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ABSTRACT

The effects of demographic and environmental stochasticity on the qualitative behavior
of a mathematical model from tumor immunology are studied. The model is defined in
terms of a stochastic differential equation whose solution is a limiting diffusion process to a
branching process with random environments.

INTRODUCTION

Differential equations are mathematical tools to describe and study the
growth of populations. Since a deterministic approach neglects random
influences on the growth process, stochastic differential equations can be
regarded as more adequate models for the development of a population. In
this paper a mathematical model from tumor immunology originally pro-
posed by Garay and Lefever [5] is considered in order to elaborate the effects
of random fluctuations.

In biological processes there are mainly two sources of variability: demo-
graphic stochasticity, which is due to randomness in the survival ability or
fertility of individuals within a population, and environmental stochasticity,
which results from random fluctuations in the environment affecting the
population as a whole. Mathematical models including both kinds of stochas-
ticity are branching processes with random environments as introduced by
Smith and Wilkinson [11] and Athreya and Karlin [2].

Processes of this type, which are hardly tractable if the reproduction rate
of a population depends on the actual population size, can be approximated
by diffusion processes. This fact was first observed by Feller [3] for Galton-
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Watson processes and generalized by Keiding [8] for the case of controlled
branching processes with random environments.
The limiting diffusion processes can be obtained as solutions of stochastic
differential equations of the form
dX(1) = p( X(1)) di + o( X(1)) aW(1),

where W denotes a standard Wiener process. X(¢) then has the well-known
properties

fim B X(+h)= X(1)) = n(x).
fim +E{[X(1+h)= X(D)]) = 0*(x).

[ E. denotes expectation given X(¢) = x.) From these relations it can be seen
that the mean increment of the stochastic process X(¢) during a small time
interval, given that it has reached x, is the same as the increment of the
solution of the ordinary differential equation

D _ L x(oy).

The variability is completely described by a function o?; its special form

arises from the approximated branching process under consideration.

In what follows, we briefly review the Garay-Lefever model and its
properties. The main part of the paper gives a description of the qualitative
behavior of a stochastic version of this model defined in terms of a stochastic
differential equation as described above.

1. THE MODEL

The kinetic model of Garay and Lefever [5] assumes that the onset of a
tumor involves the combination of three principal phenomena:

(1) the transformation of normal into neoplastic cells (with some constant
rate A), ’

(2) the replication of transformed cells (with some rate A),

(3) the immunological interaction of the host organism with transformed
cells.

The first two steps are simple to model, whereas the immunological step
cannot be accounted for in an explicit form. In a first approach it can be
described as follows: The recognition of the transformed cells by free effector
cells (for example 7-lymphocytes or natural killer cells) is followed by the
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lysis of the former and the dissociation of the complex into free effector cells

and some dead or nonreplicating cells. The kinetic of this step is assumed to
he M kophan

Within this framework, the growth in time of the target (tumor) popula-
tion is given by the equation [9]

ax A kEX
dt (N X)(A+NX)*W. (1.1)

Here X denotes the number of transformed cells per unit volume, N the
maximum number of target cells per unit volume, E the total number of free
and bounded effector cells, and k and / are rate constants. In vivo, cytotoxic
parameters as well as replication rates are influenced by environmental
factors such as the supply of oxygen and nutrients, chemical agents, radia-

Ac 11t + nd ndam 1oty 1
tion, etc. As a resuit, parameters undergo random variations i the course of

time.

Assuming a random replication rate and a mean variance of the offspring
distribution which guarantees that the number of target cclls predicted by the
stochastic model remains less than N, we have the stochastic equation

AX kEX
{( N-— x)( a+ RS ) } d

1+ kX/1
o X : 2 2 X (N-X)
+\/u(N)(N X+ aw (1.2)
(For details see Appendix 1.) The constants u? and v? are a measure of the

strength of environmental and demographic stochasticity, respectively.

