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Abstract. A comprehensive continuum model of solid tumor evolution and development is
investigated in detail numerically, both under the assumption of spherical symmetry and for
arbitrary two-dimensional growth. The level set approach is used to obtain solutions for a
recently developed multi-cell transport model formulated as a moving boundary problem for
the evolution of the tumor. The model represents both the avascular and the vascular phase
of growth, and is able to simulate when the transition occurs; progressive formation of a
necrotic core and a rim structure in the tumor during the avascular phase are also captured.
In terms of transport processes, the interaction of the tumor with the surrounding tissue is
realistically incorporated. The two-dimensional simulation results are presented for differ-
ent initial configurations. The computational framework, based on a Cartesian mesh/narrow
band level-set method, can be applied to similar models that require the solution of coupled
advection-diffusion equations with a moving boundary inside a fixed domain. The solution
algorithm is designed so that extension to three-dimensional simulations is straightforward.

1. Introduction

Over the last ten years, a number of important advancements have been made in
the development of mathematical models to simulate the growth and macroscopic
behavior of solid malignant tumors. The recent reviews byAraujo and McElwain [5]
and Bellomo, et al. [6] contain extensive bibliographies and categorize the different
solid tumor growth models. As in many areas of fundamental and applied science,
the increasing sophistication of computational models makes them an important
part of the study of complex multi-scale phenomena.Verifiable computational mod-
els will likely become part of the arsenal of techniques used to better understand
tumor evolution and treatment strategies in the near future. Continuum-based mod-
els can be used to help predict the evolution of a tumor′s boundary in time and this
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knowledge may in turn help estimate the effect that various methods of treatment
(e.g., chemotherapy, ultrasound) may have on the tumor behavior as well as on the
surrounding healthy tissue and, ultimately, on the host.

Malignant solid tumors are masses of tissue formed as a result of abnormal and
excessive proliferation of mutant (atypical) cells, whose division has escaped the
mechanisms that control normal cellular proliferation. This abnormal proliferation
of atypical cells can lead to uncontrolled growth, if not checked by the immune
system. In simple terms, tumor growth (spread of malignant cells) can be described
as follows: when supplied with a sufficient amount of nutrient, malignant cells
divide (cellular mitosis); when the density of cells in a specific volume becomes
high, the cells are compressed by their neighbors and tend to move to less popu-
lated areas–where they may continue to proliferate–and this process is repeated.
The growing tumor mass eventually begins to interact with the surrounding tissue
and may eventually evolve in a complex manner.

There are different stages of a malignant tumor evolution; described roughly,
the main stages are the cellular stage and the macroscopic stage. The cellular stage
refers to the early stage of a tumor evolution, when proliferating tumor cells have
not begun to agglomerate. The macroscopic stage comes about when clusters of
atypical cells condense together into a compact shape (e.g., spherical); this stage
is sub-divided into two subsequent phases-the avascular phase and the vascular
phase. During the avascular phase, the tumor obtains nutrients via diffusion pro-
cesses alone from the local environment. In the second phase, called the vascular
phase, the tumor attempts to develop its own blood supply through the process of
angiogenesis (i.e., the birth of new blood vessels). Malignant tumor cells secrete
chemicals that diffuse outward into the surrounding healthy tissue and stimulate the
growth of new capillary blood vessels; the newly formed blood vessels penetrate
into the tumor mass feeding it with nutrients and leading to a rapid growth of the
tumor (Folkman, [16]).

Due to the extremely complex nature of the biological systems underlying the
behavior in tumors and to the limited understanding of tumor growth mechanisms,
developing realistic models (mathematical, computational or both) is a difficult task.
Currently, there are two major approaches for solid tumor growth modeling: the
first employs continuum models to describe the evolution of the tumor in terms of
systems of partial differential equations and/or non-linear integro-differential equa-
tions; the second approach uses discrete lattice or Cellular Automata (CA) models
(e.g., Kansal, et al., [19]; Mansury and Diesboeck, [24]). For the macroscopic
stage of tumor evolution, the continuum approach may offer the most generality.
Assuming that all of the model parameters can be estimated, the advantage of a con-
tinuum model is that it provides a systematic means for evaluating the role played
by individual physical mechanisms. However, the more complex the continuum
model-the more difficult the computational simulations, since a continuum model
will generally yield a nonlinear moving boundary problem described by systems
of partial differential equations. The starting point for many continuum models is
the pioneering work of Greenspan in the 1970′s (see Araujo and McElwain, [5]
and references therein). In recent years a variety of macroscopic continuum models
have been derived employing analogies with inorganic systems (theory of mixtures,
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multiphase flow, e.g., Byrne, et al. [8] or Byrne and Preziosi [9]). While currently
quite a few such complex models exist in the literature, computational simulations
in arbitrary geometries and higher dimensions to further investigate and validate
these models are still largely missing. Only very recently, such calculations have
started to emerge [14,40].

The goal of the present work is to investigate the comprehensive model devel-
oped by DeAngelis and Preziosi [15], which involves multiple cell populations as
well as chemical species. From a mathematical/computational point of view, the
model is complex since it consists of a system of five PDEs, with some of the
field variables, as well as some of the coefficients, discontinuous across the tumor
boundary; the tumor surface evolves in time, and its location must be determined
as part of the solution. From a biological point of view, this model is very appeal-
ing for the following reasons: first, it captures both the avascular and the vascular
stages of tumor growth (based on nutrient levels the model predicts evolution from
the avascular into the vascular phase); second, it incorporates the interaction of the
tumor with the surrounding environment (primarily in terms of the angiogenesis
phenomenon); third, effects of potential treatments on the tumor evolution can be
readily investigated by varying the model parameters.

A general computational framework for obtaining multi-dimensional solutions
to continuum-based models for numerically simulating tumor growth has been
developed and is described in Hogea, et al. [17]. In that work, the solution method-
ology is tested on a simplified, two-equation model. Finite-differences on a fixed
Cartesian grid are employed to discretize the field equations, and the level set
method is used to determine the location of the evolving tumor boundary. Here, the
methodology is applied to the complex model involving coupled nonlinear reac-
tion/advection/diffusion equations [15] in a two-region domain with an evolving
tumor boundary.

The structure of the paper is as follows: Section 2 reviews the mathematical
tumor growth model developed in DeAngelis and Preziosi [15]; Section 3 pro-
vides a brief description of the general formulation of the level set method; Section
4 investigates the spherically symmetric case–both from a biological and a com-
putational point of view, with the tumor evolution in time calculated using both
a pseudo-Lagrangian approach and a level set method; Section 5 describes the
level set implementation for higher dimensions and arbitrary geometries; Section
6 presents results from two-dimensional simulations of tumor evolution for two
idealized configurations; finally, Section 7 contains a summary and suggestions for
further research using the methodology developed.

2. Tumor growth model

De Angelis and Preziosi [15] present a detailed derivation of the mathematical
model under investigation here. The model is summarized below. A slightly mod-
ified version is reconsidered in Chaplain and Preziosi [11]. Geometrically, there
are two regions in the model: the inner region occupied by the tumor mass is time-
dependent and denoted by �(t); the tumor region is embedded in a larger fixed
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domain denoted by D. The region �out (t) = D −�(t) is referred to as the (tumor)
outer environment.

There are two classes of model dependent variables characterizing the physical
state of the biological system (i.e., in both the tumor mass and the outer environ-
ment): cell populations and chemical species (macro-molecules). They are essen-
tially different. The cell size is much larger than that of the macro-molecules, and
the cells are delimited by a membrane and can not penetrate each other; they occupy
actual physical space. By contrast, the chemical species consist of macro-molecules
that may diffuse in the intercellular space, attach to the cell membrane or penetrate
it, such that they actually do not take up physical space.

The following cell populations and chemical species are defined:

• living tumor cells – represented by the density uT = uT (�x, t)

• dead tumor cells – represented by the density uD = uD(�x, t)

• new capillaries (i.e., endothelial cells) with density uC = uC(�x, t)

• nutrient concentration uN = uN(�x, t)

• tumor angiogenic factor (TAF) concentration uA = uA(�x, t)

In a continuum mechanics framework, a standard mass balance law leads to
a general reaction-advection-diffusion equation for each of the model variables
introduced above:

∂u

∂t
= ∇ • (Q∇u) − ∇ • ( �Wu) + �(u) − L(u) (2.1)

where:

• � = �(u) is the generation (proliferation/production) term;
• L = L(u) is the death/decay term;
• �W is the drift velocity field;
• Q is the diffusion coefficient.

The following modeling assumptions are made (from a biological viewpoint)
in order to specify the exact form of Eq.(2.1) for each of the continuum model field
variables:

I. Pertaining to the tumor cells (living and dead)
1. living tumor cells proliferate (cellular mitosis) only if the levels of nutri-

ent reaching them are sufficient (i.e., above a certain threshold denoted by
ũN );

2. living tumor cells die if the levels of nutrient reaching them are too low
(i.e., below the threshold denoted by ūN );

3. once a number of living cells inside the tumor have died due to insufficient
nutrient, the nutrient becomes sufficient for the remaining ones to survive;
thus, there is a smooth transition to a necrotic region;

4. when crowded by their neighbors, the living tumor cells have the ability
to migrate towards lower density areas where they have higher chances of
surviving and proliferating;

5. dead tumor cells do not move;
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6. dead tumor cells are assumed to naturally disintegrate into waste products
(water).

II. Pertaining to the tumor angiogenic factor (TAF)
1. living tumor cells are constantly producing TAF from a point on (in a

later version of the model, the assumption is made that living tumor cells
produce TAF only when they lack nutrient – i.e., haptotaxis occurs);

2. TAF diffuses both inside the tumor region and outside in the surrounding
environment;

3. TAF naturally degrades.
III. Pertaining to the new capillaries

1. endothelial cells reached by TAF are stimulated to proliferate (cellular
mitosis) at a rate proportional to the concentration of TAF; proliferation
decreases with the density of new capillaries; in particular, proliferation
stops if the density of the new capillaries becomes higher than a certain
threshold – here denoted by ūC ; the endothelial cells first stimulated are
those belonging to the pre-existing capillary network, ûC = ûC(�x), in the
tumor outer environment (the spatial distribution is prescribed initially in
the model and is assumed time-independent);

2. new endothelial cells undergo both a random motion (diffusion) and an
ordered one (chemotaxis) oriented towards the source of angiogenic stim-
ulus (TAF) with formation of new capillary sprouts by accumulation of
endothelial cells;

3. newly formed endothelial cells undergo apoptosis.
IV. Pertaining to the nutrient:

1. the nutrient in the tumor outer environment is provided by the capillary
network at a linear rate; in particular, in the absence of new capillaries, the
amount of nutrient in the tumor outer environment is constant;

2. diffusion of nutrient inside the tumor is promoted by the presence of capil-
laries, with the diffusion coefficient assumed to increase linearly with the
density of capillaries;

3. nutrient is consumed by the living tumor cells.

The model assumes that all cells (living cells, dead cells and endothelial cells)
equally contribute the overall cell density defined as:

u = uT + uD + uC + ûC (2.2)

It is assumed that there is an overall threshold cell density – here denoted by ū and
called the close packing density (by analogy with multiphase flow terminology) –
characterizing the fact that no pressure is felt by a cell when the total density u is
equal to it (i.e., the stress vanishes for u = ū).

