate concentration k4(c), namely

ky(c) = B (1 —ac—m—>, (9)

ey 4 cm

where B, o, ¢4, and m, are non-negative constants, with ¢ < 1. The expression used for
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k in Ward & King (1997), namely k(c) = Bk (c), was based on experimental results sug-
gesting that the consumption rate is approximately proportional to the mitotic rate. How-
ever, such experimental results are generally obtained from monolayer cultures in agar,
where the concentrations of non-nutrient constituents are presumably kept relatively con-
stant, effectively keeping p constant. Consequently, the effects of cellular material concen-
tration are not known. However, quiescent cells presumably continue to metabolize nutri-
ents in order to remain viable, and it is also envisaged that additional nutrient consumption
will occur during mitosis. These ideas can be combined to yield the expression

Cm[ p)n3
k(c,p)=A (m) [ﬂl + B2 (m)} , (10)

where 81 and B are positive constants, so that A(8; + B2) is the maximum possible rate
of consumption. We thus assume the necrotic material is consumed only by mitosis.

We exploit the spherical symmetry of the problem and restrict our attention to studying
this system of equations in a single spatial variable r = |x| with radial velocity v = |v|.
The initial state of the spheroid is a matter of choice but, in most of the simulations to
follow, we commence with a single cancerous cell. The medium in which the spheroid
grows is assumed partly to contain cellular material at a fixed concentration pg, with the
rest of space occupied by a nondiffusing material that takes no part in spheroid growth. The
growth medium in which spheroids grow is frequently renewed and stirred in experiments
(for example, daily in Freyer & Sutherland, 1980), so setting the external concentration of
p to some constant pg is probably reasonable. The initial and boundary conditions for x, ¢,
and v are as those in Ward & King (1997), and the complete set is

att=0 n=1/V,, p=0, S=@3V,/4n)'/3,

dc _ap

tr=90 —_— = = =
atr = o =Y 0, (1)

ap
ar
where the radius of the spheroid, S(¢), changes in time, being the coordinate of a moving
boundary. We have imposed a Robin-type boundary condition for p at r = S(¢), which as-
sumes that the flux of cellular material is proportional to the concentration difference there,
the mass-transfer coefficient @, being a non-negative constant. For @, > 0, the cellular
material is free to cross through the spheroid surface, so leakage (whereby dp/dr < 0)
will be a possible source of necrotic-volume loss.

We note that equations (4)—(10) generalize the model of Ward & King (1997), which
corresponds to the special case D, =0, po =0, =0, 8 = f1 + pr, andm = p/u. For
the remainder of this paper we shall use the no-voids condition (3) to eliminate p using
p = (1 — Vpn)/ Vp, thus focusing on the live-cell density.

ds
atr = 8§ c=co, Dp = Qp(po — P)s Et—=v’

2.1 Nondimensionalization

Denoting dimensionless quantities by carets, we introduce the following rescalings which
are based on the initial conditions:

ﬂ:fl/VL, C=Coé, v:roAﬁ, t:f/A, r:rof7 S=ryS,
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where rg = S(0) = (3Vy, /47)!/3. We note that this scaling for # implies that for phys-
ically meaningful solutions we must have 0 < 72 < 1. We will adopt the quasisteady
simplification for ¢ for the reasons detailed in Ward & King (1997) and the full system of
nondimensional equations can then be written as

oA 8 D, 0 [,00 o
T Uz =g 1 —R) —b(é, 1~ 12
o oF P2 op (r a;)“"(“‘ M =be 1=y, (12)
L3 (208) it — i .
retredl B Ao dl IEl (AN Sl (5178
P2 oF ar
Lag) .. D, 8 [0
e G e e e T 14
FRRPY: e N T T (14)

where D »=Dp /rgA. We note from (12) that the diffusion of the cellular material leads to
a nonlinear degenerate diffusion term for #. The nonlinearity occurs because in the quan-
tity nV.v, representing the rate of change of n due to local volume creation or loss, part
of the dilatation rate V.v is due to the diffusion of cellular material, with (in view of (3))
V2p = -V, Vin/ Vp. It will be shown that the nonlinearity in the diffusion term leads to
the possibility of the solutions becoming degenerate in the core as t — oco. It should be
stressed that this apparent diffusion of the living cells is a consequence of the modelling
assumptions concerning the velocity field and is not due to cells being independently mo-
bile.

The dimensionless functions a and b have the same interpretation as in Ward & King
(1997) and are given by

a@, 1 =) =kn@, 1 —7) — kg8, (15)
b, 1 —A)y=( = Nkm(¢, 1 = A) — (1 = 8)kg(0), (16)

where § = Vp/ VL = uV,/ V., A= AVp/ VL a gives the overall birth rate and b the rate
of volume change due to cell birth and death. The dimensionless quantities km and kq are

defined as
A . cmi (1 —n)ms
km(C,1 —n)={ = - — — ,
! ) (c’”! +c’£“) (,)g” +(1 —n)ms)

~ .. B cme
kd(C)—X (1—0m>,

where p. = V,p.. The dimensionless consumption-rate function & is now

AL . ¢m A A (1 —nym ):|
k(¢,1-0) = { ——=7 + v el I I8
€1-0 = () [P (v
where f?l = rg,BlA/DVLco and BZ = rgﬁzA/DVLco, where we recall that ¢q is the

external nutrient concentration. We note that the definitions of A implies that if it is greater
than unity then there is an overall loss in volume during mitosis.
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The dimensionless initial and boundary conditions are

ati =0 A=1, §=1,

tF = % 0,20 5=0

at 7 = 57 =0 5= =00=0 )]
. T A K

tAT-"—"St A—‘——-],D—: 1—-'\ _.A’_A=",

at? ) ¢ P Qp(1 = po— i) =0

where Qp = Qp/roA and po = Vppo, so that po < 1.

The system (12)—(14) thus consists of a nonlinear diffusion-convection equation (12), a
second-order differential equation (13), and a first-order partial differential equation (14),
defined on a domain 0 < 7 < S(f) with an unknown moving boundary S(). Tt is well
known that equations with degenerate nonlinear diffusion terms, such as occurs in (12),
may have solutions with compact support. This phenomenon will be shown to occur for
this system as f — oo and is discussed in greater detail in Sections 4 and 5.

The model contains two mechanisms for the depletion of necrotic material, namely leak-
age by diffusion and consumption in mitosis. Each of these mechanisms can be switched
off by an appropriate choice of parameters, as follows

(i) Leakage only. Setting p, = 0 and A=0 prevents the utilization of the cellular ma-
terial in mitosis. It will be shown that these conditions lead to either growth saturation or
travelling-wave solutions. )

(i) Consumption only. Setting Q, =0, p. > 0, and A > O ensures no passage of cellular
material through the spheroid surface. The same effect can be achieved if we set D p=0,
which reduces the order of the system and requires that the boundary conditions for 7 be
dropped. Since in this case the only sources of cellular material are the products of necrosis,
the initial condition 7 = 1 leads to the peculiar situation that cell death is required for cells
to start reproducing. In fact, the analysis of the long-time behaviour described in Section
4.5 shows that for A < & travelling-wave solutions will result, while for A > & the tumour
dies out; however, an infinite number of steady-state solutions exist for A= &8, the amounts
of material produced at cell death and used during mitosis then being the same. This can
be illustrated by the special case A = § = 1, where we have dS/df = 0 for all 7, so the
resulting steady-state solution size will be the initial size. We stress that these comments
are restricted to the consumption-only case.

Itis clear from the assumptions adopted in constructing the model that, as well as cell birth
and death, the absorption and diffusion of cellular material are key factors in determining
the growth of the spheroid. This can be illustrated by considering the example § = A=1,
in this case there being no volume loss at cell death, with exactly a cell-size volume of
material being required to construct a new cell at mitosis. Integration of (14) using (17)
then yields

dS . A . A .
— = D,—(5,) = 0,1 — po— A(S, 1), 18
& pa;( D= Qp(1— po—A( 1)) (18)

implying that growth of the spheroid occurs purely through the absorption or leakage of
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the cellular material and not directly by cell reproduction. The results of a simulation with
§ = A = 1 are discussed in detail in the next section.

