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ABSTRACT

A mathematical model is developed to describe the growth and, control of a
heterogeneous tumor. The main aspect of the model is that it takes into account
induced drug resistance. The mathematical model is a system of two ordinary
differential equations that describes the growth of the cancer along with the effects
of chemotherapy. The model is analyzed to determine what some of the critical
parameters are; how we determine an effective treatment; how combination
chemotherapy should be delivered; and how this model may help us develop more
effective cancer chemotherapeutic treatments. © 1998 Elsevier Science Inc.

1. INTRODUCTION

A major cause of the failure of chemotherapeutic treatments for
cancer is the development of resistance to drugs. If another non-cross-
resistant drug is not available, then the cancer can grow unchecked and
ultimately kill the patient. We would therefore like to get a better
understanding of the growth kinetics of the cancer and, in particular,
the growth kinetics that arise from the use of chemotherapy so that we
may better understand the effects of drug resistance. The use of
heterogeneous tumor models, which contain compartments for cells
sensitive and cells resistant to the chemotherapeutic drugs will give us
one way of modeling drug resistance. With these models, we hope to
qualitatively define more efficient methods of delivering drugs when
drug-resistant cancerous cells are present.

A variety of work has been done in the area of modeling heteroge-
neous tumors. One model designed to aid clinicians is by Birkhead et al.
[1]. They set up a system of four linear differential equations that
describe the dynamics of the sensitive, resistant, proliferating, and
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nonproliferating compartments of the cancer mass, thus modeling a
heterogeneous cancer with four uniquely different types of cells. This
model was originally developed for breast cancer, and in it they were
looking not for detailed protocols but rather qualitative treatment
strategies. They found parameter estimates and compared, through
computer simulations, four various treatments, presenting the advan-
tages of each.

The modeling of resistance is not without some controversy. Cold-
man and Goldie [2] developed a probabilistic model of cell mutations
(which they suggest are a function of drug dose) resulting in drug
resistance. With their model, they show that early detection and early
therapy can lead to less chance of resistance because there is a fast
change from a small to a large probability of resistance occurring as the
tumor mass increases. They deduce that combination chemotherapy
(alternating doses of non-cross-resistant drugs) should be as good as,
and perhaps better than, sequential chemotherapy (m doses of first
drug followed by n doses of second drug) in controlling drug resistance.

But Rosen [3] stated that he did not believe that, from their argu-
ments, some of these conclusions can be drawn. In fact, he stated that
they include “a number of incorrect hypotheses.” He based this partly
on the fact that he believes that resistance is independent of dose,
whereas Coldman and Goldie state that “sensitive tumor cells have a
fixed probability per division of acquiring resistance to a particular drug
at a particular dose.” That is, resistance is dose dependent. Rosen then
proposes a simple differential equation model of tumor cell competition
(i.e., a heterogeneous tumor with sensitive and resistant compartments),
which he then simplifies to a model with first-order linear kinetics. He
states that this would better model drug resistance. In a reply by
Coldman and Goldie, they observe that he has no method of describing
any form of drug resistance.

One of the problems in the preceding exchange is that there is some
confusion on how they each define resistance. Coldman and Goldie’s
definition is in line with drug-induced resistance, whereas Rosen’s
definition follows that of acquired resistance—resistance resulting from
genetic mutations independent of dose. Each type of resistance is
physically different and thus modeled differently. Therefore, the meth-
ods of modeling drug resistance, along with how we define drug resis-
tance, can vary widely and should be clarified before we emark on any
model of drug resistance. In addition, part of the controversy is whether
induced resistance even exists. Rosen suggests that resistance is due to
selection (through cell competition) alone; that is, as sensitive cells are
removed, the resistant cells have a better chance of competing and
surviving. In fact, Birkhead et al. [1], Michelson et al. [4], and Michelson



HETEROGENEOUS TUMORS 43

and Leith [5, 6] consider mathematical models of acquired resistance
including cell competition (see next paragraph). But, there is evidence
that cancer cells are also induced to resistance by drugs. For example, in
the mathematical model by Birkhead and Gregory [7], and subsequent
clinical comparison with the model in Gregory et al. [8] and Souhami et
al. [9], they investigate induced resistance in small cell lung cancer
(SCLC). Their models and experiments indicated that as many as 36%
of sensitive SCLC cells are induced to resistance per dose. In works by
Schimke [10, 11], it is shown that Methotrexate (a chemotherapeutic
drug) caused DHFR gene amplification, which in turn resulted in drug
resistance.