All the above modeling assumptions are placed in the context of the general
advection-diffusion equation (2.1) for each of the field variables (densities or con-
centrations). For simplicity, assume that the diffusion coefficients for TAF and
new capillaries are constant in D (in particular, this implies that they are continu-
ous across the tumor boundary). The drift coefficients for the living tumor cells and
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endothelial cells are also assumed constant and positive. Under these last additional
assumptions, the following governing model equations are employed here:

- in D :






∂uA

∂t
= kA∇2uA + γAuT − δAuA

∂uC

∂t
= kC∇2uC − wC∇ • (uC∇uA) + γCuA(ūC − uC)+(uC + ûC)

−δCuC

(2.3)

and

- in �(t) :






∂uT

∂t
= wT ∇ • (uT ∇u) + γ

T
u

N
u

T

ε
H(uN − ũNuT )

−δT H(ūNuT − uN)uT

∂uD

∂t
= δT H(ūNuT − uN)uT − δDuD

∂uN

∂t
= ∇ • [(kE + kN(uC + ûC))∇uN ] − δ

N
u

T
u

N

(2.4)

In the above equations, it is assumed that uT (�x, t) = 0 and uD(�x, t) = 0 if
�x ∈ �out (t)(i.e., they are discontinuous quantities across the tumor boundary), the
subscript “+” in the equation for uC designates that f+ = max(f,0) and H is the
Heaviside function:

H(u) =
{

1 if u > 0
0, otherwise

.

Production (growth) coefficients are denoted by γ ; death (degradation) coeffi-
cients by δ; diffusion coefficients by k; transport (drift) coefficients by w. In the
equation for the nutrient diffusion inside the tumor (last equation (2.4)), kE stands
for the diffusion coefficient in the absence of capillaries, while kN measures the
dependence of the diffusion rate on the presence of capillaries; both of them will
be assumed constant here. In the evolution equation for the tumor living cells (first
equation in 2.4), the parameter ε represents the amount of nutrient existent in the
environment in the avascular phase. The function ûC = ûC(�x) (representing the
density of the pre-existing capillaries) is modeled as a smooth function with com-
pact support outside the domain occupied initially by the tumor. While various
mathematical possibilities might exist to construct such a function to specifications
- depending on the biological and/or computational instances, here the simplest
case of a “bump function” shall be employed:

ûC(�x) =
{

C0 > 0, if �x ∈ S ⊂ �out (t = 0)

0 if �x ∈ D − O
(2.5)

where C0 is a constant, S represents the fixed region in space occupied by a pre-
existing capillary network (with compact closure S̄) and O is an open set arbitrarily
close to S that contains S̄.
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Assuming that the tumor boundary is stress-free, that the nutrient at the tumor
surface is the nutrient existent in the outer environment and that there are no dead
cells at the tumor surface in the case of an expanding tumor, the following boundary
conditions for the model governing equations (2.4) are imposed:

- on ∂�(t) :






uT = ū − uD − uC − ûC

uN = ε + β(uC + ûC)

uD = 0
(2.6)

Assuming that the TAF and the new capillary density tend to decrease sub-
stantially towards the boundaries of the tumor outer environment, the boundary
conditions for the model governing equations (2.3) can be taken as:

- on ∂D : uA = uC = 0 (2.7)

Treating the tumor boundary ∂�(t) as a material interface moving with the tumor
cells at the tumor surface, its normal velocity is given by:

v = −wT ∇u
∣
∣
∂�(t) • �n∂�(t) (2.8)

where �n∂�(t)is the local outward unit normal to the tumor boundary ∂�(t).
Finally, to complete the mathematical model, initial conditions are needed for

the model governing equations (2.3) and (2.4):

- in D : uA |t=0 = uC |t=0 = 0 (2.9)

- in �(t) |t=0 :






uT |t=0 = ū

uD |t=0 = 0
uN |t=0 = ε

(2.10)

These initial conditions correspond to a realistic scenario at some point during
the tumor avascular phase, where a nucleus consisting solely of uncompressed living
malignant cells finds itself in an environment full of nutrient and starts releasing
TAF to induce the angiogenesis process.

Using the same characteristic scale values as De Angelis and Preziosi [15], the
following dimensionless variables are introduced:

t∗ = γ
T
t (dimensionless time)

�x∗ =
√

δN ū

kE

�x (dimensionless space)

Uj = uj

ū
, j = T , D, C (2.11)

UN = uN

ε

UA = γ
T

γAū
uA

By scaling the dimensional equations and boundary/initial conditions, the fol-
lowing two non-dimensional, coupled initial/boundary value problems are
obtained [15]:
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- in D∗ :






∂UA

∂t∗
= KA∇2UA + UT − �AUA

∂UC

∂t∗
= KC∇2UC − WC∇ • (UC∇UA)

+�CUA(ŪC − UC)+(UC + ÛC) − �CUC

(2.12)

- on ∂D∗ : UA = UC = 0 (2.13)

- in D∗ : UA |t∗=0 = UC |t∗=0 = 0 (2.14)

- in �∗(t∗) :






∂UT

∂t∗
= WT ∇ • (UT ∇U) + UT UNH(UN − ŨNUT )

−�T H(ŪNUT − UN)UT

∂UD

∂t∗
= �T H(ŪNUT − UN)UT − �DUD

∂UN

∂t∗
= �N {∇ • [(1 + KN(UC + ÛC))∇UN ] − UT UN }

(2.15)

- on ∂�∗(t∗) :






UT = 1 − UD − UC − ÛC

UN = 1 + B(UC + ÛC)

UD = 0
(2.16)

- in �∗(t∗) |t∗=0 :






UT |t∗=0 = 1
UD |t∗=0 = 0
UN |t∗=0 = 1

(2.17)

The corresponding scaled normal velocity of the tumor boundary is given by:

V = −WT ∇U |∂�∗ • �n∂�∗ (2.18)

In the scaled equations (2.12)–(2.18), spatial differentiation is with respect to the
dimensionless spatial coordinate variables, represented in vector form by �x∗, and
the following dimensionless model parameters (i.e., diffusion coefficients, drift
velocities, growth/death coefficients and threshold densities) appear:






KA = kAδN ū

kEγT

, KC = kCδN ū

kEγT

, KN = kN ū

kE

WC = wCδNγAū2

kEγ 2
T

, WT = wT δN ū2

kEγT

�C = γCγAū2

γ 2
T

�N = δN ū

γT

, �i = δi

γT

, i = A, C, D, T

ŨN = ūũN

ε
, ŪN = ūūN

ε
, ŪC = ūC

ū
, Û=

C

ûC

ū

B = βū

ε

(2.19)
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In order to investigate the model behavior, Eqs. (2.12) and (2.15) with the
prescribed boundary and initial conditions (2.13)–(2.14) and (2.16)–(2.17), respec-
tively, are solved numerically to determine the unknowns UA, UC, UT , UD, UN ;
the new location of the tumor boundary is then found by employing the normal
velocity expression given by (2.18). In everything that follows, the “star” nota-
tion in all the above dimensionless model equations (2.12)–(2.18) is dropped for
simplicity, and all references to the various model parameters (e.g., diffusion coeffi-
cients, drift velocities, etc) will be to the corresponding dimensionless parameters
(2.19).

3. Level set formulation

As previously defined, let � = �(t) denote the (scaled) domain occupied by the
tumor, �out = �out (t) the (scaled) tumor outer environment, and 	 = 	(t) =
∂�(t) (a curve in 2D and a surface in 3D, respectively) be the boundary of the
tumor, separating the tumor and the outside tissue. This boundary evolves in time
with a normal velocity V given by Eq. (2.18), and the problem is finding the location
of the tumor boundary at later moments in time starting from a known location at
the initial moment of time 	0 = 	(t = 0). One way to do so is by employing the
level set method introduced by Osher and Sethian [27] and based in part on the the-
ory and numerics of curve evolution developed by Sethian [32,33]. The basic idea
behind the level set method is to introduce an additional field variable denoted by

ϕ = ϕ(�x, t), �x ∈ � ∪ 	 ∪ �out , t ∈ [0, ∞),

responsible for capturing the front 	 = 	(t) in an implicit fashion at each moment
in time:

	 = 	(t) = { �x | ϕ(�x, t) = 0 }

The function ϕ = ϕ(�x, t)is called the level set function. Here, the initial level set
function value is set equal to the signed Euclidean distance function to the tumor
boundary at the initial moment of time (taken negative inside the tumor and positive
outside):

ϕ(�x, 0) =






−dist (�x, 	0), �x ∈ �(t = 0)

0, �x ∈ 	0

dist (�x, 	0), �x ∈ �out (t = 0)

(3.1)

At any moment in time, the location of the tumor boundary is given by the zero
level set of the level set function. For a particle on the front with the path �x = �x(t)

one has:

ϕ(�x(t), t) = 0
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The kinematics governing the motion of the boundary yields:

dϕ

dt
= ∂ϕ

∂t
+ ∇ϕ(�x(t), t) • d �x

dt
(t) = 0, ∀t > 0

The outward unit normal on the boundary is given in terms of the level set function
by:

�n = ∇ϕ

|∇ϕ| (3.2)

Substituting (3.2) in the above equation leads to the evolution equation for the level
set function (initial value formulation):

∂ϕ

∂t
+ F |∇ϕ| = 0 (3.3)

where F = F(�x, t), �x ∈ � ∪ 	 ∪ �out , t > 0 represents what is typically called
an “extension velocity” field (i.e., defined everywhere, such that it always matches
the given expression of the normal velocity V on the tumor boundary 	):

F(�x, t)
∣
∣�x∈	(t) = V (�x, t)

∣
∣�x∈	(t) (3.4)

Eq. (3.3) correctly moves the boundary with the prescribed normal velocity given
by (2.18).

As compared to an explicit front-tracking formulation, there are considerable
advantages of the level set formulation for this problem:

• the domain occupied by the tumor at each moment of time and the correspond-
ing outer environment are apparent from the sign of the level set function (here
taken negative the tumor region and positive outside);

• the local geometric properties of the tumor boundary (e.g. the normal) are read-
ily available;

• the same formulation holds regardless of the number of spatial dimensions (1,2
or 3);

• enhanced implementations such as “the narrow band method” introduced by
Adalsteinsson and Sethian [1] that make boundary capturing more computa-
tionally efficient.

On the other hand, some challenges arise when implementing the level set
method:

• construction of the “extension velocity” field F in the level set equation (3.3)
(see Adalsteinsson and Sethian [2])–generally, there is no natural choice for this
field which is only defined on the interface itself;

• re-initialization of the level set function ϕ as a signed distance to the interface.
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4. The spherically symmetric case

Solution procedures to the model equations (2.12) and (2.15) with the corresponding
initial and boundary conditions are developed in this section under the assumption
of spherical symmetry. This was done for both for computational purposes in order
to test the applicability of the level set approach and to enable a more comprehensive
evaluation of the model behavior. In this case, the tumor is regarded as a growing
sphere, of radius R(t), with a given initial radius R0. The model dependent variables
are now only functions of the radial coordinate, r, and time UA = UA(r, t),UC =
UC(r, t),UT = UT (r, t), UD = UD(r, t) and UN = UN(r, t).The domain occupied
by the tumor now becomes � = �(t) = {r | 0 ≤ r ≤ R(t) }, which is embedded
into a larger fixed sphere of given radius RD: D = {r | 0 ≤ r ≤ RD }.