In the following sections the carets on the variables and parameters are dropped for
brevity.

3. Numerical solution of the time-dependent problem
3.1 Numerical methods

The system of equations (12)—(14) is too complex for analytical solution with general pa-
rameter values, and we therefore resort to the use of numerical methods. The aims are to as-
sess whether the model captures qualitatively, and preferably quantitatively, all significant
features of spheroid growth and to establish the range of parameter values which provides
the most realistic behaviour. Finite-difference methods are used to approximate the solu-
tions to the system (13)-(14) together with (17). The system of equations are rescaled using
r = S(t)p, fixing the moving domain onto the unit interval and leading to the following
system for numerical solution

i umpSon g n 2 23”)+ late, 1=n) — nb(e, 1=m)],  (19)
— —=Dp—=— — nla(c, 1—=n) — nb{c,1—n)],
5 TS o Posiop \" o
19 26c> )
—— | p*— | =85%%k(c, 1 —n)n, 20)
0289( dp
1 3(p%v) 1Dy, 3 [ ,0n
— =Sb(c, 1—mn —~ =—F— [ p*— . 21
2 ap (c,1=m)n S P o 2n

The system of equations is solved sequentially by a predictor—corrector-type scheme. Equa-
tion (19) is solved first in conservation form using the NAG routine DO3PGEF, which uses
the method of lines and a backward-differencing time step. Then equation (20) is solved
using the NAG routine DO2AGF, which uses a finite-difference approach together with
Newton iteration. Second-order schemes to approximate (21) were found to be inadequate
to provide sufficiently accurate solutions for DO3PGF to converge efficiently. This diffi-
culty was overcome by integrating (21) to give

S(1) /p ) D, on
v=—= ble, 1=mndé — —-—,
p? Jo s ) S(t) dp

whete the integral was evaluated by the trapezium method with correction and a five-point
interpolation method was used for the derivative term, resulting in a fourth-order accurate
approximation for v. Further details of this approximation for v is given in Ward (1997).
Finally, S is evaluated using the trapezium method on dS/dt = v(S, ). The system is
solved on a mesh which is contracting towards p = 1 in order to overcome the difficulty
resulting from the boundary layer that forms at the surface as the spheroid size gets large;
200 or 500 mesh points are usually used.
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3.2 Numerical results

With so little data concerning the nature of necrotic material available, the relevant param-
eters used in the simulations which follow are estimates, leading to reasonable quantitative
results at growth saturation. The ‘standard’ set of values used for the dimensionless param-
eters which also occur in the model of Ward & King (1997) is

B/A =05, o =09,
c. = 0.1, cqg = 0.1, my = 1, my = 1, (22)
Bi =001, B2 =0, 5 =1,
and the ‘standard’ set of values for the other dimensionless parameters is

A=1,
D,=300, Q,=10, po=0.1, 23)
pe =01, my=1

Simulations resulting from varying one or more of these parameters are presented later in
this section. The external cellular material concentration ( po = 0.1) is thus fairly small and
the choice A = 1 and § = 1 implies there is no local volume change on cell death or mitosis
and it suggests, with D, being fairly large, that leakage will be the dominant mechanism for
necrotic-volume loss. We note that the choice of A = § = | implies from equation (14) that
the velocity field is driven only by the diffusion of the necrotic material, and equation (18)
implies that the growth rate is governed by the material flux at the surface. The diffusion
coefficient for the cellular material is discussed in Appendix A, and rescaling leads to
D, = 300, representing material with molecular mass of O(10%). The above choices of
values for By and B, imply that the consumption rate of the nutrient is independent of the
congentration of cellular material.

The results of simulations using the above parameter values are illustrated in Figs. 1-
4. We observe in Fig. 1 that, with these parameter values, the main phases of spheroid
growth are all captured. Close inspection for early time reveals a short period of acceler-
ating growth (the exponential phase), then retardation to a phase between about ¢ = 20
and t = 100 in which growth appears linear and from which growth retardation continues
towards the saturation state. This early-time behaviour is demonstrated in the analysis of
Appendix B, which is based on that of Section 5 in Ward & King (1997) and involves a lim-
iting case of the model in which the death rate, B/A = ¢, is small and D,,Q), = O(1/¢).
Inthe case B = B1+B2 < 1 we then find that the initial growth of the spheroid is described
by S ~ explkn (1, po)t/3]. Retardation first occurs on a time scale of t = O(In(1/8)) due
to quiescence in the core, leading to a phase of linear growth with S ~ g, for some con-
stant g given in Appendix B. The dashed curve indicates the growth in time of a measure
of the size of the necrotic core, taken to be the radius at which the live-cell density has the
value n = 0.1. Close inspection of this curve reveals that it expands at a faster rate than
the spheroid surface, which is consistent with the experimental observations of Groebe &
Mueller-Klieser (1996) and Tannock & Kopelyan (1986a). The evolution of the live-cell
density towards the steady-state profile (solid curve) is depicted in Fig. 2; the steady-state
profile is generated from the numerical solution of the appropriate system of equations de-
rived in Section 4. Following an initial transient of cellular material influx from the exterior,
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FIG. 1. (—) The dimensionless tumour radius and (- - -) necrotic core radius (defined to be where n = 0.1) plotted
against time. The two dashed lines to the right indicate the corresponding values at saturation.
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F1G. 2. Evolution of (- - -) the spatial distribution of live-cell density towards (—) the steady-state solution. (- - -)
The distribution of the mitotic rate at the steady state.

the live-cell density during the early phases reaches a fairly constant level, the delivery of
material by diffusion balancing its consumption during mitosis. As the spheroid gets larger
and the central nutrient concentration declines in the core (see Fig. 3), cell death increases,
0 that by r = 250 an almost completely necrotic core has developed. This profile is ap-
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proximately maintained as it develops towards the steady state. We note that, at saturation,
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F1G. 5. Evolution of (- - -) the live-cell density towards (—) the steady-state solution for different initial condi-
tions.

solutions to the model, live cells being conserved at the interface. The physical relevance
of this type of solution is clear, representing complete necrosis in the core. The dotted
curve in Fig. 2 shows the distribution of the mitotic rate at the steady state. The curve is
observed to plateau in the outer rim, descending to zero as the nutrient concentration di-
minishes towards the core. The main feature of note is that the living cells just inside from
the rim are quiescent, the mitotic rate there being at a very low level. Thus, the resulting
saturated spheroid has the three-layered structure observed in multicell spheroids. In Fig.
3 we observe that the consumption of the nutrient by the living cells in the viable rim leads
to a rapid descent in the nutrient concentration over this region. The fourth derivative of its
steady state is discontinuous at the interface described above, ¢ attaining a uniform value
in the core. Figure 4 shows the development of the velocity distribution towards the steady-
state solution (solid curve). In the early stages (see t = 25) the influx of material from the
surface dominates throughout the spheroid and the velocity is positive everywhere. As the
spheroid gets larger and necrosis in the core becomes significant, the necrotic products seep
into the rim causing flow in the opposite direction (r = 50), leading to the kind of profiles
observed in the simpler model of Ward & King (1997). We note that the first derivative of
the steady-state velocity profile is discontinuous at the interface described above, v being
identically zero in the core. As the spheroid approaches saturation, equation (18) implies
that the flux at the surface equilibrates and seepage of material from the core balances its
creation and consumption from cell death and mitosis.

In order to investigate whether the steady state is an attractor for very different initial
conditions, Fig. 5 shows the evolution of the live-cell density using the same parameter
set but with different, and artificial, initial conditions. In view of the initial distribution,
the live-cell density rapidly rises in the rim due to the combination of cellular material
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FIG. 6. (—) The spheroid radius and (- - -) the necrotic core radius (defined to be where n = 0.1) plotted against
time for a travelling-wave situation, with A = 0.5.

absorption through the surface and mitosis, and by t = 5 the familiar type of profile is
restored, which then propagates back towards the steady state (the same as that shown in
Fig. 2) as the necrotic core contracts, mainly due to the leakage of the excess necrotic
material. However, the choice of the values of Qp and D), with Q,/D small, implies
that the rate of leakage is small, causing the slow contraction. When leakage is significant,
the value of Q /D) is important in governing the speed at which the spheroid approaches
the steady state. However, we note in this particular simulation, with A =& = 1, (18)
implies that at steady state the solutions are independent of the parameter Q. The steady-
state solution shown in Fig. 5 is the only nontrivial long-time solution found using the
numerical methods described in Section 5, and the results suggest it is a global attractor. In
certain parameter regimes, however, two nontrivial long-time solutions exist; an example
is given in a later figure.

