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ABSTRACT 

The effects of demographic and environmental stochasticity on the qualitative behavior 

of a mathematical model from tumor immunology are studied. The model is defined in 

terms of a stochastic differential equation whose solution is a limiting diffusion process to a 

branching process with random environments. 

INTRODUCTION 

Differential equations are mathematical tools to describe and study the 
growth of populations, Since a deterministic approach neglects random 
influences on the growth process, stochastic differential equations can be 
regarded as more adequate models for the development of a population. In 
this paper a mathematical model from tumor immunology originally pro- 
posed by Garay and Lefever [S] is considered in order to elaborate the effects 
of random fluctuations. 

In biological processes there are mainly two sources of variability: demo- 
graphic stochasticity, which is due to randomness in the survival ability or 
fertility of individuals within a population, and environmental stochasticity, 
which results from random fluctuations in the environment affecting the 
population as a whole. Mathematical models including both kinds of stochas- 
ticity are branching processes with random environments as introduced by 
Smith and Wilkinson [ll] and Athreya and Karlin [2]. 

Processes of this type, which are hardly tractable if the reproduction rate 
of a population depends on the actual population size, can be approximated 
by diffusion processes. This fact was first observed by Feller [3] for Galton- 
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Watson processes and generalized by Keiding [8] for the case of controlled 
branching processes with random environments. 

The limiting diffusion processes can be obtained as solutions of stochastic 
differential equations of the form 

dX(t)=p(X(t))dt+a(X(t))dW(t), 

where W denotes a standard Wiener process. X(t) then has the well-known 
properties 