Much of the mathematical work on tumor heterogeneity has been
carried out by Michelson and colleagues. A good overview is given by
Michelson and Leith [12], in which they review the theory and mathe-
matics of much of the important literature in tumor heterogeneity,
including much information on both induced and acquired resistance.
Michelson and Leith [6] also present, in more mathematical detail,
models that they developed in [4, 5]. Gyori et al. [13] considers the
model in Michelson and Leith [6] with periodic doses. In each of these
papers, the authors consider the effects of a single dose of Mitomycin C
on the heterogeneous tumor system DLD-1 in nude mice. An interest-
ing thing to note from their results is that the drug not only reduces the
cancer cell mass, but alters the fundamental structure of the model by
changing the model parameters. For example, they note that the Mito-
mycin C reduced the carrying capacity of the host (one of the model
parameters) by 20~30%. Therefore, they note the importance of consid-
ering not only the direct effects of the drugs, but also the indirect
effects. Each of the models that they examine is derived from the basic
competition model in population dynamics with an added term to
describe acquired resistance to the drugs as a result of cellular muta-
tions. It should be noted that some of the models proposed and studied
by Michelson and colleagues are similar to the model proposed by
Rosen [3] in that all take into account cellular competition and acquired
resistance.

In this paper, a linear system of two ordinary differential equations
that model the sensitive and resistant tumor mass is proposed. Included
are the effects of periodic chemotherapy, which are modeled either
discretely (drug effects are instant) or piecewise continuously (see
Figure 6). In the modeling process, we will take several justifiable
assumptions. First, we will consider only the effects of the drug treat-
ment on the cancerous tissue, though in previous work the effects of the
treatment on normal tissue such as bone marrow have been taken into
account [14, 16] (J. C. Panetta, Chemotherapeutic effects on hemato-
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poiesis: a mathematical model. Journal of Theoretical Medicine (sub-
mitted)). Here, we are more concerned with the dynamics of the effects
of the drugs on the heterogeneous tumor, and the addition of normal
cell constraints will only make these dynamical issues harder to mathe-
matically comprehend. However, it should be noted that combining this
model with a constraint model such as that in (J. C. Panetta.
Chemotherapeutic effects on hematopoiesis: a mathematical model.
Journal of Theoretical Medicine (submitted)) could help in discussing
the complete problem. Next, we will consider the model parameters
constant, though they can be altered (in a constant fashion—i.e., not
periodically) to account for known phenomena. We will also consider
the parameters to be fixed for a particular drug regimen. Furthermore,
we will consider only induced drug resistance. And finally, we will
consider any combination of drugs to be non-cross-resistant, with no
drug buildup over multiple doses.

With these models, we will answer several questions. First, what are
the critical parameters in regard to effective drug treatment? This
question is discussed by Skipper [17], who makes several deductions on
the critical variables. He suggests that some of the critical parameters
are: initial burden, mutation rates, doubling time, effectiveness of dose,
and schedule of dose. And, in reference to combination chemothera-
peutic regimens, he suggests that average relative dose intensity of the
drugs in combination and time to overgrowth of cells resistant to one or
more drugs in a combination are the important critical parameters.
Second, what are some of the effective drug regimens? We will derive
conditions with respect to some of the foregoing critical parameters that
help in determining if a particular treatment will eradicate the tumor
mass or at least how long the treatment will be effective. Third, what
can the models tell us about methods of delivering drugs in combina-
tion? This question is perhaps the most difficult to answer and, accord-
ing to Birkhead and Gregory [7], combination drug regimens are “pro-
ving difficult to evaluate.” They ask the question, Is it better to deliver
combination doses of the form A = B or A = A, where “A” and “B”
are two non-cross-resistant drugs? In their paper, they conclude that the
higher the rate of double resistance, the higher the B kill must be to
make the switch to the drug B. We will consider a similar comparison of
combination chemotherapy with the models developed here. As of now,
there are a multitude of cancer drugs available for treatment, each
having slightly different effects. Therefore, we cannot rely on trial-and-
error methods of determining effective combinations of these drugs; the
hope is that these models may help in determining which combinations
might be more effective. Finally, we will compare these models with
clinical results. Although the availability of relevant clinical data is
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limited, we will show that the results of these models, at least in a
qualitative sense, conform to the known clinical results.