In Figs. 6-8 the other main classes of solutions are illustrated by varying A, with the
other parameter values still given by (22) and (23). Setting A = 0.5 leads to solutions of
travelling-wave type, and the growth curve is illustrated in Fig. 6 together with a measure
of the necrotic core radius (again defined to be where n = 0.1). Figure 6 demonstrates
the expected acceleration of growth up to about t = 40, evolving ultimately to linear
growth. As with the simpler model of Ward & King (1997), linear growth implies a rim
of constant thickness of viable cells. In Fig. 7 we observe that during the linear growth
phase the live-cell distribution maintains its profile whilst propagating outward. Unlike the
solutions described above, the long-time solutions for n decay exponentially into the core,
giving an important distinction between the travelling-wave and steady-state limits of the
model. Close inspection of the live-cell distribution at the rim reveals that dn/dr > O there,
implying that leakage of the necrotic material from the spheroid is occurring; however, not
enough necrotic volume is being lost or consumed during mitosis for growth to cease.
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The evolution of the live-cell distribution for the case of A = 1.1 is shown in Fig. 8. We
observe that a steady-state is achieved (the solid curve); however, living cells still survive
in the core, albeit in a quiescent state. It is not clear from Fig. 8, but it is easy to show
from integrating (14) with § = 1 and A > 1, that dn/3r < O at the rim, implying there is
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FI1G. 9. Effects of the mitotic contraction factor, A, on spheroid growth. The dashed curve labelled A is the solution
of the simpler model of Ward & King (1997). The dashed line on the right indicates the final saturation size.

influx of material from external medium. However, the cellular material is consumed at a
sufficiently high rate to cause growth saturation.

Figure 9 shows the spheroid radius against time for various values A, with all the
other parameters given by (22) and (23). Figure 9 shows that, below a threshold (in this
case, A ~ 0.86), insufficient cellular material is utilized to cause saturation, resulting
in travelling-wave behaviour. Above this threshold, increasing A results in a spheroid of
smaller saturation size. For A = 0, the only necrotic-volume-loss mechanism is leakage
and Fig. 9 demonstrates the retarding effect that this mechanism has in comparison with
solution of the model of Ward & King (1997) (curve B), with the parameters also given by
(22).

Figure 10 shows the evolution of the spheroid using the parameter set (22) and (23),
except that D, = @, = 250,1 = 04, and pp = 0, indicating zero concentration of
cellular material in the external matrix. Here, there are two possible long-time solutions,
in addition to the trivial solution which corresponds to the tumour dying off. Both of these
are steady states, one having a fully developed necrotic core (with saturation size S, ~
148.36) and the other with a partially necrotic core (with Soe = 28.52). In Fig. 10 the
smaller of these steady states was used as the initial conditions (in terms of the rescaled
variable p) for curves A-C, except that in curves A and C the initial size of the spheroid
was set to S(0) = 29.52 and S(0) = 27.52, respectively. The divergence of curves A
and C away from curve B demonstrates the instability of the smaller steady-state solution:
curve A ultimately tends towards the larger steady state and curve C ultimately vanishes,
implying that the spheroid dies off. This suggests that the trivial state is stable to sufficiently
small perturbations, being an attractor for tumours of sufficiently small initial size. This is
in contrast to all other simulations illustrated in this section. The stability of the trivial
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F1G. 10. The spheroid radius plotted against time for three initial sizes of spheroid: (A) S(0) = 29.52, (B)
S(0) =~ 28.52, and (C) S(0) = 27.52.

state in this case is perhaps not surprising. With zero external concentration of cellular
material, cells must die within the spheroid in order to generate the material to create new
cells through mitosis. However, if there are only a few cells present the production of the
material will be inadequate, making the spheroid unsustainable. In fact, it can be shown
from the analysis of Section 5.3 that the trivial solution is stable for po < 1/90 using these
parameters.

Figure 11 shows the effects of the diffusion coefficient D), for the leakage-only model,
where we have used data set (22) together with @, = 100 and A = p, = pg = 0. Increas-
ing the diffusion rate implies that there is greater seepage of necrotic products from the
core into the rim, from where it subsequently leaks out of the spheroid. Consequently, for
smaller values of D), there is insufficient leakage to cause saturation, and the travelling-
wave solution results for long time, this being illustrated. The bifurcation between the
travelling-wave and steady-state solutions can be determined from the formulations of Sec-
tion 4 and occurs at D, & 897 in this case. Growth in the early phases is similar up to about
t = 15, when necrosis begins and the diffusion and leakage of the necrotic products results
in the divergence of the curves.

4. Large-time behaviour: Formulation
4.1 Introduction

The numerical solutions presented in Section 3 revealed that, depending on the values of
the parameters, growth will ultimately tend either to a linear rate or saturate to a steady-
state size. In this section both the travelling-wave and steady-state limits are investigated,
and the bifurcation between the two outcomes is discussed.
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4.2 Travelling-wave solutions

Here we assume that the rate of spheroid growth tends towards an as yet undetermined con-
stant speed U > 0, so that S ~ Ut as t — co. We translate to travelling-wave coordinates
using z = r — S(¢), with z < 0, obtaining the following system of ordinary differential
equations:

Dynn” = (v — U)n' — n(a — bn), (24)
¢ =kn, (25)
v'=bn — Dpn”, (26)

where the primes denote d/dz; we note that the r ~19/3r terms are O(S 1 as § — coand
are therefore neglected in the limit 1 — oc. The boundary conditions for the travelling-
wave system are

n'(—00) = ¢/(—00) = v(—00) = 0,
Dpn'(0) = —Q,(1 — ppy — n(0)), c(0) =1, v(0)=U. 27

The system (24)~(26) is fifth order with six boundary conditions, which are apparently
sufficient to determine the five variables n, n’, ¢, c, and v, and the remaining unknown U,
We are not aware of any rigorous work to confirm such a statement, or of equivalent results
for the steady-state systems below: however, the numerical work outlined below suggests
that these systems are indeed well posed.

It can be shown using a far-field analysis that as z — —o0 we have n — 0 and ¢ — Co
(constant); linearizing about these values yields

Un' ~ —a(Cy, Dn, (28)
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implying exponential decay as z — —o0 (we note that a(Co, 1) < Ois thus required). This
feature of exponential decay distinguishes solutions of the travelling-wave problem from
steady states, which may contain a core of n = 0; we note that the linearization leading to
(28) fails when U = 0.

As an aside, we can use the fact that n vanishes as z — —o0o to reduce the system of
equations (24)—(26) by one in the special case 1 = 0 (sothatk(c, 1 —n) = Bakm(c, 1 —n)).
Noting that [(v — U)n]) = (km — kq)n, the substitution of this and equation (25) into (26)
yields on integration

1 §—Ar, ,
v o= 1—(1—8)n(,82 c—-(l-—é)nU—Dpn>, (29)
using n(—00) = 0 together with n'(—00) = ¢/(—00) = v(~00) = 0. To eliminate v from
the resulting system we use v(0) = U to get the boundary condition

§—A
B
where we have used Dpn’(0) = Q,(1 — po — n(0)).

U =

¢'(0) = Qp(1 = po — n(0)),

4.3  Steady-state solutions

In the usual way, we assume here that the 3/3¢ terms vanish as ¢ — co. By assumption,
the spheroid is ultimately of finite size. The steady-state system is

Dp d 2dn dn
n R (r a—r—)—vgr—wn(a~bn), (€10))]
1 d /[ ,de
Zar\ar )T 3D
1d/,\ , Dpd,dn
ﬁa(r v)_bn—r—2217 (r 3 (32)

which hold for 0 < r < Ss, Where Sy, is the (unknown) saturation size of the spheroid
and is therefore the coordinate of a free boundary.