~@&{ X(t+h)-X(t)} =/L(x), 

~~~~~E,{[X(l+h)--X(r)]YJ =u’(x). 

[E,. denotes expectation given X(t) = x.1 From these relations it can be seen 
that the mean increment of the stochastic process X(t) during a small time 
interval, given that it has reached x, is the same as the increment of the 
solution of the ordinary differential equation 

dx( t> ~ =dX(t)) dt 

The variability is completely described by a function a’; its special form 
arises from the approximated branching process under consideration. 

In what follows, we briefly review the Garay-Lefever model and its 
properties. The main part of the paper gives a description of the qualitative 
behavior of a stochastic version of this model defined in terms of a stochastic 
differential equation as described above. 

1. THE MODEL 

The kinetic model of Garay and Lefever [5] assumes that the onset of a 
tumor involves the combination of three principal phenomena: 

(1) the transformation of normal into neoplastic cells (with some constant 
rate A), 

(2) the replication of transformed cells (with some rate A), 
(3) the immunological interaction of the host organism with transformed 

cells. 

The first two steps are simple to model, whereas the immunological step 
cannot be accounted for in an explicit form. In a first approach it can be 
described as follows: The recognition of the transformed cells by free effector 
cells (for example T-lymphocytes or natural killer cells) is followed by the 
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lysis of the former and the dissociation of the complex into free effector cells 
and some dead or nonreplicating cells. The kinetic of this step is assumed to 
be Michaelian. 

Within this framework, the growth in time of the target (tumor) popula- 
tion is given by the equation [9] 

(1.1) 

Here X denotes the number of transformed cells per unit volume, N the 
maximum number of target cells per unit volume, E the total number of free 
and bounded effector cells, and k and I are rate constants. In vivo, cytotoxic 
parameters as well as replication rates are influenced by environmental 
factors such as the supply of oxygen and nutrients, chemical agents, radia- 
tion, etc. As a result, parameters undergo random variations in the course of 
time. 

Assuming a random replication rate and a mean variance of the offspring 
distribution which guarantees that the number of target cells predicted by the 
stochastic model remains less than N, we have the stochastic equation 

2(N-X)2+v2X(N;X) dW, (1.2) 

(For details see Appendix I.) The constants u2 and v2 are a measure of the 
strength of environmental and demographic stochasticity, respectively. 

Since solutions of (1.1) and (1.2) cannot be obtained in closed form, we 
study their qualitative behavior, i.e. the behavior of X(t) for large t. For this 
purpose we transform X(t) and discuss the properties of 

r(t) :=+x(;). 

Y(t) is the solution of the stochastic differential equation 

dY(t)= (l-BY)(u+Y)-Eyjdt 
( 

+~w~Y~(~-BY)~+~~Y(~-BY) dB, (1.3) 

where a = kAN/IX, p = kE/X, 8 = I/kN, a2 = u2/X, r2 = v’k/lX, and B 

is a standard Wiener process. Now the parameter (Y gives the relative rate of 
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neoplastic cell production, B gives the relative rate of neoplastic cell destruc- 
tion, and B results from the upper limit for the tumor population, while w2 
and 72 measure the relative strength of external and internal fluctuations. 
The transformed deterministic equation is obtained from (1.3) by setting 
72 = J = 0, 

In the sequel we always assume w2 > 0 and r2 > 0 when we analyze the 
stochastic model. The case 72 = 0 and w2 > 0 has been treated by Lefever 
and Horsthemke [9], who formally replaced the growth rate in the determinis- 
tic equation (1.1) by white noise in order to get a stochastic model. The 
equation considered in the present paper can therefore be regarded as a 
generalization to incorporate demographic stochasticity. 

2. PROPERTIES OF THE DETERMINISTIC MODEL 

The qualitative behavior of the model 

(2.1) 

can be summarized as follows: For fixed (Y, there exists a 0,. < l/(1 + a) such 
that 

(a) for 0 z 0, (2.1) has exactly one stationary solution which is asymptoti- 
cally stable; 

(b) for 0 < 0 < 0,. there is at least one /3 > 0 such that (2.1) has three 
stationary solutions y, < y2 < y,, of which y, and y, are locally asymptoti- 
cally stable and y2 is unstable. 

Case (b) can be reformulated more precisely: If 0 < Y(0) < y,, then Y(t) -+ y, 
forr-,oo,ify,<Y(O)~l/B, then Y(t)+y,. 

Proof. Solving p(y) = 0 for p yields 

p= (l+Y)b+Yww 
Y 

(2.2) 

If the mapping y + B(y) is one-to-one, (2.1) has exactly one stationary 
solution for every /3. Now 

which is negative for y near 0 and near l/B. Note that ,8’(y) > 0 is 
equivalent to 

(2.3) 
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The left-hand side of (2.3) is a monotonely decreasing function of 0 for y > 0 
and equal to y2 if 6 = 0. Hence there is a f?,. such that (2.3) has no 
nonnegative solution for 8 > 0,. Of course, 6,. < l/(1 + a). Now let y, > 0 be 
a stationary solution of (2.1). From the relation 

we see that y0 is asymptotically stable if p’(yO) < 0. Hence if 0 2 e,, then 
p’(v) < 0 for every 0 < y <l/e, which implies (a): if not, there exists some y 

with P’(r) > 0, which proves (b). 

3. PROPERTIES OF THE STOCHASTIC MODEL 

In this section, we summarize the results concerning the qualitative 
behavior of the stochastic model (1.3). The proofs of the results are contained 