2. THE MODEL

The general heterogeneous tumor model with induced resistance that
we will consider is of the form

%=[’1_d1(t)]x’ (1)
Y o bdi(1)x+[r, - (0], @

where x represents the sensitive cell mass and y represents the resis-
tant cell mass. The various parameters are as follows. 0 < b, <1 is the
induction rate due to the chemotherapeutic drug effective against the
sensitive cells. This induction rate can range from almost zero to nearly
50% of the surviving sensitive cells. For example, for small cell lung
cancer (Section 2.1.3), the induction rate can be as high as 36%. d,(¢)
and d,(¢) are periodic functions of period 7, and 7,, respectively, which
represent the rate of cell lost owing to the non-cross-resistant drugs
effective against the sensitive and resistant cells, respectively. Note that,
if y is totally resistant, then d,(¢) = 0. For ease of notation, we will use
the letter “A” to denote the drug effective against x-cells, the letter “B”
to denote the drug effective against y-cells. Note that Equation (1) is
decoupled from Equation (2); thus, we can examine just Equation (1)
and then determine the dynamics of the resistant compartment, Equa-
tion (2), separately.

2.1. PULSED THERAPY CASE

A convenient method of simplifying the model to a very tractable
state is to consider that the drug effects are instantaneous; there is an
immediate reduction in cell mass with each dose. We call this pulsed
therapy, although this is obviously not physically explicitly related to the
kinetics of the drugs, it is practical in the sense that clinical data are
collected in a discrete fashion; thus we model it in a discrete form. This
model is only a slight modification of Equations (1) and (2) and is of the
form

&y x, xt = [A(D)(1- R(D))] x5, 3)
D 1.y, vi = f(D)ys + AVG[ (DY F(D)| R(D) 27, (4)

where x,, and y, represent the cell masses just prior to the nth
chemotherapeutic dose; x;, and y,, represent the cell masses just after
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the nth chemotherapeutic dose; n represents the dose number; 7 is the
length of the dose; f(D), a function of dose D, represents the survival
fraction of cells sensitive to drug A—see Berenbaum [18] for possible
forms of f(D); f(D), a function of dose D, represents the survival
fraction of cells resistant to drug A but affected by the non-cross-
resistant drug B; and R(D) represents the percentage of cells induced
to resistance as a function of dose (this can range from very small to
about 50%). In Equation (3), [ f(DX1— R(D))] represents the percent-
age of sensitive cells that survive the nth dose of drug A and remain
sensitive to it, whereas AVG[ f(D)f(D)IR(D) in Equation (4) repre-
sents the percentage of sensitive cells that survive a weighted average of
both drugs A and B on the nth dose and become resistant. One
suggested form of this weighted average is

AVG[f(D)f(D)] = f<(D)f'~=(D), (5)

where, if a =0, then drug A has no effect on the induced cells but, if
a =1, then drug B has no effect on the induced cells. In the absence of
chemotherapy, the two subpopulations grow exponentially and indepen-
dently. Therefore, the only interaction between the two populations in
this specific model is through the sensitive cells being induced to
resistance by the chemotherapeutic drugs.

Next, we consider how the parameters of the pulsed model relate to
those of the original model. First, compare the sensitive cell mass for
each model [Egs. (1) and (3)]. Here, the terms f(DX1— R(D)) and d(¢)
both describe the effects of the drug on the sensitive cells. If f(DX1—
R(D)) is small, then few sensitive cells survive the dose. This is equiva-
lent to a strong dose, which is represented in Equation (1) by a large
{d((1)).; that is, the mean value of d(¢) over one period of treatment
[see Eq. (41)]. Therefore we observe that