Since solutions of (1.1) and (1.2) cannot be obtained in closed form, we
study their qualitative behavior, i.e. the behavior of X(¢) for large ¢. For this
purpose we transform X(¢) and discuss the properties of

Y(1) =—l;X(%)

Y(¢) is the solution of the stochastic differential equation

dY(t)=<(1—0Y)(a+Y)— dt

i+7)

+/?Y2(1- 8Y)*+ r2Y(1- 8Y) dB, (1.3)

where a=kAN/IN, B=kE/X\, 8 =1/kN, o*=u*/\, 7> =0’k /I\, and B
is a standard Wiener process. Now the parameter a gives the relative rate of
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neoplastic cell production, 8 gives the relative rate of neoplastic cell destruc-
tion, and # results from the upper limit for the tumor population, while «w?
and 72 measure the relative strength of external and internal fluctuations.
The transformed deterministic equation is obtained from (1.3) by setting
12 =0?=0.

In the sequel we always assume w’ > 0 and 72 > 0 when we analyze the
stochastic model. The case 72 =0 and w? > 0 has been treated by Lefever
and Horsthemke [9], who formally replaced the growth rate in the determinis-
tic equation (1.1) by white noise in order to get a stochastic model. The
equation considered in the present paper can therefore be regarded as a

generalization to incorporate demographic stochasticity.

2. PROPERTIES OF THE DETERMINISTIC MODEL
The qualitative behavior of the model

- (1= 8¥)(a+ V) -5 =n(D) (21

can be summarized as follows: For fixed a, there exists a . <1/(1 + a) such
that

(a) for 8 > 6, (2.1) has exactly one stationary solution which is asymptoti-
cally stable;

(b) for 0 <8 <@_ there is at least one 8> 0 such that (2.1) has three
stationary solutions y, < y, < y;, of which y, and y,; are locally asymptoti-
cally stable and y, is unstable.

Case (b) can be reformulated more precisely: If 0 < Y(0) < y,, then Y(#) - y,
for t = o0, if y, <Y(0)<1/8, then Y(1) — y;.

Proof. Solving p(y) =0 for B yields

B=(1+y)(a+yy)(1—0y)_ (2.2)

If the mapping y — B(y) is one-to-one, (2.1) has exactly one stationary
solution for every 8. Now

B(y)=1- 2 —8(1+a+2y),
y

which is negative for y near 0 and near 1/8. Note that B’(y)>0 is
equivalent to

[1-8(1+a)]y> —28y° > a. (2.3)
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The left-hand side of (2.3) is a monotonely decreasing function of 8 for y > 0
and equal to y? if 6=0. Hence there is a 6. such that (2.3) has no
nonnegative solution for § > 8.. Of course, 6, <1/(1+ a). Now let 3, > 0 be
a stationary solution of (2.1). From the relation

TN & DS W A
\7 )

(Y= A,
50 Yo\ o) JoRP \

\
Yo
we see that y, is asymptotically stable if 8’(y,) < 0. Hence if 8 > 6, then
B’(y) < 0 for every 0 < y <1 /8, which implies (a): if not, there exists some y
with B8’(y) > 0, which proves (b).

3. PROPERTIES OF THE STOCHASTIC MODEL

In this section, we summarize the results concerning the qualitative
behavior of the stochastic model (1.3). The proofs of the results are contained
in Appendices I and IIL

At first, we study the case 0 <72 <2a. Under this assumption, the
boundaries 0 and 1/6 are inaccessible, i.e. cannot be reached in finite
time, which implies P{0<Y(t)<1/8}=1 for all . The function Y{(r)
has a stationary distribution F(y) which can be given explicitly, and
lim,_,  P{Y(t)<y}=F(y). Let f:==F’. For any choice of the parameters
we obtain f(0)=0. The value of f(1/6) depends on 72> and # in the
following way: if 8> B :=712(1+8)/2, then f(1/8)=0; if B<p., then
f(1/0) is infinite.