Each of the governing equations (2.12) and (2.15) can be cast in the general
compact form:

∂µ

∂t
= ∇ • (Q∇µ) − W∇ • (µ∇ν) + �(µ) − L(µ) (4.1)

where Q is constant and positive in Eqs. (2.12), zero in the first two Eqs. (2.15) var-
iable in the last equation (2.15); W is constant and positive in the second equation
(2.12), constant and negative in the first equation (2.15) and zero in all the remaining
equations; νdepends explicitly on µ only in the first equation (2.15). In (4.1), µ and
ν represent the various model dependent variables to be determined numerically.
Assuming spherical symmetry (µ = µ(r, t),ν = ν(r, t),Q = Q(r, t)), Eq. (4.1)
becomes:

∂µ

∂t
= 1

r2

∂

∂r

(

r2Q
∂µ

∂r

)

− W
1

r2

∂

∂r

(

r2µ
∂ν

∂r

)

+ �(µ) − L(µ) (4.2)

For discretization purposes, it is convenient to rewrite (4.2) in non-conservative
form:

∂µ

∂t
= Q

∂2µ

∂r2 + ∂Q

∂r

∂µ

∂r
+ 2

r
Q

∂µ

∂r
− W

(

µ
∂2ν

∂r2 + ∂µ

∂r

∂ν

∂r
+ 2

r
µ

∂ν

∂r

)

+�(µ) − L(µ) (4.3)

The form (4.3) is preferred here mainly for two reasons: first, the lower order
derivative terms for each of the model dependent variables are apparent–which
makes a heuristic stability assessment [30] easy to conduct when a fully-explicit
finite difference scheme is employed; second, in an Eulerian formulation with a
fixed grid and a moving boundary captured implicitly via a level set method, the
spatial finite difference scheme at grid points adjacent to the boundary must be mod-
ified to take into account the prescribed boundary conditions. The latter is accom-
plished here by separately constructing second order interpolating polynomials for
each of the model dependent variables. This is the reason why a non-conserva-
tive version of (4.1), that includes the first order derivatives of µ and ν separately,
is employed. However, an alternate ghost fluid method (GFM) formulation [26]
allows for a conservative form.
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Another aspect of primary importance when proceeding to the spatial discret-
ization of the model Eqs. (2.12)–which are valid in the entire fixed computational
domain D–is the choice to discretize the equations separately inside the region
occupied by the tumor and outside. This approach is employed here for the fol-
lowing reasons: in more general cases, the diffusion coefficients of TAF and of
the new capillaries might be different inside the tumor and in the outer environ-
ment; the production (source) term in the TAF equation is discontinuous across
the tumor boundary; splitting the overall problem into separate regions (i.e., a
domain-decomposition approach) is advantageous when semi-implicit or implicit
time discretization is employed.

All the numerical results presented in this paper are obtained by employing
a fully explicit (forward Euler) time discretization; alternate time-splitting/linear-
ization schemes are currently under investigation by the authors. The nonlinear
diffusion type term ∇ • (UT ∇(UT +UD +UC + ÛC)) in the equation for the living
tumor cells (the first equation in (2.15)) coupled with the need to modify the spatial
stencil at fixed grid points adjacent to a moving boundary make the problem chal-
lenging and computationally intensive; moreover, assessing the overall correctness
and consistency [30,38] of such schemes is a delicate aspect, particularly when no
other results exist for comparison.

While the fully explicit method in an Eulerian framework with a moving bound-
ary certainly leads to severe constraints on the time step, it simplifies the treatment
of the nonlinear problem such that the overall computational efficiency might prove
equivalent to that involved in a less restricted time-splitting method; the numerical
results presented here shall show that a fully explicit method can be used as a basic
computational tool to investigate the model behavior for model parameters in a cer-
tain range, particularly when no previous simulations have been performed and at
least a preliminary assessment of the model behavior from a biological perspective
is desired.

4.1. A Pseudo-Lagrangian solution method

For the spherically symmetric case it is possible to employ a coordinate transform
and fix the location of the tumor boundary in the transformed domain (Landau trans-
formation). A solution procedure using this method was developed for comparison
purposes with the level set approach. For the tumor boundary location defined by
R(t), the following transformed coordinates are defined:

ξ = r

R(t)
, 0 ≤ ξ ≤ 1

η = 1 + r − R(t)

RD − R(t)
, 1 ≤ η ≤ 2 (4.4)

At each moment of time t , the inside of the tumor is being mapped onto the
interval (0, 1), the outside of the tumor is being mapped onto the interval (1, 2)

and the tumor boundary is located at ξ = η = 1. Employing the chain rule in (4.3)
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yields:

∂µ

∂t
= ξ

Ṙ(t)

R(t)

∂µ

∂ξ
+ 1

R2(t)

[

Q
∂2µ

∂ξ2 + ∂Q

∂ξ

∂µ

∂ξ
+ 2

ξ
Q

∂µ

∂ξ

−W

(

µ
∂2ν

∂ξ2 + ∂µ

∂ξ

∂ν

∂ξ
+ 2

ξ
µ

∂ν

∂ξ

)]

+�(µ) − L(µ) , 0 < ξ < 1 (4.5)

and

∂µ

∂t
= −(η − 2)

Ṙ(t)

RD − R(t)

∂µ

∂η
+ 1

(RD − R(t))2
[

Q
∂2µ

∂η2 + ∂Q

∂η

∂µ

∂µ
− W

(

µ
∂2ν

∂µ2 + ∂µ

∂η

∂ν

∂η

)]

+ 2

R(t) + (η − 1)(RD − R(t))

1

RD − R(t)

(

Q
∂µ

∂η
− Wµ

∂ν

∂η

)

+�(µ) − L(µ) , 1 < η < 2 (4.6)

where Ṙ(t) = dR
dt

(t).
The model governing equations (2.15) satisfied inside the domain occupied by

the tumor only are of the form (4.5), while the model equations (2.12)–valid in the
entire computational domain–are applied separately inside the domain occupied
by the tumor and in the surroundings. Thus they are of the form (4.5) inside and
(4.6) outside. In this case, additional matching conditions at the tumor boundary
are needed for the corresponding model dependent variables UA and UC ; these
will be obtained by assuming continuity of uA and uC and of the related fluxes
(kA∇uA) • �n and (kC∇uC − wCuC∇uA) • �n across the tumor boundary, which
yields:






UA

∣
∣
ξ=1 = UA

∣
∣
η=1, UC

∣
∣
ξ=1 = UC

∣
∣
η=1

1

R(t)

∂UA

∂ξ

∣
∣
ξ=1 = 1

RD − R(t)

∂UA

∂η

∣
∣
η=1

1

R(t)

∂UC

∂ξ

∣
∣
ξ=1 = 1

RD − R(t)

∂UC

∂η

∣
∣
η=1

(4.7)

Symmetry boundary conditions are employed at the tumor center r = 0:

∂UA

∂ξ

∣
∣
ξ=0 = ∂UC

∂ξ

∣
∣
ξ=0 = ∂UT

∂ξ

∣
∣
∣
∣ξ=0 = ∂UD

∂ξ

∣
∣
ξ=0 = ∂UN

∂ξ

∣
∣
ξ=0 = 0 (4.8)

According to Eq. (2.18), the tumor radius R(t) evolution in time is given by:





Ṙ(t) = dR
dt

(t) = −WT
1

R(t)
∂U
∂ξ

∣
∣
(ξ=1,t)

= −WT
1

R(t)
∂
∂ξ

(UT + UD + UC + ÛC)
∣
∣
(ξ=1,t)

R |t=0 = R0

(4.9)

Description of the numerical algorithm:
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• The “inner” domain 0 ≤ ξ ≤ 1 and the “outer” domain 1 ≤ η ≤ 2 are each
discretized using equally spaced meshes; the location of the interface, corre-
sponding both to ξ = 1 and η = 1, resides at a mesh point.

• The dynamic equation prescribing the interface motion (4.9) is discretized using
forward differencing in time and second-order backward differencing in space
(since the global cell density U = UT +UD +UC +ÛC is discontinuous across
the interface); therefore, the new location of the interface at the current time
step is obtained by using the location of the interface at the previous time step
and the global cell density at the previous time step.

• The “inner” set of model governing equations (4.5) is discretized at all the
internal mesh points using forward differencing in time and regular second-
order centered differences in space both for the second order and for the first
order derivatives; similarly for the “outer” set (4.6); thus, the updated values
of the model variables at the current time step are determined at all internal
mesh points–both inner and outer. To update the state variables at the interface–
which is both an “inner” mesh point and an “outer” mesh point, the matching
conditions (4.7) are first used to determine the updated values of UA and UC at
the interface; once the value for UC is known at the current time step, then the
model boundary conditions (2.16) are used to update the values of UT and UN

at the interface.

The implementation of the above algorithm is straightforward; the numerical sta-
bility and ultimately the convergence of the explicit method depends on the choice
of the model parameters. More comments follow in the results (Section 4.3).

4.2. A level set (Eulerian) solution approach

The detailed description of the numerical algorithm for the fixed Cartesian
mesh/level set approach in two dimensions and arbitrary geometries is addressed
in Section 5 and Appendix A. The same general formulation holds regardless of
the number of spatial dimensions (1, 2 or 3). Below the formulation is outlined for
the spherically symmetric case; this is done from a computational perspective for
comparison purposes and to assess the applicability of the proposed computational
methodology for the current complex tumor growth model.

As in Section 4.1 above, symmetry conditions are employed at the tumor center
r = 0. As previously, continuity of uA and uC and of the related fluxes across the
tumor boundary r = R(t), which here translates into the continuity of UA, UC ,
∂UA

∂r
and ∂UC

∂r
at r = R(t), shall also be employed.

Description of the numerical algorithm:

• The entire fixed computational domain 0 ≤ r ≤ RD is discretized using equally
spaced meshing; the interface r = R(t) in this case is generally not a mesh point.

• The new location of the interface at the current time step is given by the zero
level set function at the current time step; the level set equation (3.3) in this
case reads:

∂ϕ

∂t
+ F

∣
∣
∣
∣
∂ϕ

∂r

∣
∣
∣
∣ = 0 (4.10)
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where F is the extended velocity field, here extended off the tumor boundary such
that it is constant on normal rays to the tumor boundary; as a consequence of the
spherical symmetry, the extended velocity everywhere is then taken equal to the
normal velocity of the tumor boundary:

F = −WT

∂U

∂r

∣
∣
r=r(T ) (4.11)

The initial level set function is given by ϕ(r, t = 0) = r − R0. To update the
time-dependent level set function ϕ, a simple explicit first order scheme in time
(forward Euler) and space is used to discretize the level set equation (4.10) (refer
to Section 5 for more information). The spatial derivative in (4.11) is approximated
using second-order backward differencing (since the total cell density U is discon-
tinuous across the interface). With the level set function updated, the new location
of the interface is estimated as the zero level set by linear interpolation of the new
level set function.