ADY(I-R(D) a s (6)

l(t)>"1

In a similar manner, we observe that, for the drug effects on the
resistant cell mass in the pulsed model [Eq. (4)], small f(D) again
represents a strong dose; that is, few resistant cells survive the dose.
This is equivalent in Equation (2) to a large {d,(¢)),,. Thus, for the
resistant cell mass, we observe that

f(D) &t o (7

<d2(t)>‘rz
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Finally, we can compare the induction parameters of the two forms of
the model. The effects of induced resistance in Equations (2) and (4)
are modeled by bd,(t) and AVG[ f(D)f(D)IR(D), respectively. Using
Equations (5) and (6), we observe that

DY) " _R(D)
vo| 43} Ty ©

From this, we see that small b is equivalent to either a small R(D)—only
a small percentage of sensitive cells are induced to resistance—or
f(D) < f(D)—drugs affecting the resistant cells are much stronger
than those affecting the sensitive cells. (This is probably not the case.)

Now, we will analyze the pulsed model in a manner similar to that in
[14] and [16]. First, note that Equation (3) decouples from Equation (4).
Thus, we can first consider just the condition that will lead to sensitive
cell destruction. Solving Equation (3) on the interval nr <t <(n+ 17,
we obtain

x=x,e"\" "), ©)

where x,, is the sensitive cell mass at time n7 (i.e., the initial value on
the given interval). Taking into account the pulsed condition for Equa-
tion (3), we obtain the following difference equation:

Xn+1y = f(D)(1— R(D))e""x,,, (10)

which describes the state of the sensitive cells at the beginning of each
dose. Thus, the condition for the sensitive cells to be destroyed is

F(D)(1- R(D))e™ <1. (11)

Next, let us consider the effects on the resistant cell mass y. The
solution to the resistant equation on the interval nt <t <(n+Dr is

Y= Yur €, (12)

where y,, is the resistant cell mass at time ¢. In this case, the difference
equation describing the state of the resistant cells is

Yons 1 = | f(D)yi, + AVG[ f(D)f(D)|R(D)x7, ] e, (13)

and the condition for the resistant cells to be destroyed, given that
sensitive cells are destroyed (a logical deduction), is

f(D)e <1. (14)
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Clearly, we can see that stronger doses [smaller f(D) and f(D)] and
shorter periods are better. An example of a successful regimen [condi-
tions (11) and (14) holding] can be seen in Figure 1, left, and a
unsuccessful regimen [condition (11) holds, but condition (14) does not]
is shown in Figure 1, right. (Note that, in each of these graphs,
interpolation lines are drawn between each dose so that it is easier to
view.) These two results compare well with graphs of various clinical
results given by Skipper [17].

From foregoing conditions on effective drug treatments, we can form
conclusions on what some of the critical parameters are. That is, from
Equations (11) and (14) we see that the dose, period, induction rate, and
growth rate of the cells are important in determining effective drug
treatments. Of these parameters, the two that are hardest to clinically
predict are the induction rates and growth rates. With methods of
measuring tumor mass by computed tomographic scans [8, 9], some of
these parameters can be implicitly estimated. More importantly, there
are two other questions that we will like to answer. First, if f(D)=1
(i.e., total resistance), when is the NADIR (the lowest obtainable cancer
mass)? Second, what is the better method of giving combinations of
non-cross-resistant drugs?

2.1.1. NADIR

If both conditions (11) and (14) bold, then the tumor will be eradi-
cated. But, in many cases, f(D) =1 or at least condition (14) does not
hold; that is, the drugs have little or no effect on the resistant cells. In
this case, it is important to know how many doses of the drug can be
administered before the total tumor mass stops regressing; that is, the
NADIR. Mathematically, we use a definition similar to that of Skipper
[17); that is, the NADIR is the value of n (dose number) such that n
solves

B, (15)

nT

given that all the other parameters are fixed. Because we explicitly have
both x,, and y,, for this model, we can analytically find the NADIR.
First, note that

y("+1)7 = f(D) e(rz—rl)‘rZ"_T
*m+e  f(D)(1- R(D)) Xnr
AVG[ADI(D)RD) ., (16)

f(D)(1~R(D))
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Making the following substitutions,

T
u,= X (17)
f(D) -
0= elrmror 18
F(BY(1~ R(D)) ()
_AVGADD)RD) (19
f(D)(1-R(D)) ’
we atrive at the difference equation
u,,,=0u, + o, (20)
which has the solution
u,,=®"u0+(l)(®®_—11). (21)

To find the NADIR, set Equation (21) equal to 1 and solve for n. Doing
this, we find that

In 0-1+¢
n= ) (22)
and the NADIR is
0-1+9
Inl ——Fr——+
(0 —-1u,+P
NADIR = integer part| — ) -1 +1. (23)

From Figure 2, upper left, we observe that the NADIR is higher for ©
near 1 and @ near 0. This can relate to R(D) being small (small
induced resistance) and f(D) = f(D) (drug kills are very similar). Figure
2, upper right, lower left, and lower right), shows the NADIR with
respect to f(D), f(D), and R(D), using the average defined in Equa-
tion (5) with « =0.8.