As mentioned above, the degeneracy of the effective diffusion coefficient in the equation
for n, (30), gives rise to the possibility of steady-state solutions that have a fully necrotic
core (aregion where n = 0), as well as smooth solutions with a partially developed necrotic
core (n(0) > 0). Thus the appropriate boundary conditions are dependent on the type of
steady-state solution sought, and are listed below.

(i) Partially necrotic core solutions. The boundary conditions are
n'(0) = ¢'(0) = v(0) =0,
Dpnl(Soo) = Qp(l —po— 1(Ss0))s c(Seo) = 1, V(Se0) = 0, 33)

where the primes now denote d/dr. These six boundary conditions are sufficient to deter-
mine the five variables (n, 7, ¢, ¢/ and v) and the coordinate of the free boundary Se.
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(i) Fully necrotic core solutions. For this type of solution, there is a further free boundary
at r = Roo, say, such that for r < Re we have n = 0,v = 0,and ¢ = Cy > 0 (an
unknown constant), and the system (30)~(32) applies in the region Ry, < r < Sy, With
the boundary conditions

n(Roo) = n'(Roo) = ¢/(Reo) = v(Roo) =0,
Dpn'(Sso) = Qp(1 — po — n(Ss0)), ¢(So0) = 1, v(Sa0) =0.  (34)

In this problem there are seven boundary conditions to determine the five variables
(n,n',c,c’ and v) in Roe < r < Seo, leaving two conditions to determine the two free
boundaries Ry and Seo. It should be stressed, however, that the solution to the time-
dependent problem does not have a fully necrotic core, the behaviour in the limit z — oo
being nonuniform. Linearized analysis on the time-dependent model reveals that the live-
cell density in the core decays exponentially, satisfying 8n/9¢ ~ a(c|i=s0, 1)1 as t — o0,
where ¢ ~ ¢|r=00 = ¢(Roo), With equation (15) implying that a(c|;—s, 1) < 0.

The bifurcation between these two types of steady-state solution occurs when 7(0) reaches
zero in the partially necrotic formulation or Ry, drops to zero in fully necrotic case. This
special case has the following boundary conditions at r = 0:

n(0) = n'(0) = ¢’ (0) = v(0) =0, (35)

plus the three conditions imposed at r = Sy,. There are seven boundary conditions to
determine the five variables (n,n’, ¢, ¢/, and v) and the free boundary Sy, leaving the
problem overspecified, as required since a relation between the parameters must hold for
the steady-state solution to lie on a bifurcation point between fully and partially necrotic
core solutions.

As with the travelling-wave equations, the order of the steady-state system can be re-
duced by one when 81 = 0, sok(c, 1 —n) = Bokm(c, 1—n). Substituting r‘2d(r2vn)/dr =
(km — kg)n and (31) into (32) eventually gives

1 8 —Ade dn
= —_D ] 36
° -0 “5)71( By dr pdr) (36)

using v(0) = dn(0)/dr = dc(0)/dr = 0. We can eliminate v using v(Ses) = 0 to obtain
atr = Sy

§—Xide
B, 5 = Q[)(l — po — n).
If we let 7 = pSeo, then, for large S, it can easily be shown that outer solutions (which
hold for p = O(1) with p < 1) take the form n = 0,v = 0, ¢ = cg, for constant ¢,
to all powers of 1/S4,. This suggest that for large spheroids the steady-state solutions is
fully necrotic in the core, the solution being nontrivial only in a boundary layer region
l—p = O(So_ol). There exists a smooth transition from the travelling-wave speed limit
U — 0 to the steady-state limit of saturation size Sy, — 00. This is exploited below to
derive the equations for the travelling-wave/steady-state bifurcation. It is possible to show
that at such a bifurcation point we have dS/dt ~ y/S as t — oo, for some constant y,
giving sublinear growth, S ~ (2y¢)!/2. Such behaviour has been confirmed numerically.
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44  The travelling-wave/steady-state bifurcation

This bifurcation is analysed by seeking steady-state solutions in the limit of Soo — 00. As
stated above, the solutions for # and v in this limit are expected to be fully necrotic and we
focus on the viable rim by translating the steady-state system (30)-(32), using x = r — Seo,
to obtain at leading order as Soo —> 00

Dpnn” =uvn’ — nla — bn), (37
" =kn, (38)
v'=bn — Dyn”, (39)

the r~'d/dr terms being of O(Sgol) and therefore again being neglected. Defining x =
X < 0 to be the free-boundary coordinate of the unknown necrotic interface, so that for
¥ < X wehaven =0,v = 0, and ¢ = Cp (a constant), and for x > X we have (37)-(39)
subject to

n(X)=n'(X) = (X) =v(X) =0,
Dpn'(0) = Q (1 = po — n(0)), c(0) =1, v(0) = 0. (40)
We thus have seven boundary conditions to determine the five variables (n, n’, ¢, ¢/, and
v) and the free boundary X; this problem is again being overspecified, requiring some

relation between the parameters to hold, thereby identifying the location of the bifurcation
in parameter space.

4.5 The consumption-only model

We now consider a special case in which substantially more progress can be made in char-

acterizing the behaviour by analytical means. Here, we investigate the conditions for the

existence of the long-time solutions for the consumption-only version of the model (that is,

the case @, = 0). The results below also apply to the zero diffusion case D, = 0, where

the problem reduces to the model of Ward & King (1997) generalized to include necrotic

material consumption (if A > 0). Again defining z = r — Ut, then as f — oo the equations

[(v = U)n] = (kn — ka)n, (40

v =[(1 = Mk ~ (1 — 8)kaln — Dpn”, (42)

hold for the travelling-wave case, where the primes denote d/dz, and the boundary values
are v(0) = U, v(—o0) = 0. Substituting (41) into (42) yields

(1 =8)[(w—=U)nY =v' — (8 = Akmn + Dpn”,

which upon integration gives

0
U=®—M/ ki dz, (43)

since 0, = 0 implies that n’(0) = 0. Since U is required to be positive, and because the
integral term on the right-hand side contains only positive quantities, we deduce that

A< 44
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is a necessary condition for the existence of travelling-wave solutions for the consumption-
only model.

It can easily be shown by repeating the above analysis on the steady-state equations
that no nontrivial solutions exist for A > §. Here, more cellular material is consumed
during cell birth than produced at cell death, the tumour is nonsustainable and eventually
dies out. In the case A = &, the steady-state system is underspecified and there are an
infinite number of solutions parametrized by the saturation size So, the initial conditions
determining the saturation size. The travelling-wave/steady-state bifurcation curve for the
consumption only model is simply the line A = &, on which this infinity of steady states
lies.

5. Large-time behaviour: Numerical solutions
5.1 Numerical methods

The nonlinear nature of the above systems means that, except in special cases, we must
again resort to numerical methods of solution. The governing problems either are, or will be
reformulated as, two-point boundary-value problems, and a shooting method (NAG routine
DO2AGF) is used to solve each system. Improved convergence was gained by shooting
from both sides and matching within the domain. A continuation procedure is incorporated,
whereby an appropriate parameter adjusted, in order to track along the paths in parameter
space, subsequent steps being lincarly extrapolated from up to 15 of the previous steps.

5.2 Formulation

5.2.1 Travelling-wave solutions The travelling-wave system is reduced to a two-point
boundary-value problem using the linearized solutions as z — —00 to provide asymptotic
representations of the variables at a point z = —L for a suitably large value of L > 0.
Rescaling equations (24)—(26) using y = z/L + 1 and, defining 7 = dn/dz and ¥ =
dc/dz, the system can be restated as

n'=LTY, (45)
-U)T —b
oL (80 ”), 6)
D, n D,
¢ =LW, 47
' = Lkn, (48)
, T
vV=L[|a—-@-=-U)—~], {49)
n
where the primes now denote d/dy. Using the linearized approximations at z = —L the

following set of boundary conditions is imposed
aty=0 n=~Ny, T =—-aNo/U, ¢ = Co+ (UJa)’kNp,
¥ = —(U/a)kNy, v = (Dpa* — bUHNy/aU,
aty=1 n=N|, T =0,01—po—N)/Dp, c=1,v="U,
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where Ny = Nyexp(al/U), Np being an arbitrary constant of integration arising from
the linearized analysis and a denotes a(Co, 1) (and similarly for b and k). Here, Ny, Co,
and Nj, as well as U, are determined as part of the solution; thus, fixing L, we have a
fifth-order system and four unknown parameters with nine boundary conditions. indicating
the problem to be correctly specified.