in Appendices II and III. 

At first, we study the case 0 < 72 < 201. Under this assumption, the 
boundaries 0 and l/e are inaccessible, i.e. cannot be reached in finite 
time, which implies P{O < Y(t) <l/0} =l for all t. The function Y(t) 
has a stationary distribution F(y) which can be given explicitly, and 

lim, + m P{ Y(t) < y} = F(y). Let f := F’. For any choice of the parameters 
we obtain f(O)= 0. The value of f(l/e) depends on T* and 0 in the 
following way: if /3 > /3,. := ~~(l+ Q/2, then f(l/e) = 0; if p < /3,, then 
f(l/e) is infinite. 

For w2 sufficiently large, the number of local maxima of f in (0,1/B) 
depends on the value of /3 as follows: There exist 0, and & with PC < p, < f12 
such that as long as /? > &, 

(a) if /3 > &, f has one local maximum in (0,1/20); 
(b) if /3, < p < &, f has one local maximum in (0,1/28) and in 

(1/2e,l/0 
(c) if /3 < &, f has one local maximum in (l/28,1/0). 

If r2 > 2a, l/e remains inaccessible, but the process becomes extinct with 
probability one. Moreover, the time to extinction is finite with positive 
probability. But since zero is a regular boundary in the sense of Feller [4] and 
p(O) = (Y > 0, Y(t) suffers delayed reflection at 0. (See [6, $241.) This means 
that after the process has reached zero, it stays there for a finite time before 
growing again. The limiting behavior of this process can be described by 

where G is some distribution function which can be given explicitly (see 
Appendix III). In contrast with the above mentioned case, G has a jump 
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discontinuity at zero which is equal to 
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G(0-e) = pll Q{ Y(f) = O} dr. 

For y > 0, G is differentiable. Setting g := G’ we find g(O+) = 00 and 
&l/e) = 0, if /3 > p,. and infinite if /I i &. Furthermore, there exists a 
&, > & such that 

(a) ifP<P,. orP>&, g has no local maximum in (0,1/e); 
(b) if /?, < /3 < /?a, g has one local maximum in (0,1/a) 

if 72 is sufficiently large. 

4. DISCUSSION 

We briefly discuss the interesting results of the preceding analysis from 
the mathematical point of view as well as their implications for the tumor 
model. 

First, we have seen that variation of the noise parameters o2 and TV, 
which are measures of the strength of external and demographic variability, 
results in drastic changes in the qualitative behavior of the model. Such 
abrupt changes are called phase transitions by some authors [1,7]. In ad- 
dition to the results of these inquiries it can be seen from the model treated 
that transition phenomena can also be caused by the increase or decrease of 

internal fluctuation. 
To describe the implications of the mathematical results in tumor im- 

munology, we mention first that the range of variations of the parameters 

a,p,e is 

lOPi% a<10-i6, lo-* < p < 10, 10-‘<8<5 

(A detailed discussion can be found in [5] and [9].) As for the deterministic 
model, we find 8,. = 1, since a is very small. We know from Section 2 that for 
cell systems with 0 > 1 there exists only one stationary solution. This solution 
is situated near zero only if p = 1, as follows from (2.2). Therefore rejection 
of the tumor is only possible if the effecter/target cell ratio or the cytotoxic 
activity of the effector cells is sufficiently high. The latter is for example the 
case for T-lymphocytes. In cell systems with 8 < 1 one often finds /3 < 1, 
which implies that the smallest stationary solution has values much larger 
than zero. Thus the deterministic treatment predicts that immune surveillance 
mechanisms are insufficient to ensure rejection in those cases. 

If 0 < 72 < 2cw in the stochastic model, two maxima of the stationary 
distribution are possible, i.e., two values of the number of tumor cells occur 
with high probability even if the deterministic model predicts only a large 
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number of transformed cells. However, the probability of very few tumor 
cells is zero. If 72 > 2a, this probability is always positive, which implies that 
rejection is possible. Nevertheless, there can still be a maximum of the 
probability distribution at positive values of the tumor-cell number. Finally, 
if p is smaller than some critical value, large numbers of tumor cells are 
probable. 

On the whole, one can state that the presence of noise favors rejection. 
This result is in agreement with the conclusions of Lefever and Horsthemke 
[9], who treated deterministic growth in random environment. 

APPENDIX I. DIFFUSION LIMIT OF BRANCHING PROCESSES 

We formally derive diffusion limits for discrete-time density-dependent 
branching processes with random environments, following Keiding [8] and 
Tier and Hanson [12]. Although we shall as usual use the “discrete genera- 
tion” terminology, the results may have a more natural interpretation for 
time-equidistant sampling of populations with overlapping generations. 

Let Z,,, be a nonnegative integer-valued random variable equal to the 
number of individuals in generation m. The number of offspring born to the 
i th individual in each generation is denoted by B,. The population size of 
generation m + 1 is then given by 

Z “,+I= 2 4. 
r=l 

Environmental fluctuations are taken into account by introducing a random 
variable E,, into the offspring distribution. We assume that the {z,,,} are 
independently identically distributed. The offspring distribution is then given 

by 