For «? sufficiently large, the number of local maxima of f in (0,1/8)
depends on the value of 8 as follows: There exist 8, and 8, with B, < 8, <8,
such that as long as 8> B,

(a) if B> B,, f has one local maximum in (0,1/28);

(b) if B, <B<pB,, f has one local maximum in (0,1/26) and in
(1/28,1/0);

(c) if B < B, f has one local maximum in (1,/26,1/6).

If 12> 2a, 1/0 remains inaccessible, but the process becomes extinct with
probability one. Moreover, the time to extinction is finite with positive
probability. But since zero is a regular boundary in the sense of Feller [4] and
p(0)=a >0, Y(¢) suffers delayed reflection at 0. (See [6, §24].) This means
that after the process has reached zero, it stays there for a finite time before
growing again. The limiting behavior of this process can be described by

Jim inOTP{ Y(1)<y}di=G(y),

where G is some distribution function which can be given explicitly (see
Appendix III). In contrast with the above mentioned case, G has a jump
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discontinuity at zero which is equal to
1 7
G(0+)= ltim — [ P{Y(t)=0}dr.
(0+) = tim = ["P(¥(r) =0}

For y >0, G is differentiable. Setting g:=G’ we find g(0+)=o00 and
g(1/8)=0, if B> B and infinite if B < g.. Furthermore, there exists a
By > B. such that

(a) if B<B. or B> B,, g has no local maximum in (0,1/8);
(b) if B. < B < B,, g has one local maximum in (0,1/8)

if 72 is sufficiently large.

4. DISCUSSION

We briefly discuss the interesting results of the preceding analysis from
the mathematical point of view as well as their implications for the tumor
model.

First, we have seen that variation of the noise parameters w? and 77,
which are measures of the strength of external and demographic variability,
results in drastic changes in the qualitative behavior of the model. Such
abrupt changes are called phase transitions by some authors (1,7]. In ad-
dition to the results of these inquiries it can be seen from the model treated
that transition phenomena can also be caused by the increase or decrease of
internal fluctuation.

To describe the implications of the mathematical results in tumor im-
munology, we mention first that the range of variations of the parameters
a,B,0 is

2

10 Y<a<107®,  1072<B<10, 107 !<@d<S5.

(A detailed discussion can be found in [5] and [9].) As for the deterministic
model, we find 6, =1, since « is very small. We know from Section 2 that for
cell systems with # > 1 there exists only one stationary solution. This solution
is situated near zero only if 8 =1, as follows from (2.2). Therefore rejection
of the tumor is only possible if the effector /target cell ratio or the cytotoxic
activity of the effector cells is sufficiently high. The latter is for example the
case for T-lymphocytes. In cell systems with 6 <1 one often finds B <1,
which implies that the smallest stationary solution has values much larger
than zero. Thus the deterministic treatment predicts that immune surveillance
mechanisms are insufficient to ensure rejection in those cases.

If 0 <72 <2a in the stochastic model, two maxima of the stationary
distribution are possible, i.e., two values of the number of tumor cells occur
with high probability even if the deterministic model predicts only a large
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number of transformed cells. However, the probability of very few tumor
cells is zero. If 72 > 2a, this probability is always positive, which implies that
rejection is possible. Nevertheless, there can still be a maximum of the
probability distribution at positive values of the tumor-cell number. Finally,
if B is smaller than some critical value, large numbers of tumor cells are
probable.

On the whole, one can state that the presence of noise favors rejection.
This result is in agreement with the conclusions of Lefever and Horsthemke
[9], who treated deterministic growth in random environment.

APPENDIX I. DIFFUSION LIMIT OF BRANCHING PROCESSES

We formally derive diffusion limits for discrete-time density-dependent
branching processes with random environments, following Keiding {8] and
Tier and Hanson [12). Although we shall as usual use the “discrete genera-
tion” terminology, the results may have a more natural interpretation for
time-equidistant sampling of populations with overlapping generations.