5.2.2 Steady-state solutions The domain on which the system (30)-(32) is to be ap-
proximated depends on the type of solution. In the partially necrotic core case the system
is integrated over the whole spheroid, whilst in the fully necrotic core case we integrate
between the two free boundaries Ry and Seo. These two cases and their bifucation are
therefore discussed separately.

(i) Partially necrotic core. The presence of the terms in r~ 1 in this case causes numerical
problems as r — 0; these are tackled by introducing approximate boundary conditions at
apointr = €, withe < 1, which are derived from a power series solution of the system
(30)=(32) as € — 0. In order to solve on the unit interval we define y = (r — €)/L, where
L = S, — €, and write ¥ = dn/dr and ¥ = dc/dr. The system can then be restated as

n'=L7, (50)
2L vY a-—bn

Y =-227+L|— — 1
v + (D,,n D, ) 1)

=LV, (52)
2L

W’:—VW—FLkn, (53)
2L Y

v'=————v+L( —”—), (54)
y n

where the primes again denote d/dy, with ) = yL + €, and equation (51) is used in
obtaining (54). The boundary values used employ the first correction terms in the series
expansion, and for fixed € <« 1 they are

aty=0 n=N0+€2N1,T=26N1,C=Co+62C1,
¥ =2eCi, v=¢V,
aty=1 n=N1,T=Qp(1—po—N1)/Dp,c=l,v=0,

where
M= —6—;;[61((50, 1 — Ng) — Nob(Co, 1 — No)l,
¢ = k(Co, 16— No) No,
y = 2ol = N 13_ No) Ny — 2D,

Further terins in the series expansion can easily be found; however, for small enough € the
above suffice. We require No, Co, and N, as well as Sy, to be determined and, by the
usual arguments, this problem is expected to be correctly specified.
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(it) Fully necrotic core. In this case, the presence of the 1/ term due to the nonlinearity of
the live-cell “diffusion’ (see equation (51) above) causes numerical problems as r — RY.
This is overcome, in similar fashion to above, by introducing an approximate boundary
condition at a point r = Reo + € with 0 < € « 1, again using power-series expansions to
give the local behaviour of the variables. In order to solve on the unit interval, we fix € and
define y = (r — Roo — €)/L, where L = Sog — Ry — €; defining 7" and ¥ as before we
recover the system (50)—(54) with )V = yL + Ro + €. Using the small € results at y = 0
yields the boundary conditions

aty =0 n=e*Ny, T =2\, ¢ = Co+e*k(Co, 1)N2/12,
¥ = € k(Co, DN2/3, v = € a(Cy, 1)/3, (55)
aty=1 n=N, Y =0,(1-po—N1)/Dp, c=1, v=0,

where AV = —a(Cy, 1)/6Dp. We therefore have as undetermined constants Se0s Roos Co,
and N; and believe the problem to be correctly specified.

(iii) Partially/fully necrotic core bifurcation. This case is the limits Ng — 0 and Roy — 0
of, respectively, the partially and fully necrotic core cases. Here the 1/n and 1 /r terms
both cause problems as r —» 0. We take r = € as our left-hand point and rescale to the unit
interval using y = (r — €)/L, where L = So, — €, which leads to the system (50)—(54)
with Y = yL + €. However, since we are taking an expansion about r = 0 the effects
of the spherical geometry is non-negligible, and to the first correction term the boundary
conditions are now

aty =0 n=3e>N2/5, T =6€N>2/5, ¢ = Co+ e k(Cp, 1IN3/20,
¥ = ek(Co, DN2/S, v = ea(Co, 1)/5,
aty=1 n=N, T=0,(1-po~N1)/Dp, c=1, v=0,

where My = —a(Co, 1) /6D . The constants Cp, N, and S, need to be determined and,
additionally, some relation must hold between the parameters in order to be at a bifurcation
point.

5.2.3 The travelling-wave/steady-state bifurcation In this case we seek solutions to the
system (37)—-(39) over the region X < x < 0. However, the presence of the 1/n term
again prompts us to use a series expansions of the variables as x — X7T. For small ¢, we
take the starting point to be x = X + ¢ and let L = —X — ¢, the domain being rescaled
to the unit interval by defining y = 1 + x/L. The appropriate system for this bifurcation
problem is the same as for the travelling-wave system (45)-(49) but with U = 0. The
boundary conditions for this case are given by (55). The constants Cy, N1, and X must be
determined as part of the solution, as must the relationship between the parameters which
gives the bifurcation curve.

5.3  Numerical results

With so many parameters in the model, it is impractical to give an exhaustive survey of the
effects of each of them on the long-time solution. Hence, for most of the results to follow
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the travelling-wave/steady-state and (- - -) the fully/partially necrotic core bifurcations. The paths for Figs. 13-16
are indicated by the dotted lines labelled A-D and by dash—dot curve F.

the parameters that are shared with the model of Ward & King (1997) are kept fixed, being
given by parameter set (22), while the new parameters are varied. In particular we shall
focus on the travelling-wave growth velocity or the saturation size (as appropriate) and on
the bifurcations between travelling-wave and steady-state solutions and between the fully
and partially necrotic core solutions. Except where otherwise stated, we shall reduce the
number of parameters to be studied by taking D, = Q, throughout what follows; the
ratio D,/ Q , determines the leakage rate and we are thus fixing leakage properties while
varying other parameters.

The first of the bifurcation diagrams is shown in Fig. 12, where the regions of existence
of the travelling-wave and steady-state solutions are shown in (D), = @, A)-space, with
all parameters other than D, = Q) and A given by (22) and (23). We note that, with
this data set, only a single nontrivial long-time solution with positive radius exists at any
point in parameter space. The bifurcations curves were generated by tracking along the
various branches, solving the bifurcation equations derived above. The solid curve marks
the bifurcation between travelling-wave and steady-state solutions, and the dash—dot curve
marks the bifurcation between fully and partially necrotic core solutions. Below the solid
curve the combination of mitotic contraction and leakage is inadequate to cause cessation
of growth, and travelling-wave solutions result. Above the solid curve lies a band con-
sisting of fully necrotic core solutions, and the remainder of the quarter space consists of
steady-state solutions with partially necrotic cores. In the latter region the effects of the
combination of mitotic contraction and leakage are sufficiently strong that the resulting
spheroid lacks a fully developed necrotic core. Both bifurcation curves are unimodal, and
to the right of the maximum reach A = 0 at some finite D; this is to be expected, since de-
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F1G. 13. Plots of travelling-wave growth speed against A for three fixed values of Dp: (A) 100, (B) 250, and (C)
400.

creasing the mitotic contraction along the bifurcation curve requires an increase in amount
of leakage in order to compensate. The decrease in A as D), decreases to the left of the
maximum results from diffusion being so weak that the living cells depend more on the
death of cells than on the external source to provide the cellular material necessary to repro-
duce; consequently to balance the usage and generation of cellular material the bifurcation
curves descends towards § = A = 1, as predicted by the analysis of Section 4.5.