• The set of model governing equations (4.3) is discretized using forward differ-
encing in time and regular second order centered differences in space both for
the second and for the first order derivatives at all the internal mesh except the
ones adjacent to the boundary. At points adjacent to the boundary, the spatial
discretization must be modified to take into account the location of the bound-
ary and the model prescribed boundary conditions. As already mentioned, this
is accomplished by constructing local second-order interpolating polynomials
for each of the model dependent variables UA, UC , UT , UD and UN ; then their
derivative at a point adjacent to the boundary is approximated by differentiating
the corresponding polynomial.

To update the current values of the state variables at the interface–which are to
be used at the next time step in constructing the local second-order interpolating
polynomials at points adjacent to the boundary–the continuity of UA, UC , ∂UA

∂r
and

∂UC

∂r
at the tumor boundary is first used to determine the current values of UA and

UC at the interface; once the value for UC is known at the current time step, then
the model boundary conditions (2.16) are used to update the values of UT and UN

at the interface at the current time step. More details are given in Appendix A.

4.3. Numerical results

4.3.1. Numerical results from a computational viewpoint
The first aspect to be addressed is the usage of centered finite differences to approx-
imate the first order derivatives in equation (4.3). If an heuristic stability assessment
is conducted for each of the model equations (2.12) and (2.15) considered separately
[30], then potential stability problems may arise if the advection terms dominate
diffusion terms. An estimate for the magnitude of the relevant model parameters is
necessary to fully access the stability. For the parameters considered here, the diffu-
sion type constraint on the time-step imposed by the first equation in (2.12) will
generally dominate the advection-diffusion type constraint for the second equa-
tion in (2.12). Under these conditions, the use of centered finite differences in
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approximating the first order derivatives is relatively safe. Numerical experiments
support this conclusion. However, to investigate model behavior in regimes charac-
terized by drift coefficients (e.g., WC) substantially larger than the model diffusion
coefficients, then upwind schemes must be used to discretize the first order spatial
derivatives in the second equation (2.12).

A second aspect of computational concern is the treatment of the terms involv-
ing the Heaviside function in the first and second equation (2.15). It is common to
"smear out" or smooth the Heaviside function for computational implementation
purposes by defining:

H(u) ≈ 1

2

(

1 + 2

π
arctan

(u

ε

))

(4.15)

with ε a small value (typically, ε = O(h), where h represents the spatial mesh
size).

In the numerical experiments performed, the results obtained using an imple-
mentation of the actual discontinuous Heaviside function and the smeared out ver-
sion given by (4.15), showed no significant differences overall.

Another important aspect is the choice of the larger fixed computational domain
because of the boundary conditions (2.13). In the spherically symmetric case (i.e.,
1D), it is easy to employ a radius for the fixed outer domain considerably larger
than the initial radius of the tumor; such that, both the density of TAF UA and the
density of the new capillaries UC naturally decay to zero towards the outer domain
boundary. In higher dimensions, the choice of the domain size for the outer envi-
ronment is more restricted. Numerical tests performed in the spherically symmetric
case (and in 2D) were used to determine the requirements for the outer boundary
location.

Fig. 1 shows a comparison between the tumor radius in time obtained via the
pseudo-Lagrangian method described in Section 4.1 and the tumor radius in time
obtained via the Eulerian/level set method described in Section 4.2 for the following
choice of the model parameters (2.19):

KA = 10, KC = 1, KN = 0.2

WC = 5, WT = 10

�C = 100

�A = 0.01, �C = 0.01, �T = 5, �N = 10, �D = 0.001 (4.16)

ŪC = 1, ÛC(r) =
{

0.1, if 3.5R0 < r < 4R0
0 otherwise

ŪN = 0.8, ŨN = 0.9, B = 1

R0 = 2, RD = 10

The spatial mesh size in the pseudo-Lagrangian method is �ξ = �η = 0.02
with a fix time-step �t = 2.66 × 10−5, while in the Eulerian/level set method
�r = 0.05 with the time-step chosen adaptively (obeying stability restrictions).
These choices for the mesh sizes, initially balances the number of mesh points
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Fig. 1. Comparison of the tumor radius evolution in time for the spherically symmetric
geometry obtained using two solution methods: a pseudo-Lagrangian method and an Eule-
rian/level set method. The model parameters are given by (4.16) with initial tumor radius
R0 = 2 and outer environment radius RD = 10.

inside the physical domain occupied by the tumor for the two methods (the reso-
lution remains balanced during a reasonable portion of the tumor evolution). The
results show very good agreement between the two different solution methods.

4.3.2. Numerical results from a biological viewpoint
All the results discussed in this section are obtained using the above set (4.16)
of model parameters as base values. Any parameter variation is explicitly defined
when presenting the results.

i Evolution of the tumor radius in time
In Fig. 1 two different stages of tumor growth can be clearly distinguished: up
to time t ≈ 1.84, the growth is linear, at a relatively low rate – corresponding
to the avascular stage; at later times, the growth is accelerated, exhibiting expo-
nential trends – corresponding to the vascular stage. Fig. 2 shows the behavior of
the tumor radius in time in the absence of tumor-induced angiogenesis, for two
different values of �D: the solid line corresponds to a value of �D = 0.001
and the dashed line to �D = 1; the rest of the model parameters are as in (4.16)
above. In the case of the large disintegration rate �D = 1 for the tumor dead
cells, the tumor radius shows stabilization to a limiting value of R ≈ 3 around
time t = 10, while in the case of the small disintegration rate �D = 0.001
approach to a stabilized state is not yet apparent up to time t = 20. This is
in good agreement with the argument made in [11], that ultimately a balance
between the living tumor cells and the dead tumor cells – reached when the
proliferation of cells near the tumor surface balances the disintegration of dead
cells in the necrotic region – determines a stationary radius of the avascular
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Fig. 2. Evolution of the tumor radius in the absence of angiogenesis. The solid line corre-
sponds to �D = 0.001 and the dashed line to �D = 1. The remaining model parameters are
the same as Fig. 1. A stabilized state is approached for �D = 1.

tumor. For the same value of the drift coefficient WT , smaller values of �D

lead to a larger stationary radius of the tumor and a larger necrotic core with
respect to the proliferation rim.

ii Tumor living and dead cell density evolution
Fig. 3 plots the tumor living cell density UT versus the radial coordinate r at
various moments in time. The avascular and the vascular stages of growth are
clearly differentiated here as well; in the avascular phase, UT decreases towards
the center of the tumor because the living tumor cells start to gradually die when
they lack nutrients – this is confirmed by the corresponding evolution of the

Fig. 3. Evolution of the tumor living cell density at various moments in time for spherically
symmetric tumor growth (Fig. 1 parameters). The first four curves correspond to the avascular
phase of tumor growth, the fifth one to an intermediate (vascularization) phase and the last
two to a fully vascular phase.
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dead tumor cell density shown in Fig. 4; further, in the vascular phase, it is
observed that the living tumor cell density continues to rapidly drop towards
the center – while the dead cell density, UD , there remains stationary (note
that the model assumes dead tumor cells do not move). In the model, living
tumor cells towards the center stop dying, and migrate towards less populated
areas where they have a higher probability to survive and eventually continue
the mitosis process if the levels of nutrients are high enough. In Fig. 6, the
overall cell density, U = UT + UD + UC + ÛC , is plotted at specific times;
the curves show that once the new capillaries penetrate the tumor and begin
to influence its center there will be a rapid increase of the overall cell density.
Since the tumor size is relatively small here and the upper threshold for the
new capillaries is high, while their death coefficient is much smaller than the
growth coefficient, this happens relatively fast. The rapid increase in overall
cell density leads to sharper local gradients, that in turn lead to fast movements
of the living tumor cells towards the outer tumor region; in particular, there
is a significant increase in the slope of the overall tumor cell density at the
boundary of the tumor. Recall from Eq. (2.18) that the velocity of the tumor
boundary is directly proportional to the gradient of the overall cell density.

iii New capillary cell evolution
The evolution of the new capillaries is depicted in Fig. 5. To facilitate the sim-
ulation, a large value for the growth coefficient �C was chosen while the death

Fig. 4. Evolution of the tumor dead cell density at various moments in time for spherically
symmetric tumor growth (Fig. 1 parameters). Formation of a necrotic core in the central
region of the tumor observed.
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Fig. 5. Evolution of the new capillary density at various moments in time for spherically
symmetric tumor growth (Fig. 1 parameters). The endothelial cells stimulated to proliferate
belong to the pre-existing capillary network, here located on the line segment 7 ≤ r ≤ 8.

coefficient �C is small. In addition, the drift coefficient, WC , is five times larger
than the diffusion coefficient, KC . These parameters yield significant move-
ment of the new capillaries towards the source of angiogenic stimulus (TAF),
which is maximum inside the domain occupied by the tumor. In the model, the
density of new capillaries is allowed to reach an upper threshold ŪC = 1,
which is the close packing density for the overall cell density, so the resulting
scenario is not totally realistic. However, the choice of parameters related to
the growth of new capillaries (which is, in fact, the core of the tumor vascular-
ization problem) allows for the overall development of visible and meaningful
changes over a relatively short period of time.

iv The TAF and nutrient concentration evolution
The TAF distribution along the radial coordinate at various times is shown in
Fig. 7. In the present version of the model, it is assumed that the living tumor
cells constantly produce and release TAF, which diffuses at the same constant
rate both inside the tumor and in the surrounding outer environment. Because
of this assumption and the fact that the TAF decay parameter is chosen small
(�A = 0.01) for the case considered, the evolution equation for TAF (the first
equation (2.12)) is a linear diffusion equation with a source term with vanishing
boundary conditions. As a result, the TAF concentration maintains a maximum
at the tumor center.
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Fig. 6. Evolution of the overall cell density inside the tumor at three moments in time for
spherically symmetric tumor growth (Fig. 1 parameters). Development of increasingly sharp
local gradients occurs.

The nutrient evolution is presented in Fig. 8. Fig. 8(a) shows the radial distri-
bution of the nutrient at various times during the avascular phase. The nutrient
reaching the tumor surface diffuses inside the tumor;. Since the evolution equa-
tion for the nutrient inside the tumor (the last equation (2.15)) is a diffusion
equation with a sink term, the levels of nutrient maintain a maximum at the
tumor boundary and gradually decrease towards the tumor center. As a conse-
quence, living tumor cells first start dying at the center, while a layer of cells
adjacent to the boundary are able to proliferate. Fig. 8(b) shows the nutrient
evolution at later times, in the vascular phase; with the accelerated development
of new capillaries, increased amounts of nutrients reach the tumor surface and
diffuse inside the tumor at a rate increasing proportionally to the new capillary
density. This explains why the tumor dead cell density remains almost station-
ary from a point on (the level of nutrient becomes sufficient for the remaining
living cells).