The variables { B, , Em } are assumed to be independent. 
To obtain a diffusion limit we consider sequences of branching processes 

{ ZAr)} with Zi”) = n, environments { $‘)}, and offspring distributions 
p,(“)(z, 5). Now we ask for conditions under which the processes X,,(t) := 
(l/n)Zt,“il ([nt] denotes the integer part of nl) converge weakly to a 
diffusion process X(t). 

Define random variables 
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Assume that for some continuous functions ~1, h, c, one has 

E={i”’ = c’( z/n) + o(l) 

( EZ denotes expectation given Z[:ij, = z). Then under some further assump- 
tions on the moments of the offspring distribution of order 2 + 6, 6 > 0, and 
on the growth of a, b, c (for the details see [lo]), the processes x,,(t) 
converge weakly to a diffusion process which is the solution of the stochastic 
differential equation 

dX= Xa( X) dr +/X2b2( X) + Xc’(X) dW. 

For the tumor model under consideration we assume ~1”) = 1 + 
h,, ( Zt;:jl, I:,‘;,),), where 

with A,, = A/n, k, = k/n, I,, = I/ n, N,, = Nn , E, = En, is the growth rate 
per cell given z and 5. Now if E{s{,y/,} =X/n, E{ E{::j,}’ = u2/n, and 

E{ -[,lr] -01’ }*+’ = Q/n), we obtain 

kE 

1 + kl- ‘z ’ 

It remains to specify Ez{$“), the mean variance of the number of offspring. 
Since the number of cells per unit volume must not exceed N, both variance 
terms have to vanish at N. This is already the case for the term expressing 
environmental stochasticity. Therefore we may assume the simplest form for 
the other term and choose c2( x) = u*( N - x)/N. We mention that the 
qualitative behavior of X(t) which we study in this paper essentially depends 
on the strength of environmental and demographic stochasticity, whereas the 
concrete form of c only plays a minor role. 

APPENDIX II. BOUNDARY CLASSIFICATION OF THE SOLUTION 
OF EQUATION (1.3) 

To classify the boundaries 0 and l/e according to [4] we have to evaluate 
(O<u<b<1/8) 

@ u.h := 0h+(x) dx 
J 
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(p(x) := exp -2/‘E L$) 
i 

for a+0 and h-+1/0, and 

qx) = Jx2(l - ex)2 + T2x(l - ex) 

(see [6]). We find that 

I(x) := j”& 

1 x =- J 4 
e W .dY-wb-Yl)(Y-Y2) 

1 =- 
832 

Alnx+Bln x--i +Cln~x-y,~+Dln~x-y2~+E 
I I 

, 

where A, B, C, D, E are constants and y,,, = (I/28)(1 1 J1+4872/w2) are 
not elements of the interval [0,1/B]. Evaluation of the constants yields 
A = e2w2/r2; hence 

q,(x) := e-2al(x) _ X~2aA,‘B2w2= X~2a/72 

for small positive values of x. Since we can write + = +I~2 where +2 is 
bounded near 0, we see that (I$,b is finite if 2a < r2 and infinite otherwise. 
Therefore zero is attractive if 2a < 72 and repelling (and inaccessible) other- 
wise. In addition, it can be shown that zero is regular in the first case, i.e., the 
process can reach zero and restart again. To prove regularity it suffices to 
show that 

remains finite for a --) 0, where 

G(x) = 
1 

w2x2(i - exj2+ 72x(i - ex) 

H(x) X2u/r* _ X(2a/T2)k 1 
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for x near zero (H is some function bounded in a neighborhood of zero), the 
assertion is proved. 

As for the upper boundary l/0, there are constants K, K’ such that 

@we a K i1’8,xp( 2/1’e P dy 
(1+y)(1-8y)(w’y(l-By)+?) 

2 Kl”‘exp( K’jl”& dy) = cc. 

Thus l/e is repelling and inaccessible. 

APPENDIX III. PROPERTIES OF THE STATIONARY 
DISTRIBUTION 

For the existence of a stationary distribution of the solution of (1.3) it is 
necessary that \Eo,i,e < cc. In view of Appendix II, we only need to prove 

‘k,. 1 /B < cc for some a > 0. Now 

J(x) := jx d. 
(1+Y)(l-eY)(~2Y(l-eY)+~2) 

=K(x)+& ( e/ In x-~ +B’ 
w 

with constants A’, B’ and a bounded function K(x). Evaluation of the 
constants yields A’ = - 4t9*w2/r2(1 + 0). Hence 

1 tzL3/r*c1+ 0,1- 1 
= eM( x) p(s) x - e I I 

with some function M(x) which is bounded near l/0. Thus the assertion is 
proved. Summarizing the preceding results, we obtain 

w=(“, if 0<r2<2a, 

if r2> 2a, 

+(1/e) = i O if p+(i+e)/2, 

00 if p-+(i+e)/2. 

The distribution functions F and G mentioned in Section 3 can be given in 
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terms of 4 as follows: 

i 

0 if y<O, 

‘(y)= ‘k,” if .~>O 
\E 0.1/e 

i 

0 if y<O, 

C(Y) = 1+ 2cPI$,. , 

1+2”\E,.Ije 
if y>O. 

Since there are constants C, C’ such that + = Cf = C’g, it suffices to study 
the properties of 4. In particular, we are interested in local maxima of \c, in 

(0,1/4. 
Now J/‘(y) = 0 is equivalent to 

/4Y)-fw’(Y) =o. (*I 

Solving this equation for p yields the following relation between the parame- 
ter /3 and a local extremum of the stationary density: 

P(Y) = +( (~+y)(l-By)-w~y(l-~y)(l-2ey)- r’(1;2°y)). 

Let y. be a positive solution of (*). Then $ has a maximum at _y(, if 
/3’( yo) < 0. This can be seen from 

sgnV’(yo) = w{ cL’(vo)-t(~*)“(ro)} 
and 

Yo(l-rYo){ PC1'(Yo)-f(~'Y'(Yo)} =Yo'p'(Yo). 

Next we note that /3(1/2(?) = (1+ 28)((u + l/20)/2 is independent of o* 
and T*. From 

we find that /3’(1/20) > 0 for sufficiently large values of o* or T*. 
If 0 < T* < 2a and w2 is large enough that P’(l/20) > 0 and P’(l/e) = 

e*(T* -2(Y)/2+e(T*- a-l)- w’(l+ 0)-l < 0, we see that there exist 
numbers /3, and p2 with the properties stated in Section 3, since /I’(y) --+ - cc 
for y + 0. 
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Furthermore, p(y) is concave for T’ > T,? >, 2a, because p”(v) 6 0 is 

equivalent to 

Thus the assertions of Section 3 are completely proved. 
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