The travelling-wave growth velocities and the saturated spheroid radii along the paths
A-F in Fig. 12 are shown in Figs. 13-15. The growth velocities along paths A, B, and
C, corresponding to values of D}, of 100, 250, and 400, respectively, are shown in Fig.
13. We note that the growth velocities descend approximately linearly towards zero at the
travelling-wave/steady-state bifurcation point, with only line A showing any noticeable
curve, Figure 14 shows the saturation spheroid size, So, as a function of A for the paths la-
belled A-D. The dotted vertical lines show, from left to right, the positions of the travelling-
wave/steady-state bifurcations for curves C-A. We observe in all cases an initial rapid
decrease in Sy, as A increases, with a subsequent levelling following the fully/partially
necrotic core bifurcation (indicated by the ¢ on each of the curves). The sensitivity of the
Soo to A over the region of fully necrotic solutions is noteworthy, though the influence of
other factors not included in the model may mitigate this feature. Although not physically
realistic, it can be shown by taking a regular expansion in the limit A — oo that, provided
no+ pop — 1 > 0, we have

_ 9p 3o+ po—1)

S
0 A nokm(1,1—ng)’

(56)
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where ng is the solution of k,,, (1, 1 — ng) = kg4(1), so that

" ( ka((1 + ) )“’?
C \l=kg(D(A 42 '

np=1-p 57
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We note that for pg < 1 — ng, equation (56) predicts a value of S, that is negative, and
the asymptotic expansion breaks down; however, it does reveal that pp = 1 — no marks
a bifurcation of the long-time solutions between unique nontrivial solutions existing over
the whole of the quarter space and two nontrivial solutions existing over part of the quarter
space. An example of the latter case is described later.

The saturation size and surface flux of cellular material along path E (A = 1.3) and along
the fully/partially necrotic core bifurcation F are shown in Figs. 15 and 16. The dotted
vertical lines in Fig. 15 show the boundaries of the fully necrotic core solution region for
curve E. Consistent with the result shown in Fig. 14, Sy reaches a peak within the fully
necrotic core region, showing that the larger spheroids tend to be fully necrotic in the core.
Taking a regular series expansion in the limit D, = Q, — 0, the spheroid size can be
shown to satisfy

Dp 3(ng+po—1)

S ~ 3
A =8 nokm(1, 1 —ng)

(58)

where ng is given by (5§7), this being valid for § < A with A — § > D,. We note that
this expression again requires that ng + po — 1 be positive, as for equation (56). Curve
E in Fig. 16 is everywhere negative over the region, implying an influx of material, sug-
gesting that the mitotic contraction factor is sufficiently high to consume all the cellular
material absorbed through the surface. Formulation of a regular expansion of the form
n~ny+n/DpasD p —> 00 shows that the diffusion of cellular material becomes so
rapid that n ~ 1 — pg, ensuring parity between the internal and external concentrations.
However, the material flux through the surface (—D,dp/0r(Se) ~ 9n1/9r(Se0)) tends
to a constant as D, — oo, indicated by the levelling off of curve E in Fig. 16. Along the
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in (Dp, A)-parameter space. (—) The path of 91/0.Sx = 0, above which only trivial solutions exist. The paths
for Fig. 18 are indicated by the dotted lines labelled A and B.

fully/partially necrotic core solution bifurcation, the saturation size is observed to increase
as D, increases, and influx turns to leakage at about D, = 400.

The regions of existence of nontrivial solutions together with the paths of the travelling-
wave/steady-state and fully/partially necrotic core solution bifurcations in (D, = Qp, A)-
parameter space are shown in Fig. 17, using the parameters given by (22) and (23) except
that py = 0. The solid curve tracks the bifurcation from having only the trivial solution
(above the curve) to also having nontrivial solutions, and was generated by solving along
the path 94 /38 = 0, where the upper and lower branches meet, as D), is varied. We note
that the solid curve starts at about D, = 65 due to the failure of the numerical scheme
evaluating the path 91/8Sx = 0 for smaller diffusivities, the problem becoming very
sensitive to the starting guesses for shooting. However, the travelling-wave/steady-state
bifurcation curve (larger dashes) approximates the existence bifurcation over this region.
Below the solid curve the two nontrivial solutions lie on two branches which will be termed
the upper and lower branches, which meet on this solid curve. We note that the upper
branch and trivial solutions are expected to be stable and the lower branch solutions to be
unstable. Below the larger dashed curve, travelling-wave solutions exist and are apparently
always stable. Between the two dashed curves lie the fully necrotic core solutions and we
note that at a diffusivity of about D, = 100 the dashed bifurcation curves cross over, in
contrast to the curves shown in Fig. 12. To the right of the cross-over point the fully necrotic
core solutions always exist on the upper branch; however, to the left such solutions may
exist on the lower branch. Figure 18 shows the steady-state size as a function of X along the
dotted paths labelled A and B in Fig. 17, the solid and dashed curves in Fig. 18 represent
the upper and lower branch solutions, respectively. We note that the growth velocity of
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the travelling waves (not illustrated) along curves A and B descends from U ~ 5.72 and
U =2 1.38, respectively, to zero at the travelling-wave/steady-state bifurcation in an almost
linear fashion (similar to that shown in Fig. 13). We also note that the steady-state solutions
along the upper branch are characterized by being larger and decreasing in radius as A
increases, whereas the saturation size increases with A along the lower branch.

The results shown in the figures so far have involved the assumption that the consump-
tion of the nutrient is independent of the local cellular material consumption, i.e. that
B2 = 0. In Fig. 19 the two bifurcation curves for the case f; = 0 and By = 0.01 are
compared with those illustrated in Fig. 12 in which g; = 0.01 and 8, = 0. Quantitatively
there are significant differences between the curves; however, qualitatively they are similar.
This type of qualitative behaviour was found to occur for a variety of choices of 81 and B;.

In Fig. 20 the effects of the critical concentration of cellular material, D¢, On the
travelling-wave/steady-state bifurcation is shown in (D, = Q p» A)-space, with all other
parameters given by (22) and (23). The decrease in p, implies that mitosis occurs faster
at a given concentration of cellular material, meaning that greater consumption is required
to force saturation. In Fig. 21 a similar study performed on the effects of the external cel-
lular material concentration pg on the same bifurcation is shown. Increasing the external
concentration reduces the readiness of the necrotic material to escape, thus requiring an in-
crease in A to compensate. However, for any py < 1, leakage dominates for large enough
values of D, and the bifurcation curves eventually fall to A = 0. In the case py = 1, the
external medium is saturated with cellular material preventing leakage of the necrotic ma-
terial and the bifurcation curve carries on ascending. For the cases with pg > 0.1 shown
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F1G. 20. The effects of the critical cellular material concentration p. on the travelling-wave/steady-state bifurca-
tion.

in Fig. 21, nontrivial solutions exist throughout the quarter space; however, for the case
po = 0, two nontrivial solutions exist over part of the quarter space.

The two bifurcations are explored in (8, A)-space in Fig. 22, with the other parameters
given by (22) and (23). As expected, increasing § results in increasing A in order to main-
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tain the necessary volume balance through birth and death along each of the bifurcation
curves. Both curves appear to be straight and are parallel to each other, though an analyti-
cal justification for this has not yet been devised.

In Fig. 23 we drop the relation D, = @, which holds throughout the preceding ex-
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amples, and give the distribution of the two types of solutions for the leakage-only model
in (Dp, Qp)-space, the other parameters being given by (22) and po = p. = 1 = 0.
Both bifurcation curves drop sharply from their respective asymptotes, levelling off and
descending to zero as D, — o0. These results suggest that there exists a minimum value
of D, for which diffusion and leakage can occur at a sufficient rate to force saturation. In
the limit D, — o0, diffusion of the necrotic products to the surface is so rapid that, unless
Qp is sufficiently small to hinder escape, saturation of growth occurs.