5. Numerical algorithm in higher dimensions

5.1. Construction of the “extension velocity” field off the interface

One way of extending the normal velocity off the interface in the level set equation
(3.3) is extrapolation in the normal direction, following characteristics that flow
outward from the interface, such that the velocity is constant on rays normal to the
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Fig. 7. Evolution of the tumor angiogenic factor (TAF) at various moments in time, in the
avascular and in the vascular phase of growth, for spherically symmetric tumor growth (Fig. 1
parameters).

interface. This method, introduced by Malladi, et al. [23] works particularly well
when no other information is available except for what is known on the interface–as
is the case here. At points adjacent to the interface, on each side, the “extension
velocity” field F is first constructed as follows: standing at a grid point adjacent to
the interface, either inside the domain occupied by the tumor or outside, locate the
closest point on the interface whose velocity is given by Eq. (2.18) – with second
order backward differencing in the normal direction used to numerically approxi-
mate the normal derivatives – and copy its velocity. Construction of the extension
velocity field in this manner has the advantage that it tends to preserve the signed
distance function during the interface evolution in time. A fast way of building
these extension velocities in the context of Dijkstra-like algorithms was provided
by Adalsteinsson and Sethian in [2] using some ideas from [34]. An alternate way
to formulate this construction is by employing a pair of linear Hamilton-Jacobi
equations [26], in which the velocity values at the adjacent points are subsequently
kept fixed and framed as boundary conditions for the following:

∂F

∂τ
+ �n • ∇F = 0 in �out (t) (5.1)

∂F

∂τ
− �n • ∇F = 0 in �(t) (5.2)
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Fig. 8. Nutrient evolution inside the tumor in the (a) avascular phase and in the (b) vascular
phase of growth for spherically symmetric tumor growth (Fig. 1 parameters). Nutrient levels
are maximum at the tumor surface and gradually decreasing towards the center.
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where the local unit outward normal in the level set methodology is defined every-
where as:

�n = �n(�x, t) = ∇ϕ(�x, t)

|∇ϕ(�x, t)| (5.3)

Here τ designates a pseudo-time for the relaxation of the equations to steady-state
at each moment of time t . Equations (5.1) and (5.2) are numerically discretized
using a regular first order upwind scheme [22], [26] and iterated to steady-state,
where the corresponding solution F = F(�x, t)will be constant on rays normal to
the interface.

The normal �n = �n(�x, t) in (5.3) is approximated using the construction de-
scribed in [31]; the local unit outward normal at a point on the interface–which
generally is not a grid point–is obtained by bilinear interpolation from the values
of the local unit outward normal computed at the four neighboring nodes on the
fixed Cartesian grid.

5.2. Re-initialization of the level set function ϕ

As discussed by Chopp [13], in general, a procedure is needed to reset the level
set function ϕ as a signed distance function to the interface (in this case, the tumor
boundary) from time to time. Re-initialization at some moment of time t can be
regarded as the process of replacing the current level set function ϕ(�x, t) by an-
other function ϕreinit (�x, t) that has the same zero contour but is better behaved;
ϕreinit (�x, t) becomes the new level set function to be used as initial data until the
next re-initialization. Reinitialization and its role in Narrow Band Methods was first
analyzed in depth by Adalsteinsson and Sethian in [2] and a very fast Dijkstra-like
method to perform this reinitialization was given by Sethian in [34].

Another way of re-initializing the level set function ϕ to a signed distance
function to the interface employs the following “re-initialization equations” [26]:

∂ϕreinit

∂τ
+ (

∣
∣
∣∇ϕreinit

∣
∣
∣− 1) = 0 in �out (t) (5.4)

∂ϕreinit

∂τ
− (

∣
∣
∣∇ϕreinit

∣
∣
∣− 1) = 0 in �(t) (5.5)

with

ϕreinit
0 = ϕreinit (�x, τ = 0) = ϕ(�x, t) (5.6)

Here again, τ designates a pseudo-time for relaxing the equation to steady-state at
a fixed real time t . As before in the case of the extension velocity, first at grid points
adjacent to the boundary, on each side, ϕreinit is reset close to a signed distance
function by hand (a very efficient way is the initialization stage of the fast marching
method in [31]). These values are subsequently kept fixed and framed as bound-
ary conditions for the equations (5.4) and (5.5) respectively, that are individually
solved to steady-state. The resulting solution ϕreinit (�x, t) will be a signed distance
function to the interface 	 = 	(t) at the particular time t in the model evolution.
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The implementation of the level set methodology is presented here for the two-
dimensional case, but the extension to three dimensions is straightforward. The
domain occupied by the tumor � is embedded into a larger fixed, time-independent,
computational domain D, that is discretized using a uniform Cartesian mesh with
�x = �y = h. The region outside of the tumor is denoted by �out =D\�. The
tumor boundary will also be referred to as the “interface” – separating the domain
occupied by the tumor from the outside tissue. A “regular” grid point (either inside
the domain occupied by the tumor or outside) shall denote a point on the fixed
Cartesian grid that has no neighbors on the tumor boundary, in either the horizontal
(x) direction or the vertical (y) direction, while an “irregular” grid point (on each
side of the tumor boundary) corresponds to a point on the fixed Cartesian grid that
is adjacent to the boundary, either horizontally or vertically.

5.3. Discretization of the level set equation and the re-initialization equation

The level set equation (3.3) is discretized using a conservative scheme for nonlinear
Hamilton-Jacobi equations with convex Hamiltonian [31]:

ϕn+1
i,j = ϕn

i,j − �t[max(F n
i,j , 0)∇+ + min(F n

i,j , 0)∇−] (5.7)

where:

ϕn
i,j = ϕ(x(i), y(j), n�t)

Fn
i,j = F(x(i), y(j), n�t)

∇+ = [max(D−xϕn
i,j , 0)2 + min(D+xϕn

i,j , 0)2 + max(D−yϕn
i,j , 0)2

+ min(D+yϕn
i,j , 0)2]

1
2 (5.8)

∇− = [max(D+xϕn
i,j , 0)2 + min(D−xϕn

i,j , 0)2 + max(D+yϕn
i,j , 0)2

+ min(D−yϕn
i,j , 0)2]

1
2 (5.9)

and D−x(D−y) stands for the backward differencing approximation of the first-
order partial derivative in the x (y)–direction, while D+x(D+y) stands for the
forward differencing approximation. The above scheme is a first order (forward
Euler) in time; higher order schemes such as HJ ENO or WENO can be employed
[26]. The time step in (5.7) must obey the CFL condition for stability:

�t max
i,j

∣
∣
∣F

n
i,j

∣
∣
∣ ≤ h

2
(5.10)

A similar scheme is used to discretize the re-initialization equations (5.4) and (5.5).

5.4. Overall numerical solution procedure

The governing model equations are discretized using explicit finite difference
schemes, which enables straightforward implementation. Details of the numeri-
cal solution procedure for the model dependent variables are given in Appendix
A. A comparison of spatial discretization schemes for the level set equation and
a discussion of the approximation error is given in [17]. Here, the global solution
algorithm is outlined briefly in terms of the following steps:
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1) It is assumed that all the model dependent variables: UA(�x, t), UC(�x, t),
UT (�x, t), UD(�x, t), UN(�x, t) (all initially given by the model initial conditions
(2.14) and (2.17)) along with the level set function ϕ(�x, t) are known at timet ,
with the level set function equal to the signed distance function (prescribed
initially, or as a result of re-initialization at later times). As a result, the current
location of the interface is implicitly known. Following [1] a “narrow band”
(tube) is built around the interface, with a user-prescribed width. Since ϕ(�x, t)

is assumed close to a signed distance function, the narrow band is defined by
locating the points using the following criterion:

{ �x | |ϕ(�x, t)| < width } = T .

The grid points inside the tube and the grid points near the tube edge are marked
distinctly.

2) With the value of U(�x, t) = UT (�x, t) + UD(�x, t) + UC(�x, t) + ÛC(�x) known
at the time step t , the “extension velocity” field F = F(�x, t) is constructed as
described in Section 5.1, at points �x inside the narrow band tube T .

3) With the extension velocity field computed at points inside the tube T , the level
set equation (5.7) is solved inside the tube to update the level set function at
the next time step. The values of the level set function at grid points distinctly
marked near the tube edge in Step 1 are frozen, as well as the values of the level
set function outside the tube T . The following conditions are monitored:
a) whether the newly updated tumor boundary (interface) approaches the tube

edge to within a specified tolerance (if so, then the values kept frozen in Step
4, which serve as artificial numerical boundary conditions, will severely
affect the actual location of the interface);

b) whether steep or flat gradients are developing in the newly updated level
set function, particularly at points neighboring the interface.

4) With the new location of the boundary implicitly captured by the updated
level set function ϕ(�x, t + �t), the model governing Eqs. (2.12) and (2.15)
along with the corresponding prescribed boundary conditions (2.13) and (2.16)
are employed to compute the new values of the model dependent variables:
UA(�x, t + �t), UC(�x, t + �t), UT (�x, t + �t), UD(�x, t + �t), UN(�x, t + �t)

as described in Section 5.4 .

Steps 2-4 are repeated until either situation a) or b) occurs; when this happens,
the narrow band (tube) T must be rebuilt and the procedure begins with Step 1
again. Employing this narrow band level set method is computationally very effi-
cient (especially in constructing the extension velocity field); this approach is ideal
when only the evolution of the interface itself is of interest (i.e., the zero level set),
as is the case here.

6. Numerical results in two dimensions

6.1. Computational details

The numerical simulations presented here were obtained by employing straight-
forward finite-difference schemes. The motivation was to create a framework that
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Fig. 9. Comparison of the tumor radius evolution in time computed via three different
methods: 2D Cartesian/narrow band level set method, 1D pseudo-Lagrangian method under
the assumption of polar symmetry and a 1D Eulerian/level set method under the assumption
of polar symmetry. The initial tumor boundary is a circle of center 0 and radius 1. The model
parameters are given by (4.16), except that ÛC = 0.5 in the pre-existing capillary region.

could be easily implemented to study a variety of tumor growth models. For the
present model, since no curvature effects at the tumor boundary are incorporated,
we find that a first-order spatial scheme in the level set equation (5.7), as well as in
the re-initialization equations (5.4), (5.5) can be safely used. For the same reason,
the size of the narrow band (tube) T can be relatively modest – here a width of
6h on each side of the interface is chosen and the interface is only allowed within
at most 2 grid cells from the tube boundary (i.e., it is allowed to move at most 4
grid cells within the tube) before the tube is rebuilt. As in [17], re-initialization
is typically used jointly with re-building the narrow band. They also determined
that the forward Euler time integration scheme for the level set equation (5.7) was
sufficient; particularly since the time step is small due to the overall fully explicit
nature of the solution procedure.