FIG. 2. (Upper left) NADIR versus @ and @; (upper right) NADIR versus F(D);
(lower left) NADIR versus F(D); (lower right) NADIR versus R(D).
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2.1.2. Combination Chemotherapy

One question not fully understood either mathematically or clinically
is, In what combination should multiple chemotherapeutic drugs be
given? We will use the pulsed version of our model to help understand
what can be required in making the decision on how to administer
combination chemotherapy.

One way to ask the question is; is it better to give combinations of
non-cross-resistant drugs (A and B) in sequence (A=A = A---B=
B = B---) or in combination (A = B = A = B---)? To help answer this
question, we first need to define a way to describe the group or
combination of treatments. We will define a cycle as the time needed to
give a complete combination of drugs; for example,(A=B=A = B::-)
has a cycle of 27 and (A=>A=B=B=A=A=B=B-) has a
cycle of 47, where 7 is the period of each treatment.

First, we will compare case 1, giving two drugs simultaneously every
27 (i.e, AB=AB= AB---) with case 2, alternating drugs every 7
(A=B=A=B-). For case 1, the difference equations [Egs. (11)
and (14)] are modified to be

Xn+2n = f(D)(1- R(D))e*V'x,,, (24)

Yosze = (f(D)y,. + (D)™ “f*(D)R(D)x,,)  (25)
[using Eq. (5) for the function AVG(f(D),f(D))). For case 2, the
difference equations are
Yran =[F(D)(1~ R(D))e* " ]’x,,, (26)
Yins e =€ (D)2 f( D)y,

+ f*(D)R(D){e"f(D) + f(D)(1~ R(D)) e }x,]. (27)

Both have the same conditions for tumor eradication; that is,

f(D)(1- R(D))e*" <1, (28)
f(D)e¥ <1. (29)

But this does not indicate which case will eradicate the cancer faster. To
do this, we will compare the results of each case over one cycle, with the
initial tumor burden being totally sensitive. Using Equations (24)—(27),
we can show that, for a = 0, case 1 and case 2 are equivalent at the end
of each cycle and, for 0 < @ <1, case 2 has a smaller cancer mass than
case 1 at the end of the cycle (Figure 3).
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Next, we will compare case 2 (A=B=A=B--) with case 3
(A=>A=B=B=>A=A-). Again, we will let the initial tumor
burden be totally sensitive. For this, we will need to view the tumor
mass every 47; that is, the cycle is 47. The difference equations for case
3 are

x(n+4)-r=([f(D)(l—R(D))]ezrlf)zxn'r’ (30)

Yoniay = esz-z(D) [eerTyn
+ f*(D)R(D)e"{e™" + f(D)(1- R(D))e""}x,]. (31)

Note that the conditions for tumor eradication do not change from
conditions (28) and (29). Comparing case 2 and case 3, we find that, if

e < f(D)e'™, (32)

case 2 ends with a smaller cancer mass than does case 3. But this
condition cannot hold if the treatment is to be effective. This is because
condition (14) must hold, which implies that e'" <1, and this is not
true. Therefore, case 3 is always better than case 2 when starting with a
tumor that is initially totally sensitive.