Let Z, be a nonnegative integer-valued random variable equal to the
number of individuals in generation m. The number of offspring born to the
ith individual in each generation is denoted by B,. The population size of
generation m + 1 is then given by

m+1 Z B

i=1

Environmental fluctuations are taken into account by introducing a random
variable X, into the offspring distribution. We assume that the {Z, } are
independently identically distributed. The offspring distribution is then given
by

pj(z’g)=P{Bi=j|Zm=z’Em=£}'

The variables { B;, &, } are assumed to be independent.

To obtain a diffusion limit we consider sequences of branching processes
{Z("} with Z{" =n, environments {Z{"}, and offspring distributions
I"’(z £). Now we ask for conditions under which the processes X, (¢):=
(1/n)Z{7), (Int] denotes the integer part of nr) converge weakly to a
diffusion process X(¢).

Define random variables

— .k —
g =Y R pm(Zim, =),

G =3 (=) B (20 E)-
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Assume that for some continuous functions «, b, ¢, one has

E:“(l'i)=1+a_(_z;1/i) + o(l\

n}’

B -1 =) o L),

EtmM=c*(z/n)+o(1)

(E, denotes expectation given Z{ ») = z). Then under some further assump-
tions on the moments of the offspring distribution of order 2+ 8, § > 0, and
on the growth of a,b,c (for the details see [10]), the processes X, (?)
converge weakly to a diffusion process which is the solution of the stochastic

differential equation

dX = Xa( X) dt +| X262 ( X)+ X2 ( X) dW.

For the tumor model under consideration we assume p{" =1+
h,(Z{3), 200D, where
k,E
h"(Z,g) :=(]Vn - Z)(An‘271 + i)_-‘#._
N, n+k,l 'z

n'n

with A, =A/n, k,=k/n, l,=1/n, N,=Nn, E, = En, is the growth rate
per cell given z and & Now if E{E(!\}=\/n, E{E{)}* =u’/n, and
E{Z{/)}*7° =0(1/n), we obtain

1 z A A kE
(n) — = _ = il b A
il HH(N n)(Z/n+N) 1+ kI 'z’

2 2 z\?

E(wm-1) = —;—Z(N— ;) + 0(%)
It remains to specify E_{{"’, the mean variance of the number of offspring.
Since the number of cells per unit volume must not exceed N, both variance
terms have to vanish at N. This is already the case for the term expressing
environmental stochasticity. Therefore we may assume the simplest form for
the other term and choose ¢?(x)=uv*(N —x)/N. We mention that the
qualitative behavior of X(t) which we study in this paper essentially depends
on the strength of environmental and demographic stochasticity, whereas the
concrete form of ¢ only plays a minor role.

APPENDIX II. BOUNDARY CLASSIFICATION OF THE SOLUTION
OF EQUATION (1.3)

To classify the boundaries 0 and 1/6 according to [4] we have to evaluate
O<a<b<l/80)

¢, , = fb¢(x) dx
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with

o0 =en| 2f B2 o)

for a > 0 and b—>1/6, and
Bx

+ X

p(x) =(1-0x)(a+x)~7
02(x) = wx2(1—0x) + r2x(1 - 6x)

(see [6]). We find that

I(x) ==-/x a;zy)’)

__1 fx dy
0227 y(y=1/0)(y—y)(y-—»)

{Alnx+Bln

=02w2 x—-‘+Cln|x y1|+Dln|x—y2|+E}

where A, B,C, D, E are constants and y, , = (1/28)(1+y1+467>/w*) are
not elements of the interval [0,1/8)]. Evaluation of the constants yields