Regarding the choice of the “small” value ε in the ε-test (see Eq. (A.5) inAppen-
dix A), since the actual location of a boundary point is found by linear interpolation
of the level set function at the neighboring grid points, one natural consistent choice
for ε is ε ∼ O(h2); the results in the spherically symmetric case via the Euleri-
an/level set approach in Section 4 are obtained by using ε = h2. However, this
choice is related strictly to the spatial accuracy of the numerical approximation,
and has no apparent geometrical interpretation; in the context of Eq. (A.5), the
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geometrical location of a boundary point (either in the horizontal or in the vertical
direction) is in-between two Cartesian grid points, and the actual measure of how
close one of the two grid points is to the boundary point is given by a fraction of
the grid size h. In our numerical experiments we found that a good choice for ε

is ε = h/N , with Nan integer that depends on the geometrical properties of the
front involved. If no curvature effects are present – as in the current model–then
ε = h/5 was found to work well. This is demonstrated by the results shown in
Fig. 9, where the initial tumor boundary is taken to be a circle centered at the origin
with radius 1, and the support of pre-existing capillaries is a circular area sur-

rounding the initial tumor: S = {(x, y)

∣
∣
∣ 2 <

√
x2 + y2 < 2.3 }. The set of model

parameters (4.16) is used, but with the pre-existing capillary density taken five
times larger, to speed up the calculations (ÛC = 0.5 inside S ). A comparison is
performed between the tumor radius evolution obtained by three different sets of
calculations: the two-dimensional Cartesian level set approach described in Section
5, the one-dimensional Eulerian/level set approach described in Section 4.2 (under
the assumption of polar symmetry) and the one-dimensional pseudo-Lagrangian
method described in Section 4.1 under the assumption of polar symmetry as well.
For the 2D method, the fixed Cartesian mesh size is h = 0.05, the computational
domain (outer environment) is [−4, 4]×[−4, 4] and the time step is adaptive; in the
1D Eulerian/level set method, the mesh size is �r = 0.05, the radius of the outer
environment is RD = 4and the time step is adaptive; in the 1D pseudo-Lagrangian
method, the mesh size is �ξ = �η = 0.04 and the time step is �t = 6.4 × 10−5.
The results demonstrate that the two-dimensional problem formulated in Cartesian
coordinates in this case exhibits genuine polar symmetry while in the avascular
phase of the tumor growth (see model equations (2.15) – (2.17)), but it gradually
starts to depart from it with the increased development of new capillaries in the
subsequent vascular phase. This is due to the geometric computational configura-
tion of the outer environment in Cartesian coordinates, which is a fixed square box,
and not a circle (how long the assumption of full polar symmetry can be employed
depends on the size of the fixed Cartesian computational box relative to the tumor
radius). There is very good agreement for the growth rate between the three sets of
results up to time t ≈ 0.5(which corresponds to the avascular phase of growth); the
agreement continues to be good (within the overall accuracy of the methods) up
to time t ≈ 0.9. Eventually, the two-dimensional Cartesian result no longer com-
pares to the one-dimensional results obtained under the assumption of full polar
symmetry.

Similarly with the argument made in [17], when computing the normal velocity
of the tumor interface via Eq. (2.18), a second-order accurate backward difference
approximation in the normal direction is found optimal here as well. If the field
variables UT , UD and UC are numerically computed with second-order spatial
accuracy, then the numerical estimate of the normal velocity of the interface can
only be at most first-order accurate. Thus, it is to be expected that the location of
the tumor boundary can be found at most with first-order spatial accuracy.

All the results that follow are obtained within the framework of the general
Eulerian level set/Cartesian grid methodology described in Section 5 above. In
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Fig. 10. Mesh refinement analysis for the 2D simulations. The tumor initial boundary is
defined by Eq. (6.1). Quantitative results are presented in Table 1.

Fig. 10, the results of a convergence study are shown. The tumor initial boundary
is given by the 4-fold symmetrically perturbed circle:

(x(α), y(α))=
(

4.8 − 0.4 cos
(

4α + π

4

)
− 0.4 sin

(
4α + π

4

))
(cos(α), sin(α)) ,

α ∈ [0, 2π ] (6.1)

The same model parameters as in Fig. 9 above are used. Outside the domain occu-
pied initially by the tumor there are four fixed circular seeds of pre-existing cap-
illaries, symmetrically positioned and relatively close to the boundary of the outer
environment. This initial configuration will be described in more detail below.
The evolution of the tumor boundary computed using three different mesh sizes:
h = 0.4, h = 0.2 and h = 0.1 is shown at three different moments of time and
the qualitative convergence can be observed. The mesh sizes were chosen to allow
for two levels of refinement, starting with a reasonable mesh spacing. Currently,
the methodology developed here is designed for implementation on moderately
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sized, standalone computing platforms. Moderate mesh resolution, relative to the
initial tumor size, was used to evaluate the solution behavior and determine whether
the results show the correct qualitative trends. Through numerical testing, it was
found that the location of the tumor boundary was not very sensitive to the spatial
mesh size, when the value of the drift coefficient WT equal to 10 or smaller, since
there is no curvature effect at the boundary in the current model. In [17], where the
tumor boundary curvature was important, for drift coefficients of the same order of
magnitude, considerable sensitivity to the spatial resolution was found.

The accuracy of the tumor boundary location in time can be quantitatively
estimated [17]. The level set method reconstructs the interface at every moment
of time as a piecewise linear manifold; suppose that the Cartesian mesh size

is doubled twice and denote by {�xn,1
interf ace,k}

∣
∣
∣k=1,N1

, {�xn,2
interf ace,k}

∣
∣
∣k=1,N2

and

{�xn,4
interf ace,k}

∣
∣
∣k=1,N4

the collection of interface points �xn
interf ace,k =

(xinterf ace,k, yinterf ace,k) at time t = tncorresponding to the coarsest mesh, the
intermediate mesh and the finest mesh, respectively. Thus, the interface is repre-
sented as a polygonal line with N1, N2 and N4 line segments for the coarsest,
intermediate and finest representation, respectively. Each polygonal line can be re-
divided into the same given number N of equally spaced points (typically N =
N4) and the newly determined points on each polygonal line are correspondingly

marked as { �Xn,1
interf ace,k}

∣
∣
∣k=1,N , { �Xn,2

interf ace,k}
∣
∣
∣k=1,N and { �Xn,4

interf ace,k}
∣
∣
∣k=1,N ,

respectively.
Since no analytic solution is available, the errors are computed with respect

to the numerical solution corresponding to the finest mesh { �Xn,4
interf ace,k}

∣
∣
∣k=1,N ;

following [18], the error at time t = tn is defined as the largest Euclidean distance
of the corresponding points of the two computed interfaces:

en
41

= max
k=1,N

∣
∣
∣ �Xn,1

interf ace,k − �Xn,4
interf ace,k

∣
∣
∣ (6.2)

en
42

= max
k=1,N

∣
∣
∣ �Xn,2

interf ace,k − �Xn,4
interf ace,k

∣
∣
∣ (6.3)

A ratio en
41

/en
42

between 4 and 5 typically indicates second-order spatial accuracy,
while a ratio between 2 and 3 typically indicates first-order spatial accuracy [18].
The quantitative errors resulting from the mesh refinement analysis in Fig. 11 are
recorded in Table 1. According to these values, the tumor boundary location using

Table 1.

Time en
4−1 (6.2) en

4−2 (6.3)
en

4−1
en

4−2

t=0.353 0.0584 0.0319 1.83
t=0.8236 0.1263 0.0614 2.058
t=1.1766 0.2839 0.1036 2.74
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the fixed Cartesian mesh, ”narrow band” level set approach developed here is found
with first-order spatial accuracy during its evolution in time.

6.2. Model behavior

As discussed in Section 4.3.2, the numerical results presented for both the spheri-
cally symmetric and two-dimensional cases correspond to computationally optimal
conditions for the tumor vascularization (i.e., increase in new capillary density) as
predicted by the model. The model parameters (2.19) chosen for the simulations
here enable readily visible and significant changes in the tumor growth process over
a relatively short period of time. For more moderate choices of these parameters
(particularly in the equation for the new capillary density), the current model yields
long and slowly evolving avascular stages of growth, before the tumor begins to
develop its own capillary network. During the avascular stage the growth is stable,
with a linear rate of growth initially, that decreases asymptotically to zero. It is
the vascularization of the tumor via the tumor induced angiogenesis contained in
the model that leads to more rapid and unbounded growth. From a computational
standpoint, the stability requirements due to the fully explicit nature of the numer-
ical scheme lead to certain practical bounds on the choice of the model parameters
used in the actual simulations.

For the 2-D simulation results presented in Figs. 11 and 12, the model parame-
ters for the case shown in Fig. 9 were used. In Fig. 11(a), the evolution of the tumor
with the initial boundary given by Eq. (6.1) is shown in detail. Outside the domain
occupied initially by the tumor there are four circular seeds of pre-existing capil-
laries, symmetrically positioned and relatively close to the boundary of the outer
environment; their location is marked by the small gray circles, of centers: (6, 6),
(−6, 6), (−6, −6) and (6, −6) respectively, and radius 1.2; the Cartesian mesh size
h = 0.1, the computational domain (outer environment) [−8, 8] × [−8, 8] and the
time step is adaptive. The initial tumor boundary is deliberately chosen as a circle
symmetrically perturbed towards the location of the pre-existing capillaries. Up to
time t ≈ 0.6 the tumor is in the avascular phase-the growth is very slow, stable
and self-similar. At time t ≈ 0.9, corresponding to an intermediate to moderate
degree of tumor vascularization, instability starts to become evident as the initially
perturbed tumor boundary grows more towards the location of the pre-existing
capillaries, exhibiting a tendency to elongate. However, at later times, in a high
vascularization phase, the elongation is less apparent and the tumor continues to
expand rapidly but in a relatively uniform manner. The explanation of the growth
behavior is found in the corresponding evolution of the new capillaries, depicted in
Fig. 11(b), where both a contour map(11b-1) and a surface plot(11b-2) of the new
capillary density are included. It can be seen that the endothelial cells stimulated
initially are the ones belonging to the pre-existing capillaries. At early times, since
the new capillaries have not evolved sufficiently to reach the tumor, it remains in the
avascular phase and the slow stable growth occurs as described above. An interme-
diate stage of vascularization follows when enough new capillaries have developed
outside the tumor in the regions neighboring the location of the pre-existing capil-
laries, such that they undergo a strongly oriented movement towards the source of
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Fig. 11. a) Evolution of the tumor boundary in time with the initial tumor boundary given
by Eq.(6.1). The four small circles outside of the initial tumor boundary correspond to the
location of the pre-existing capillaries. The model parameters are the same as Fig. 9. b1) New
capillary density evolution displayed as contour plots. b2) New capillary density displayed
as surface plots. c) Contour plots of tumor living cell density evolution. d) Contour plots of
tumor dead cell density evolution. The tendency to form a large necrotic region is observed.
e) Contour plots of tumor angiogenic factor(TAF) evolution. f) Contour plots of nutrient
concentration evolution.

angiogenic stimulus – the tumor itself. It is in this stage that the tumor exhibits the
tendency to elongate towards the location of the pre-existing capillaries. At later
times, once the newly formed blood vessels (characterized by the capillary density)
have reached inside the tumor, they are in turn stimulated to proliferate, and a faster
tumor vascularization follows (due to the fact that the TAF values are much higher
inside the tumor than outside, coupled with the large value of the growth coefficient,
�C = 100). Eventually, the new capillary distribution tends to level-off spatially
leading to subsequent quasi-uniform growth of the tumor.