Because of the relative ease of controlling the environment in which multicell spheroids
are grown and of measuring gross quantities such as saturation size and viable rim width,
there have been several studies reporting the effects of oxygen and glucose concentration
on such features; see, for example, Bourrat-Floeck et al. (1991), Franko & Sutherland
(1978), Hlatky et al. (1988), Mueller-Klieser, (1983), and Tannock & Kopelyan (1986a,b).
Many of these studies found that increasing the external concentration of either glucose or
oxygen results in an increased viable rim width, although Tannock & Kopelyan (1986a,b)
suggest that a limit in width may be reached at which additional quantities of either oxygen
or glucose have negligible effect. The results given in Bourrat-Floeck et al. (1991) for
the case of zero external lactate concentration (lactate being a mitotic inhibitor) reveals
that increasing external oxygen concentrations from 5% to 20% leads to an increase in
saturation radius from about 600 to 830 um, with little effect on the viable rim width (about
300 pm in both cases). This behaviour seems to correspond well with the results shown in
Fig. 24, up to an external nutrient concentration of ¢(S) ~ 5. The parameters used for
Figs. 24-26 are given by (22) with the remainder given by D, = Qp = 400, A = 1.5,
and, again, p. = pp = 0.1. We note that the dimensionless value for the external nutrient
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concentration is varied from the ‘standard’ choice of ¢(§) = 1, whilst the other parameters
remain fixed. Here, for ¢(S) = 1 the steady-state solution has a partially necrotic core and
the fully/partially necrotic core solution bifurcation, indicated by the dotted line, occurs at
about ¢(S) = 1.54, to the right of which are the fully necrotic core solutions. Increasing
the external concentration leads to a rapid rise in both the saturation, Seo, and the necrotic
radius, Ry, up to about ¢(S) = 10, where both curves kink, after which the saturation
size continues to ascend, but more slowly, and the necrotic core radius decreases. The
initial rapid increase is for the obvious reasons—there is more nutrient available, leading to
greater proliferation and growth, and the diffusion rate of the cellular material is sufficiently
high to supply the cells in the viable rim. This is illustrated in Fig. 25 where, noting that
p = 1 — n, there is a non-negligible concentration of cellular material in the viable rim
region. We note that the slight descent of the live-cell density near the surface implies the
influx of material from the exterior, and it is thus the consumption of the cellular material
that is the dominant process in forcing saturation in this case. Above about ¢(S) = 10
the quantity of nutrient in the viable rim is so high that the cellular material in the central
parts of the plateau region is almost completely consumed by the (now small) amount of
mitosis that is occurring there, as is illustrated by the case ¢(S) = 30in Fig. 25. The viable
rim here consists of a marked plateau of live-cell density n ~ 1, and there is a relatively
high rate of mitosis occurring at the edges of the viable region, and relative quiescence in
the central part, to which diffusion fails to deliver sufficient cellular material. This feature
coincides with the kink in saturation size in Fig. 24, though the size continues to increase
due to increased proliferation in the two regions at either edge of the viable rim. The extent
of the nonuniformity of the mitotic rate in the viable rim is interesting; however, in practice
the inner peak may be reduced by the presence of inhibitors produced in the core.
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This response of the spheroid size to varying external nutrient concentrations is not
universal, as is illustrated by Fig. 26. The parameters are given by (22) and (23), for which
increasing the external nutrient concentration does, as expected, result in the increase of
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saturation size, but also leads to a slight shrinkage in viable rim width. This may be a result
of the reduced availability of the cellular material in the viable rim caused by its increased
consumption during mitosis, which has become elevated by the higher concentrations of
nutrient. This counter-intuitive behaviour has been observed in experiments on the effects
of glucose concentration on thyroid carcinoma (HTh7) spheroid cultures (Acker er al.,
1987), with glucose concentrations well below toxic levels. Finally, as is evident from
Fig. 26, there is a critical external concentration, ¢(§) = CS say, at which the saturation
size becomes zero. As c(S) — C8+ and Seo — O we have n ~ 1 — pg and ¢ ~ o
throughout the spheroid, ¢jj being such that the birth and death rate are equal, that is, such
that a(cg, po) = 0; in this case ¢y = 1/9.

6. Discussion

In existing models, rather ad hoc necrotic degradation terms are employed to provide the
necessary volume sink to force growth saturation; such terms are intended to represent
the breakdown and rapid escape of necrotic material from the spheroid. Implicit to the
approach of these models is the unphysical assumption that ultimately the entire volume
of the cell disappears after death, analogous to the § = 0 case of the model of Ward &
King (1997). Here we have extended that model by incorporating two biologically plau-
sible mechanisms for the fate of the necrotic products, it being assumed that this material
consists of diffusible material of non-negligible size, with utilization by the living cells and
leakage being the two mechanisms for necrotic-volume loss.

Numerical solutions of both the full and long-time systems show that, given sufficient
strength of the leakage and consumption mechanisms, i.e. sufficiently high values of ei-
ther A and Dp, growth saturation eventually occurs; otherwise growth tends toward the
travelling-wave limit. Furthermore, the three-layered structure observed in experiments is
also predicted. It is emphasized that the predicted growth and heterogeneity arise naturally
from the model rather than being assumed a priori. As a consequence of the model as-
sumptions, the steady-state solution may contain a core of zero live-cell density, reflecting
complete necrosis in the core, in agreement with experimental results. The simple analysis
of Section 4.5 on the long-time system of equations reveals that, except in a very special
case, growth saturation occurs only if material is able to pass through the surface of the
spheroid. The asymptotic analysis described in Appendix B demonstrates that, for a limit-
ing case of the model, both the initial exponential and linear growth phases are predicted in
the vanishing death-rate limit. Furthermore, the analysis provides an upper bound for the
growth speed in terms of the model’s parameters.

The model contains a large number of parameters, the values of several of which are
unobtainable from existing data. We note that many of the parameter values are intrinsic to
the cell line studied; however, environmental factors such as the external nutrient and pre-
sumably the external cellular material concentrations are experimentally controllable. In
experiments, spheroid cultures eventually saturate in size if grown for a sufficient amount
of time and the travelling-wave behaviour predicted by the model has not been reported.
In terms of the model this suggests that the appropriate parameter values are always such
that growth saturation will be achieved, although the presence of growth inhibitors and
cell shedding may well be important contributory factors in preventing continual growth.
However, an interesting experiment would be to study the effects of different external con-
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centrations of cellular material on growth, since a sufficiently high concentration may in-
duce continuous growth, cf. Fig. 21. The diffusion of material from the external medium
into the spheroid has been extensively studied for various substances, notably nutrients and
drugs; however, there has been little study of the reverse process. Analysis of the external
medium for the existence of necrotic material, diffused out from the spheroid, to confirm
that material leakage occurs at non-negligible levels would be useful. Experimental work
on the usage of macromolecules (such as proteins, lipids and nucleic acids) by the living
cells would also be interesting and such data would help ascertain the relative importance
of the consumption and leakage mechanisms of necrotic-volume loss. Further experiments
concerning the effects of the external nutrient concentration on saturation size would also
be interesting, in order to make comparison with the types of behaviour predicted by the
model in Figs. 24 and 26. Such experiments would help confirm (or otherwise) the exis-
tence of the mechanisms incorporated into the model and provide deeper understanding
into the important processes that force growth saturation in spheroids.
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Appendix A: Parameter values

The values for the parameters common to the model of Ward & King (1997) are discussed in the
Appendix of that paper; the values for the important scaling parameters in Section 2.2 being Vy, ~
107%cm?, giving rog &~ 6 x 10~ cm, and A & 10~5 s~ 1. The new parameters for the present model
are A, Dp, Q p, po, pc, and m3, for which very little directly appropriate data are available from the
literature. There appears to be very little experimental work investigating the effects of the cellular
material, so that the appropriate kinetics for the consumption and usage of the cellular material are
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unavailable; hence the values A, pc, and m3 used in the simulations in Sections 3.2 and 5.3 are
simply estimates. Experimentation geared at determining these parameters would be very valuable.
The external cellular material concentration py could, presumably, be determined by experimental
analysis of the external medium.

Since cellular material represents a variety of molecular species with a range of molecular masses
and diffusive properties, the best choice for the value of the diffusion coefficient is unclear. However,
Nugent & Jain (1984) presented several power-law expressions linking diffusion-rate coefficients
with the molecular mass; these were derived from various experiments, both in vivo and in vitro.

From these, although there is much variation, a value of Dp = 1079 cm?s™! represents material

with a molecular mass, My, of at least O (10%). We note that the diffusion rate of glucose (M, = 180)
is about 106 cm2s~! (for example, Casciari et al., 1988), which is significantly faster than the
cellular material. For the remaining parameter, Jp, experiments examining cellular material flux
across the spheroid surface are required.