The preceding problem of determining which combination is better
leads us to ask, Is it better to follow a dose of drug A with another dose
of A (A= A) or to follow a dose of drug A with a dose of drug B
(A = B)? Using the difference equations

Xusor = [ (D)1= R(D)) ¥, (33)
Ynrze =€ [e77y, + f"’(D)R(D){ "7+ f(D)(1- R(D))e""}x,]
(34)
to describe A = A and the difference equations
X+, =f(D)(1- R(D))e*"x,,, (35)
Yonroy =F(D)e* " [y, + f*(D)R(D)x,] (36)

to describe A = B, we can determine which method has the larger total
cancer mass reduction over one cycle (27) in terms of the ratio of
resistant to sensitive tumor cells u, =y,, /x,,. The condition for it to
be better to use A = A over A=B is

D)= R(D)) - [f(D)(1- L(C)) N
) """ — f*(D)R(D)

_TUDIR(D)(A=R(D)) -1 (37)
1- f(D)
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After observing graphs of Equation (37) with respect to f(D) (Figure 4),
we see that, when the tumor is more x-like [pomt A on the graphs with
flD)=03 and R(D)=0.05], then A = A is better. But, when the
tumor is more y-like (point B on the graphs) then A = B is better.
Another observation is that the better drug B is, the more likely we
should switch to it. For example, at point A on Figure 4, left, the model
suggests that A = A be used if f(D) 0.3, but that A = B be used if
f(D)=0.1. In addition, we can observe from Figure 4, right, that the
larger R(D) is, the more likely A = B will be the better choice. That is,
at point A with R(D)=0.05, A= A is better, but, if R(D)=10.25,
A = B is better.

2.1.3. Clinical Results

One clinical test helpful in discussing these models is given in
Gregory et al. [8] and Souhami et al. [9]. They calculate various critical
parameters related to their model, such as drug kill and resistant
proportion, using clinical data from SCLC patients. They derive these
by delivering two doses of cyclophosphamide and measuring the tumor
volume between each dose with a Computer Tomography (CT) scan.
With an estimated cell doubling time of 30 days, the mean tumor
volume reduction [1— f(D) in our model] per dose was 95% and the
mean proportion of the tumor resistance after the first dose was
approximately 15% [R(D) in our model]. For a doubling time of 70
days, the mean tumor volume reduction was 91% and the mean propor-
tion of tumor resistance after the first dose was approximately 36%. In
both cases, the period between doses was 8 weeks. We would like to see
how this specific clinical trial relates to our pulsed model.

First, by calculating the growth-rate parameter, we find that, for the
doubling time of 30 days, r; = 0.0231 and, for the doubling time of 70
days, r; = 0.0099. For our model, we will let r, = r,. Now, we would like
to see how the parameters given in [8] and [9] relate to our conditions
on tumor growth and decay; that is conditions (11) and (14). For the
doubling time of 30 days, condition (11) is 0.155 < 1. Therefore, our
model would predict that the sensitive cells can be eradicated (they
come to basically the same conclusion). For the doubling time of 70
days, condition (11) is 0.1000 <1 and again our model would predict
that the sensitive cells would be eradicated. Next, if the drug has no
effect on the resistant cells [ f(D) = 1], then, for the doubling time of 30
days, condition (14) is 3.646 > 1. Therefore the resistant compartment
would not be eliminated. In fact, the model predicts that we would need
a non-cross-resistant drug with f(D)<0.274 to also eliminate the
resistant compartment. For the doubling time of 70 days, condition (14)
is 1.74 > 1, and again the resistant compartment would not be elimi-
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nated. Here, f(D) < 0.574 to eliminate the resistant compartment. This
is in fact the result observed with SCLC; rapid initial success with
treatment, but eventual relapse of the cancer.

Next, we calculated the NADIR for each case. In both cases we
found that the NADIR was 2. Therefore, this model predicts that it is
not practical to give more than the two doses of cyclophosphamide.
Thus, it can be seen that there is a clear need for a non-cross-resistant
drug if chemotherapy is to eradicate SCLC.

Possibly one of the more important aspects of the model is in helping
determine methods of delivering combination chemotherapy. Gregory
et al. [8] notes that it is clinically difficult to evaluate combination
chemotherapy. Thus, we ask, What does our model suggest about
methods of delivering combination chemotherapy in this specific clinical
trial? That is, when should we start to give the second non-cross-
resistant drug? Using the parameters calculated from this set of clinical
data, we plot condition (37) with respect to f(D). Figure 5 represents
the bifurcation of A = A or A = B being better. Because the ratio of
resistant to sensitive cells (u,) at which we should switch to the
non-cross-resistant drug ranges from 0% to 5.5% in the models of these