Contour maps of the tumor living cell density are shown in Fig. 11(c). In the
avascular phase of the tumor growth, a rim structure develops as described in [11].
The results show a very thin outer rim of proliferative cells, followed by a slightly
thicker adjacent rim of quiescent cells–cells that live but do not proliferate. The
inner tumor region shows a smooth transition towards a large necrotic core. The
choice of the nutrient threshold values ŪN = 0.8 < ŨN = 0.9 in (4.16) allows for
the existence of a quiescent rim of living tumor cells (a tumor region where the nutri-
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Fig. 11. (Contd.)

ent levels reaching the existent living cells are such that ŪN < UN/UT < ŨN).
The smooth transition towards a large necrotic core is confirmed by the evolution
of the tumor dead cells shown in Fig. 11(d).

The distinct patterning in the living and dead cell densities at later times results
from the development and the subsequent spatial distribution of the new capillar-
ies. A local increase of the new capillary density affects the value of the living cell
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Fig. 11. (Contd.)

density on the tumor boundary due to the given boundary conditions. Inside the
tumor, local gradients of the overall cell density U develop and the living tumor cells
are redistributed accordingly. The pattern of the living tumor cells in turn impacts
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Fig. 11. (Contd.)

the pattern of the dead cells; moreover, since the disintegration coefficient of the
dead cells in these simulations is taken very small ( �D = 0.001 ), the dead cells
subsequently continue to have an important contribution to the overall cell density
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U From the evolution equations for the living and dead cell density, if enough cells
die in a certain area, then the nutrient may be sufficient for the remaining living
cells.

Fig. 11(e) shows contour maps of the TAF concentration level. As in the 1D
case, it has a maximum at the tumor center and decreases rapidly at the outer bound-
ary of the tumor (refer to the comments in the spherically symmetric case). Finally,
in Fig. 11(f) contour maps of the nutrient distribution inside the tumor are shown.
Because significant amounts of nutrient are consumed by the living tumor cells
adjacent to the tumor boundary, the nutrient level decreases considerably towards
the central region, which leads to the large area of dead cells in the center region of
the tumor. Another notable aspect here is the manner in which the levels of nutrient
reaching the tumor boundary increase with the development of new vasculature in
the vascular phase of growth.

For the results presented in Fig. 12, the initial configuration considered previ-
ously in Fig. 11 is geometrically scaled down by a factor of 4. Both the size of the
tumor and the radius of the pre-existing capillary regions are reduced. The domain
occupied initially by the tumor is given by:

(x(α), y(α))=
(

1.2 − 0.1 cos
(

4α + π

4

)
− 0.1 sin

(
4α + π

4

))
(cos(α), sin(α)),

α ∈ [0, 2π ] (6.4)

while the four symmetric circular seeds of pre-existing capillaries (their locations
marked by the four gray circles in Fig. 12(a)) are located in a similar position rel-
ative to the outer domain border as in the previous case, but their center position
is scaled by a factor of 4. The comparison between the two cases illustrates some
interesting differences in the tumor evolution due strictly to size and geometry as
predicted by the model. The same set of model parameters is used in both cases.
The individual graphs in Fig. 12 are organized in the same manner as Fig. 11 for
comparison purposes. Fig. 12(a) shows the evolution of the tumor beginning with
the initial boundary given by Eq. (6.4). Up to time t ≈ 0.4 the small tumor is in
the avascular phase; around that time, as characterized by the density, UC shown in
Fig. 12(b), newly formed capillaries start to reach the tumor surface. However, the
new capillary density remains relatively small up to time t ≈ 0.6 (low vasculari-
zation regime), such that in this phase the growth is very slow, stable, and remains
self-similar.At later times, in the fully-developed vascular phase, the tumor expands
fast in a relatively uniform manner. Unlike the previous case, the extension of the
tumor boundary towards the location of the pre-existing capillaries is not apparent.
An explanation can be found in the corresponding evolution of the new capillary
density as depicted in Fig. 12(b), again shown both as surface plots and contour
maps. The tumor size in this case is smaller, which leads to lower levels of TAF
inside the tumor and, as a consequence, lower levels of TAF reaching outside to
stimulate the pre-existing capillaries to proliferate (see Fig. 12(e)); therefore, the
density of the new capillaries is proportionally lower. In the present case, the dis-
tances between the pre-existing capillaries locations are 4 times smaller and the
tumor boundary is 4 times closer to the pre-existing capillaries. As a result, diffu-
sion leads to a substantially more uniform spatial distribution of the new capillary
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Fig. 12. a) Evolution of the tumor in time, for the initial tumor boundary given by Eq.(6.4).
The initial size of the tumor and the overall domain have been scaled down by a factor of
four. The four small circles outside of the initial tumor boundary correspond to the location
of the pre-existing capillaries. The model parameters are given by (4.16). b1) New capillary
density evolution displayed as contour plots. b2) New capillary density evolution displayed
as surface plots. c) Contour plots of tumor living cell density evolution. d) Contour plots of
tumor dead cell density evolution. The tendency to form a large necrotic region is observed.
e) Contour plots of tumor angiogenic factor(TAF) evolution. f) Contour plots of nutrient
concentration evolution.

density in the intermediate vascularization phase than in the previous case of the
larger tumor. Since the tumor size is smaller in the second simulation example, the
model illustrates how new capillaries penetrate and reach the tumor central region
faster than in the first example, such that the density of the new capillaries in the
high vascularization phase exhibits a visible peak at the tumor center.

The spatial distribution of the tumor living cells in the second example, Fig.
12(c), is less interesting than in the previous case. The rim of quiescent cells in this
case is considerably wider relative to the tumor size than before. An examination of
the evolution of the dead cell density, Fig. 12(d), suggests that the same comments
made in Section 4.3.2 for the spherically symmetric case regarding the evolution of
the tumor cells hold here as well. The central tumor region in transition towards a
necrotic core is small in this case, and much less dynamic than in the previous case
for the larger tumor, where the living tumor cell density exhibits highly varying
spatial re-distributions in the vascular phase, Fig. 11(c).
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Fig. 12. (Contd.)

Finally, the following aspects are worth considering regarding the comparison
between the simulations for the large tumor and its small replicate: the larger tumor
expands more slowly than the smaller one during their corresponding avascular
phase. This is correct from a biological viewpoint, since in the avascular phase,
a tumor can only reach a certain limiting size corresponding to a quasi-equilib-
rium state, where a balance is eventually achieved between the tumor living and
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Fig. 12. (Contd.)

dead cells. Under identical actual growth conditions (translated here into identical
model parameters and initial conditions), in the absence of vascularization, the
larger tumor is expected to approach a stabilized state faster. On the other hand,
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Fig. 12. (Contd.)

once the vascular phase occurs, the model correctly predicts a subsequent tumor
expansion-more aggressive in the case of the large tumor-at increasingly higher
normal velocities.
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Fig. 13. Evolution of an asymmetric, multimodal tumor boundary defined by Eq.(6.5) ini-
tially. The location of the existing capillaries is marked by the small dashed gray circle
(centered at (1.5,1.5) with radius 0.3). Equal time increments of 0.25 are shown, from t = 0
to t = 2.5. Model parameters as in Fig. 11, except that ÛC = 0.5 in the pre-existing capillary
region, ŪC = 0.4 and KS = 10.

Lastly, the case of an initially asymmetric tumor boundary is considered with
the following initial tumor boundary:

(x(α), y(α)) = (1 + 0.12 cos(2α) + 0.1 sin(2α) + 0.06 cos(3α) + 0.05 sin(3α)

+0.04 cos(5α)+0.07 sin(6α))(cos(α), sin(α)), α ∈ [0, 2π ]

(6.5)

The location of the pre-existing capillaries is a disk of center (1.5,1.5) and radius
0.3. The initial profile is marked by the small dashed gray circle in Fig. 13. The
density of the pre-existing capillaries is constant and set at 0.4. The model parame-
ters (4.16) were used, except for ŪC = 0.4 and KN = 10. The Cartesian mesh size
is h = 0.1, the computational domain (outer environment) is [−4, 4]× [−4, 4] and
the time step is adaptive. The evolution of the tumor boundary in time is shown in
Fig. 13 at equal time increments of 0.25 up until time t = 2.5, when the support
of the pre-existing capillaries has been entirely engulfed by the advancing tumor
boundary.As before, the evolution of the tumor corresponding to the avascular phase
is slow and stable, in self-similar shapes. At later times, in the vascular phase, the
self-similarity is lost in a quasi-uniform manner.
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Fig. 14. A comparison of the tumor boundary evolution for two model parameters char-
acterizing the vascular phase of growth: KS and �C . The initial tumor boundary (same as
Fig. 13) is shown as the gray solid line. The tumor boundary at the final time t = 2.5 is shown
for three sets of parameters: KS = 10 and �C = 10, dotted line; KS = 0 and �C = 100,
dash-dot line; KS = 10 and �C = 100, solid line.

For the final set of results presented, the effect of varying the model param-
eters KN (that characterizes the dependence of the nutrient diffusion rate inside
the tumor on the presence of capillaries) and �C (characterizing the growth rate of
the new capillaries) is investigated for the same initial tumor boundary given by
Eq.(6.5). The same location and density for the pre-existing capillaries as in the
previous case were used. A comparison of the tumor boundary evolution for three
sets of parameter values is shown in Fig. 14. The tumor boundary represented by
the dotted line corresponds to the values KN = 10 and �C = 10, the dash-dot
line to KN = 0 and �C = 100 and the solid line to KN = 10 and �C = 100.
For all three cases, the tumor boundary is shown at time t = 2.5. The results show
that the tumor boundary evolution is much more sensitive to the value of the new
capillary growth coefficient than it is to the nutrient diffusion coefficient through
the capillaries. Inhibiting the nutrient diffusion through the capillaries inside the
tumor (by setting KN = 0 as opposed to KN = 10) leads to a moderate slowdown
of the tumor expansion in time. By reducing the growth rate of the new capillaries
one order of magnitude, a significantly higher reduction of the tumor size over time
is achieved. Thus, with respect to a virtual treatment scenario (e.g., by the usage
of drugs such as Angiostatin), a significant decrease of the capillary growth rate
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shows immediate and visible consequences on the tumor growth rate, slowing it
down considerably in time.

7. Conclusions

A comprehensive multi-cell tumor growth model was successfully analyzed in detail
using finite-difference solution techniques and an efficient narrow band level-set
method to capture the evolution of the tumor boundary. The finite-difference dis-
cretization is particularly appropriate for this model, since the governing equations
can be derived alternatively using a lattice-based approach [15] that directly yields
a finite-difference type formulation. The continuum model incorporates the effect
of angiogenesis in a deterministic fashion. It is well-established (Folkman, [16]),
that tumor vascularization occurs through tumor-induced angiogenesis–the process
where nutrient deficient living tumor cells release a chemical TAF (Tumor Angio-
genic Factor). The TAF diffuses into the healthy surrounding tissue and stimulates
the capillary network existent nearby outside the tumor, which leads to formation
of new blood vessels through the accumulation of new endothelial cells. The new
capillaries move towards the source of angiogenic factor leading to tumor vascular-
ization. These important mechanisms associated with the angiogenesis phenomena
are realistically incorporated in the present model, in a deterministic, macroscopic
sense.