Since the values of a number of these parameters have not been established, the solutions to
the model are particularly instructive in revealing the dependence of the behaviour upon them. The
numerical solutions discussed in Sections 3.2 and 5.3 demonstrate the high degree of sensitivity of
the solutions to such parameters, both quantitatively and qualitatively. Physically relevant ranges of
the parameters could be established using the criteria that the model should predict growth saturation
(of a size of O(1mm)) with a viable rim of a few cells.

Appendix B: Asymptotic analysis
B.1. Introduction

The purpose of this appendix is to provide an example of how asymptotic methods can be applied to
simplify the model discussed above (we note that numerous other limits, not treated here, can also
be analysed by such methods) and to give a generalization to the current model of the the asymptotic
results of Ward & King (1997). We therefore consider the biologically plausible small death-rate
limite = B/A — 0,and take Dp = D;",/s, and Qp = Q;/s, where the asterisked quantities are of
0(1). These rescalings are chosen so that, in particular, the travelling-wave/steady-state bifurcation
features in the limit problem. The governing system is then most conveniently written in the form

1 8(r?v) . Dy 1 8 (,0n
= =[(1 = Nkm — (1 — 8)ekgln — £ = — (r*—, .
Ry [ =Mk — (1 = ekgln — —=— -~ (r ar> (B.1)
19 23(3 —k B.2
2o\l )T (B.2)
an 1 3(*mw) — oy — 8fa) 83
or T2 oy dmT e (B-3)
with
™ (1 —n)ms )
ki, 1 —n)= R B4
n ) (c’"l +cgt ) (P?3 + (1 —n)m3 B4
i
kic,1=n) =ﬂlm + Bakm(c, 1~ n), (B.5)
- oc™m?
k =1 —, )
4(©) s (B.6)

subject to (17).
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B2.t=0()

There is an initial transient £ = 0{¢), v = O(1/g) over which n drops, due to the rapid ingress of
cellular material, until » ~ 1 — pg throughout the spheroid. There follows a period of accelerated
growth until quiescence, due to nutrient depletion in the core, takes effect. The accelerating growth
phase can be illustrated-in the limit g1, B2 < 1, so that ¢ ~ 1 for t <« In[1/(8] + B2)]. Here, by
taking a regular expansion for small & we find that

A — porMkm (1,
(+ po o*>m< Po)( pSHZ |
6D, 0%

n~1-—py+ ¢

S ~ Soexp [km (1, po)t/3]

for some positive constant Sp. These expansions show that in this limit the initial acceleration of
growth is exponential. More generally, for the time scale £ = O(1) we have to leading order

n~1-po, (B.7)

18 [ ,8¢ ™
75" (r —a'r‘) ﬂcml +c2n1 y (Bg)
1 3(r%v) cm 5o
2 or ncml +(:m1 ’ (B.9)

where n = pg> /(pe > + pg ) and we now define 8 = (1 — po)(B) + B27). Hence

nBc
UN
ﬂar

If we replace v by nv and ¢ by ¢/n, we recover the t = O(1) formulation of Ward & King (1997),
section 5.2, in which the constant g = g(B, my, c.) is of the form g = go(m}, cc)}/B1/2; the value
of gy is readily calculated for given m | and c.. As t — oo, we thus have S ~ ggnt/B1/ 2. while for
B « 1 the growth is initially exponential. Cell death on this time scale is negligible.

The quantity A plays no role in the preceding leading-order calculation; however, going to the next
order we find that

(B.10)

an
Dp= ~ —&(+po = Apo)v, ®.11)

which is dependent on A and which can be used to quantify how much cellular material crosses the
spheroid boundary and how much is consumed within the tumour. We note that the values of & used
in the numerical solutions presented elsewhere in this paper are sufficiently large, where X has a
significant effect on the growth behaviour.

B3. t = O(1/e)

The analysis now departs more dramatically from that of Ward & King (1997). We rescale by ¢t =
t*le,r =r*/e, § = §*/¢ to give at leading order in the core (r* = O(S*) with r*/S* < 1)

1 3(r**) Dy 4 [ ,oon
o =—(1—6)n——*2—ar (r "“ar*)' (B.12)
) 1 a¢r*?
n W B.13)

ar T o
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since ¢ « 1 and kyy(c, 1 —n) <K ¢ there. Defining w = v + D;‘,E)n/ar and integrating, (B.12) and
(B.13) yield

dw on

5~ (=dwn=—( — Do~ w, (B.14)
1 80*%w)
g = (o (B.15)

The structure in the rim (r* — $* = O(g)) is equivalent to that in Ward & King (1997), so the
boundary and initial conditions (B.14) and (B.15) are

atr*=0 w=40,
* dn qon
oS n=1—pp— =w— Dt L A
atr* =8* n PO =W par*+ﬂ1/2' (B.16)
att* =0 S* =0.

The second condition at r* = §* arises because the net growth rate of the spheroid is determined by
the contraction in the core (giving the first two terms on the right-hand side) and the rate of mitosis in
the rim (giving the gq term); the tumour reaches the steady state if these two rates come to balance. It
can be shown by rescaling that the behaviour of (B.14)~(B.16) depends on go and D;‘, only through
the combination qO/JD;‘,. We also note that A again does not appear in the leading-order problem
but does determine how much cellular material enters or leaves the tumour.

The moving-boundary problem (B.14)-(B.16) cannot be solved analytically, but it is possible to
determine the location of the travelling-wave/steady-state bifurcation. Steady states satisfy

. (1=8n dn

= — —_—, B.1
v PT=(1=&)n dr* (B.I7)
with
Dy d n dn
14 %2 _

As indicated above, to locate the bifurcation (corresponding to the limit %, — oo) we solve the
one-dimensional version of (B.18); namely,

d n dn
pr et &y, B.19
l’dz(l—(l—a)ndz) " (B.19)
where z = r* — §%,, subject to
asz — —00 n—0,
D3 dn B.20
atz =0 n=1- py, P = 201 (B.20)

I—( =& —ppdz /2

in fact, because (B.19) is degenerate, we have n = 0 for z < —z¢ for some zg > 0. Equation (B.19)
can be integrated to yield

by n? (dn >2 n? n 1 il — (1 — 8
—_— — { — = - - - nfl — (1 = é)n], B.21
2[1 — (1 —8)n}? \dz 2(0—-8) (1=8€2 @1-53 (= ml, (B.2Y)
and, by imposing the boundary conditions at z = 0, we find that the travelling-wave/steady state
bifurcation is located at

g _ (B[00 -0-90 - pol- =80 - po - (1 =920 012

N 3
/ D}, (1-38)Zn(1~ pg)

For larger values of qo/ D;‘,, a travelling-wave will occur, while for smaller values the solution will

D

(B.22)
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evolve to a steady state. As an aside, we note that, much more generally, the problem governing a
bifurcation between travelling waves and steady states may be significantly more easy to address an-
alytically than general travelling-wave and steady-state solutions, since the appropriate formulation
is in some respects simpler than either.

Asd — 1or pg — 1, wehave

1

w  [3pa-mw]

\/D-; ~ ; : (B.23)

Further progress is possible for § = 1, when w = 0 and (B.12) can be reduced to a degenerate

reaction—diffusion equation
on D;k) 9 w2 on
=aaw T ey ) (B.24)

51‘—; r*_2 ar* " ar*
The solution to (B.19) is then
(z+ ZO).E |
"= %Dy 0 0T (6051 - pe))2. (B.25)

More significantly, we can also locate the fully/partially necrotic core bifurcation; when § = 1
equation (B.18) has a closed-form solution

s

r*2

n o= Iab—; (B.26)

and imposing the boundary conditions yields
Sao = (10D} (L= p0)1'2 qo/\/ D} = 1281 = po)/51"*/1.

The solution (B.26) satisfies the conditions required to be on the bifurcation curve, having n = 0 at
r* =0, so for § = | we have a partially necrotic steady-state for

90 _ 260 - po)/s)'?

[28(1 — pg)/511/2 .2 _Dpa — pp)/31172

n \/D—; ]

90 _ 2601~ po)/3)'?

/Dy, n

fully necrotic for

and a travelling wave for