1] L] T L] L]
005 |
0.04
0.03 | A->B
[
)
2
0.02
0.01
o I 'l L L L
1] 0.1 02 0.3 04 05

(D)

FIG. 5. u, versus f(D). Bifurcation curve: A = B is the better regimen for values
of u, and f(D) above the curve, and A = A is the better regimen for values for u,
and f(D) below the curve.
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two cases, and the first dose induced between 15% and 36%, then this
model predicts that it is important to deliver the non-cross-resistant
drug next to effectively continue to reduce the total tumor mass. Thus,
it is important not only to have the non-cross-resistant drug, but, in this
case, to give it as soon as possible because of the high rate of induced
resistance.

One nice consequence of this model is that, when we have the
parameters set for a particular patient, then the model can act as a
predictor for how to proceed with the therapy. Thus, through the
NADIR calculation along with the predicted time to switch to the
second non-cross-resistant drug, we can help in determining the possi-
ble future course of chemotherapy.

2.2. PIECEWISE-CONTINUQUS THERAPY CASE

Next, we consider the chemotherapeutic drugs acting in a piecewise-
continuous fashion governed by the piecewise-continuous functions
d(t) in Equations (1) and (2). The piecewise-continuous functions can
be in the form of the step function [Eq. (38)], the exponential function
[Eq. (39)], or the modified exponential function [Eq. (40); see Figure 6].

nT<t<a;+nr

a;+nr<t<(n+1)7, (38)

D,,
di(t) = 0

di(t)=De "t " nr<t<(n+1)r, (39)

di(t)=Dy(e ™) —e =l pr<t<(n+1)7,¢;>a;, (40)

11

where D is drug strength.
By defining the mean value function as

S@n=5 [F0d,  i=1.2, (41)

we are able to find the bifurcation from exponential growth to decay of
Equations (1) and (2). Integrating Equation (1) over its period ,, we
obtain the condition

H (1), >1, (42)

which is required to prevent sensitive cell growth. If this condition does
not hold, then there will be both sensitive and resistant cell growth. If
this condition holds, then the sensitive cells will decay, and we find that
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the condition for the decay of the resistant cells is governed by
1
(1), >1. (43)

In Section 2.1, we observed how the parameters for the pulsed model
and this form of the model are related [see Egs. (6)—(8)]. Here, we note
that the two bifurcation equations in this section [Eqgs. (42) and (43)] are
also directly related to the bifurcation equations for the pulsed case
[Egs. (11) and (14)], given the proportionality relations in Equations (6)
and (7).

3. CONCLUSIONS

In this paper, a heterogeneous tumor model with chemotherapy and
induced drug resistance is discussed. It is the hope that, by a close
investigation of these models, we will come to a better understanding of
the kinetics of cancer chemotherapy and be able to help determine
more effective methods of delivering combinations of chemotherapeutic
drugs.

In these models, we have considered some of the main critical
parameters including dose, period, induction rate, and growth rate.
These parameters are important to know because, if the clinical data
does not allow us to determine them either directly or implicitly, then
the model will have little hope of being of any use in determining
effective combination chemotherapeutic treatments. As noted earlier,
with newer clinical techniques available (e.g., CT scans) for measuring
tumor mass, we have a better hope of determining these critical param-
eters and thus more accurately modeling the chemotherapeutic effects.
In fact, using these measurements in our model, we are able to derive
conditions needed for tumor reduction. These basic conditions give us a
place to start looking for effective treatment regimens. In fact, we have
shown how these conditions fit well with clinical data from SCLC.

When we had determined these conditions on tumor growth and
decay, we were able to find conditions for effective methods of deliver-
ing combination chemotherapy. In the pulsed therapy case, we analyti-
cally derived the condition to determine when we should switch to a
second non-cross-resistant drug. This condition was related to the ratio
of resistant to sensitive tumor cells. From this, we determined that we
should switch to drug B sooner if the rate of induction is high or drug B
is very effective. Note that this is a similar conclusion to that given by
Birkhead and Gregory [7]: the higher the rate of double resistance, the
higher the B kill must be to make the switch to drug B.

It is the hope that the models in this paper can form the basis for
more mathematical models and may help qualitatively guide clinical
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trials to help control the problem of drug resistance in cancer
chemotherapy.
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