The simulations presented both under the assumption of spherical symmetry as
well as in arbitrary geometries in two dimensions confirm that the comprehensive
model is able to capture both the avascular and the vascular phase of tumor growth,
and to provide a quantitative tool for use in studying how and when this fundamental
transition occurs. The progressive formation of a tumor necrotic core is captured as
in many existing models for avascular growth, with the balance of proliferation and
transport effects correctly varying according to the tumor size (large necrotic core
for larger tumors, small necrotic cores for smaller ones). Moreover, the rim struc-
ture of the tumor in the avascular phase is well-exhibited, with rim size depending
on the tumor size: for larger tumors, the proliferative and the quiescent rims are thin
relative to the tumor size, while smaller tumors exhibit a thicker layer of quiescent
cells.

While the overall behavior predicted by the model in arbitrary, two-dimensional
geometries is reasonable, the model in its present form does not include effects that
allow for more intricate tumor boundary evolution. Models have been developed
which incorporate cell adhesion effects at the tumor boundary (Byrne and Chaplain,
[7]). These models lead to a Gibbs-Thomson (or Young-Laplace) type of condition
on the tumor boundary which relates the growth behavior to the curvature of the
boundary. As is well known from inorganic phase boundary evolution, this type of
condition leads to complex morphology in systems governed by diffusive transport.
Clearly, more complex physics, soundly based on smaller-scale biological mech-
anisms, still needs to be incorporated in order to model tumor growth under more
general conditions (e.g., conditions under which tumor boundaries exhibit “finger-
ing” or more complex morphology). Since all the transport coefficients appearing in
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the model have been taken constant in the simulations so far (physically correspond-
ing to a homogeneous, isotropic growth environment), the only potential source of
“anisotropy” comes from the location of the pre-existing capillary network in the
healthy tissue region neighboring the tumor. The numerical experiments so far tend
to demonstrate that, while a specific arrangement of the pre-existing capillaries
may yield more complex tumor boundary evolution in the intermediate/moderate
vascularization regime, with constant transport coefficients morphological com-
plexity is diminished in the high vascularization regime. In fact, this result is in
good agreement with recent experimental results on in vivo tumors grown in an
isotropic sponge-like matrix [14].

As far as the computational framework developed here is concerned, the advan-
tage is its generality and relative simplicity of implementation, which makes the
incorporation of different model features straightforward. The formulation details
presented here and in a companion article (Hogea, et al. [17]) provide a comprehen-
sive description of the numerical procedure implementation. In the last five years,
building on work over many years, a number of detailed tumor growth models have
been developed that may be valuable tools for better understanding tumor growth
and specific treatment regimes when implemented computationally. In order for
this type of modeling to provide useful information from a medical research pro-
spective, mechanically and biologically realistic models will have to be used for
simulations in 3-D. The methodology developed here is readily adaptable to three-
dimensional calculations from an algorithmic point of view. All the components
of the numerical schemes involved extend to the three-dimensional formulation in
a straightforward manner (often translating to simply adding one more dimension
to the arrays involved). The straightforward finite-difference procedures are well-
suited for parallel implementation, which is becoming the pervasive large-scale
computing platform. Moreover, the level set method in the narrow band implemen-
tation has the ability of naturally capturing potentially large topological changes
in the tumor boundary evolution in time at reduced computational expense, while
automatically providing information about the local geometric properties. This is
crucial for simulations of complex tumor growth where different biological phe-
nomena may occur inside the tumor and outside in the healthy surrounding tissue.
Mor accurate and less restrictive time integration schemes are one aspect where the
current implementation has to be improved. This would enable more accurate stud-
ies of the model behavior over a broader range of model parameters. These schemes
are currently under development and will be incorporated in future studies.
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Appendix A: Discretization of the Model Equations

Each of the model governing equations (2.12) and (2.15) can be cast in the general
compact conservative form:

∂µ

∂t
= ∇ • (Q∇µ) − W∇ • (µ∇ν) + �(µ) − L(µ)

For the reasons stated at the beginning of Section 4, the equivalent non-conservative
formulation is employed for the implementation here:

∂µ

∂t
= Q∇2µ + ∇µ • ∇Q − W∇µ • ∇ν − Wµ∇2ν + �(µ) − L(µ) (A.1)

In the solution formulation, the current time is tn+1 = (n + 1)�t , and the cor-
responding level set function is ϕn+1

i,j = ϕ(x(i), y(j), tn+1) at all Cartesian grid



132 C. S. Hogea et al.

points (i, j). The current domain occupied by the tumor is �n+1 = �(tn+1) =
{(i, j)

∣
∣
∣ϕ

n+1
i,j < 0}, while the domain occupied by the tumor at the previous time

step is �n = �(tn) = {(i, j)

∣
∣
∣ϕn

i,j < 0}; in the outer environment we have �out
n+1 =

�out (tn+1) = {(i, j)

∣
∣
∣ϕ

n+1
i,j > 0} and �out

n = �out (tn) = {(i, j)

∣
∣
∣ϕn

i,j > 0}. As a

result of the Eulerian nature of the solution methodology, coupled with the inher-
ent discontinuities across the tumor boundary, it is necessary to identify and treat
separately two types of grid points:

1. {(i, j)

∣
∣
∣ϕn

i,j ϕn+1
i,j > 0} − referred to as “well-behaved” grid points - namely,

grid points that remain on the same side of the tumor boundary during the time
increment from tn to tn+1. At “well-behaved” grid points, the mass balance
equation (A.1) is valid and the discrete solution µn+1

i,j = µ(x(i), y(j), tn+1)

at the current time step is obtained by using a forward Euler time integration:

µn+1
i,j − µn

i,j

�t
= Qn

i,j∇2µn
i,j + ∇µn

i,j • ∇Qn
i,j − W∇µn

i,j • ∇νn
i,j

−Wµn
i,j∇2νn

i,j + �n
i,j − Ln

i,j (A.2)

2. {(i, j)

∣
∣
∣ϕn

i,j ϕn+1
i,j ≤ 0} − referred to “ill-behaved” grid points - namely grid

points where the tumor boundary crosses over during the time step from tn to
tn+1. At such “ill-behaved” points, a discontinuous change occurs during the
time step and the mass balance equation (A.1) can no longer be employed;
instead, the solution µn+1

i,j = µ(x(i), y(j), tn+1) at the current time step is
obtained by interpolation. If the tumor boundary falls directly on a grid point
at the previous time step, then it is also classified as “ill-behaved.”

In implementing this solution approach, it is assumed that the tumor boundary
does not advance more than one mesh spacing in a time step – which is in fact
required by the CFL stability condition (5.10) for the level set equation (5.7). As
defined in Section 5, a “regular” grid point (either inside the domain occupied by
the tumor or outside) is a point on the fixed Cartesian grid that has no neighbors
on the tumor boundary (in either the horizontal (x) direction or the vertical (y)

direction) while an “irregular” grid point (on each side of the tumor boundary)
corresponds to a point on the fixed Cartesian grid that is adjacent to the boundary,
either horizontally or vertically. We note that “ill-behaved” grid points can only be
“irregular.”

At “regular” and “well-behaved” grid points, the standard 5-points stencil is
used to discretize the Laplace operator in (A.2):

∇2µn
i,j ≈

µn
i+1,j − 2µn

i,j + µn
i−1,j

h2 +
µn

i,j+1 − 2µn
i,j + µn

i,j−1

h2 (A.3)

and similarly for ∇2νn
i,j . Centered differencing is used to approximate the first order

spatial derivatives in each direction:

∇µn
i,j • ∇νn

i,j =
∂µn

i,j

∂x

∂νn
i,j

∂x
+

∂µn
i,j

∂y

∂νn
i,j

∂y
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≈
(

µn
i+1,j − µn

i−1,j

2h

)(
νn
i+1,j − νn

i−1,j

2h

)

+
(

µn
i,j+1 − µn

i,j−1

2h

)(
νn
i,j+1 − νn

i,j−1

2h

)

(A.4)

and similarly for the term ∇µn
i,j • ∇Qn

i,j .
In the case of an “irregular” horizontal grid point (i, j), where, for instance,

ϕn
i,j < 0 and ϕn

i+1,j > 0, there is an interface point in the horizontal direction
between x(i) and x(i + 1) (label its location as xb). By linear interpolation of the
level set function, the value of xbcan be determined as follows:

xb − x(i) = −
(

ϕn
i,j

ϕn
i+1,j − ϕn

i,j

)

h = θxh (0 < θx < 1) (A.5)

If |θxh| ≤ ε << 1, where ε is a small number (typically, ε is chosen relative
to the grid size h), then the grid point (i, j) can be considered on the interface
(we refer to this as the ε- test). More details on the actual choice of ε in the
actual numerical simulations is given in the results Section 6. If the “irregular”
grid point (i, j) is also “well-behaved” according to the criterion introduced above,
then a second-order interpolating polynomial pµ(x) in the x-direction is constructed
using h, θx, µ(xb, y(j), tn), µn

i,j , µn
i−1,j where µ(xb, y(j), tn) is computed from

the corresponding prescribed boundary conditions applied at the boundary point
(xb, y(j)). Using this approach, the second derivative in (A.2) is approximated as

∂2µn
i,j

∂x2 ≈ p′′
µ(x)

∣
∣
x=x(i) (A.6)

and the first derivative as

∂µn
i,j

∂x
≈ p′

µ(x)
∣
∣
x=x(i) (A.7)

The same procedure is used in the y-direction. Naturally, there will be “irreg-
ular” grid points that might have neighbors on the boundary both in the x- and
y-direction. Similarly, individual second order interpolating polynomials are sep-
arately constructed for all the other model dependent variables involved in (A.2)
and the corresponding spatial derivatives are approximated as in (A.6) and (A.7)
above.

The general discussion on overall numerical stability presented in Section 4.3.1
holds here as well, with the constraint on the time step size dominated by the
diffusion type terms (but now in two dimensions).

The model boundary conditions at every time step are handled here as follows:
first, the continuity of the model dependent variables UA, UC and of their associ-
ated fluxes – here translating into the continuity of their normal derivatives - across
the tumor boundary is employed to determine the actual values of UA and UC on
the tumor boundary (the normal derivatives of UA, UC on each side of the tumor
boundary are approximated by using one-sided differences in the normal direction).
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With the value of UC known on the boundary, the prescribed Dirichlet boundary
conditions (2.16) are employed to compute the values of UT and UN on the tumor
boundary.

Once the discrete solution µn+1
i,j = µ(x(i), y(j), tn+1) at the current time step

has been computed at all the “well-behaved” grid points (i, j), both “regular” and
“irregular”, then the boundary values are updated as described above and finally, the
solution µn+1

i,j at the remaining “ill-behaved” grid points at the current time step is
obtained by interpolation. The boundary value is employed if the grid point is close
enough to a boundary point (according to the ε- test) otherwise bilinear interpola-
tion is used. This is the most straightforward approach; higher-order interpolation
formulas can also be employed.