A=0%?/7?; hence
—_ - _ 2.2 _ 2
¢1(X) = 2al(x) x 2A /0w _ x 2a/T

for small positive values of x. Since we can write ¢ = ¢, ¢, where ¢, is
bounded near 0, we see that @, is finite if 2a < r? and infinite otherwise.
Therefore zero is attractive if 2a < 72 and repelling (and inaccessible) other-
wise. In addition, it can be shown that zero is regular in the first case, i.e., the
process can reach zero and restart again. To prove regularity it suffices to
show that

¥, 0= [ 9(x) dx

remains finite for a — 0, where

B 1
¥(x) (a0

Since

1 2 2
v(x)= H(x)x2/™" ~ xt2e/m-1
2x2(1-0x)* + r2x(1— 0x)
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for x near zero ( H is some function bounded in a neighborhood of zero), the
assertion is proved.

As for the upper boundarv 1 /8 there are constants K K’ «uch that
AS IOr 1€ Upper poungary / g, there are constants X, &7 such fhail

1/6 1/ Bdy
‘I)a.l/f)?Kfa exp{zf (1+y)(1~ﬂy)(wzy(l_o.V)+Tz)}

) 6
>Kf1/ exp{K’fl/ 1_—%dy}=oo.

Thus 1/8 is repelling and inaccessible.

APPENDIX III. PROPERTIES OF THE STATIONARY
DISTRIBUTION

For the existence of a stationary distribution of the solution of (1.3) it is
necessary that ¥, , 4 <oco. In view of Appendix II, we only need to prove
V¥, 1,4 < oo for some a> 0. Now

x) = ) &
/() f(1+y)(1—0y)(w2y(1—0y)+72)

1
+B

=K(x) 0'

with constants 4’, B’ and a bounded function K(x). Evaluation of the
constants yields 4’ = —460%w?/72(1+ ). Hence

M(x) o 2BI(X)
\I/(X) = 1— 0x
: 1 2B/7X1+8)-1
=0M(x)ek™ xX=3

with some function M(x) which is bounded near 1/8. Thus the assertion is
proved. Summarizing the preceding results, we obtain

0 if 0<r’<2a
0 j— s
¥(0) {oo if 12> 2a,

it B>r12(1+86)/2,

0
‘P(l/a):{oo it B<r2(1+6)/2.

The distribution functions F and G mentioned in Section 3 can be given in
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terms of ¢ as follows:

0 if y<9,
F(y)= Yo, it p>o,

0.1,/0 ’

0 if y<0,
G(y)={ 1+2a%, 50

1+2a%, )

Since there are constants C,C’ such that ¢ = Cf = C’g, it suffices to study
the properties of . In particular, we are interested in local maxima of ¢ in

0,1/8).
Now ¢/(y) = 0 is equivalent to

n(y)—5(e?)'(y)=0. (%)

Solving this equation for 8 yields the following relation between the parame-
ter 8 and a local extremum of the stationary density:

B(») =1—;X{(a+y)(1—0y)—w2y(1—oy)(l_zoy)_ﬂ%@}_

Let y, be a positive solution of (#). Then { has a maximum at y, if
B’()) < 0. This can be seen from

sgnd” (o) = sgn{ w ()= 1(0>)"(3)}

and
o1+ y){ W () —1(0?) " (30) } = 38" (3)-

Next we note that 8(1/28)=(1+26)a+1/26)/2 is independent of «?
and 72. From

B(1/260)=20*(7* —2a)+0(1* —a—1)+ & (0 +3)

we find that B’(1,/20) > O for sufficiently large values of w? or 7°2.

If 0 <72 <2« and ® is large enough that 8/(1/20) > 0 and B’(1/6) =
02(12 —2a)/2+8(t? —a—1)—w?(1+0)~1<0, we see that there exist
numbers B, and B, with the properties stated in Section 3, since 8'(y) = —
for y = 0.
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Furthermore, B(y) is concave for 7

GERD ROSENKRANZ

2> 72> 2a, because B7(y)<0 is

equivalent to

2> 2a-20y {1+ «’[26(1+3y) -3]}.

Thus the assertions of Section 3 are completely proved.
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