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ABSTRACT 

A mathematical model is developed to describe the growth and. control of a 
heterogeneous tumor. The main aspect of the model is that it takes into account 
induced drug resistance. The mathematical model is a system of two ordinary 
differential equations that describes the growth of the cancer along with the effects 
of chemotherapy. The model is analyzed to determine what some of the critical 
parameters are; how we determine an effective treatment; how combination 
chemotherapy should be delivered; and how this model may help us develop more 
effective cancer chemotherapeutic treatments. © 1998 Elsevier Science Inc. 

1. I N T R O D U C T I O N  

A major  cause of the failure of  chemotherapeut ic  t reatments for 
cancer is the development  of  resistance to drugs. If  another  non-cross- 
resistant drug is not available, then the cancer can grow unchecked and 
ultimately kill the patient. We would therefore like to get a bet ter  
understanding of the growth kinetics of  the cancer and, in particular, 
the growth kinetics that arise from the use of  chemotherapy so that we 
may bet ter  understand the effects of  drug resistance. The use of 
heterogeneous tumor  models, which contain compar tments  for cells 
sensitive and cells resistant to the chemotherapeut ic  drugs will give us 
one way of modeling drug resistance. With these models, we hope to 
qualitatively define more  efficient methods of delivering drugs when 
drug-resistant cancerous cells are present. 

A variety of  work has been done in the area of  modeling heteroge- 
neous tumors. One model  designed to aid clinicians is by Birkhead et al. 
[1]. They set up a system of four linear differential equations that 
describe the dynamics of  the sensitive, resistant, proliferating, and 
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nonproliferating compartments of the cancer mass, thus modeling a 
heterogeneous cancer with four uniquely different types of cells. This 
model was originally developed for breast cancer, and in it they were 
looking not for detailed protocols but rather qualitative treatment 
strategies. They found parameter estimates and compared, through 
computer simulations, four various treatments, presenting the advan- 
tages of each. 

The modeling of resistance is not without some controversy. Cold- 
man and Goldie [2] developed a probabilistic model of cell mutations 
(which they suggest are a function of drug dose) resulting in drug 
resistance. With their model, they show that early detection and early 
therapy can lead to less chance of resistance because there is a fast 
change from a small to a large probability of resistance occurring as the 
tumor mass increases. They deduce that combination chemotherapy 
(alternating doses of non-cross-resistant drugs) should be as good as, 
and perhaps better than, sequential chemotherapy (m doses of first 
drug followed by n doses of second drug) in controlling drug resistance. 

But Rosen [3] stated that he did not believe that, from their argu- 
ments, some of these conclusions can be drawn. In fact, he stated that 
they include "a number of incorrect hypotheses." He based this partly 
on the fact that he believes that resistance is independent of dose, 
whereas Coldman and Goldie state that "sensitive tumor cells have a 
fixed probability per division of acquiring resistance to a particular drug 
at a particular dose." That is, resistance is dose dependent. Rosen then 
proposes a simple differential equation model of tumor cell competition 
(i.e., a heterogeneous tumor with sensitive and resistant compartments), 
which he then simplifies to a model with first-order linear kinetics. He 
states that this would better model drug resistance. In a reply by 
Coldman and Goldie, they observe that he has no method of describing 
any form of drug resistance. 

One of the problems in the preceding exchange is that there is some 
confusion on how they each define resistance. Coldman and Goldie's 
definition is in line with drug-induced resistance, whereas Rosen's 
definition follows that of acquired resistance--resistance resulting from 
genetic mutations independent of dose. Each type of resistance is 
physically different and thus modeled differently. Therefore, the meth- 
ods of modeling drug resistance, along with how we define drug resis- 
tance, can vary widely and should be clarified before we emark on any 
model of drug resistance. In addition, part of the controversy is whether 
induced resistance even exists. Rosen suggests that resistance is due to 
selection (through cell competition) alone; that is, as sensitive cells are 
removed, the resistant cells have a better chance of competing and 
surviving. In fact, Birkhead et al. [1], Michelson et al. [4], and Michelson 
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and Leith [5, 6] consider mathematical models of acquired resistance 
including cell competition (see next paragraph). BUt, there is evidence 
that cancer cells are also induced to resistance by drugs. For example, in 
the mathematical model by Birkhead and Gregory [7], and subsequent 
clinical comparison with the model in Gregory et al. [8] and Souhami et 
al. [9], they investigate induced resistance in small cell lung cancer 
(SCLC). Their models and experiments indicated that as many as 36% 
of sensitive SCLC cells are induced to resistance per dose. In works by 
Schimke [10, 11], it is shown that Methotrexate (a chemotherapeutic 
drug) caused DHFR gene amplification, which in turn resulted in drug 
resistance. 

Much of the mathematical work on tumor heterogeneity has been 
carried out by Michelson and colleagues. A good overview is given by 
Michelson and Leith [12], in which they review the theory and mathe- 
matics of much of the important literature in tumor heterogeneity, 
including much information on both induced and acquired resistance. 
Michelson and Leith [6] also present, in more mathematical detail, 
models that they developed in [4, 5]. Gyori et al. [13] considers the 
model in Michelson and Leith [6] with periodic doses. In each of these 
papers, the authors consider the effects of a single dose of Mitomycin C 
on the heterogeneous tumor system DLD-1 in nude mice. An interest- 
ing thing to note from their results is that the drug not only reduces the 
cancer cell mass, but alters the fundamental structure of the model by 
changing the model parameters. For example, they note that the Mito- 
mycin C reduced the carrying capacity of the host (one of the model 
parameters) by 20-30%. Therefore, they note the importance of consid- 
ering not only the direct effects of the drugs, but also the indirect 
effects. Each of the models that they examine is derived from the basic 
competition model in population dynamics with an added term to 
describe acquired resistance to the drugs as a result of cellular muta- 
tions. It should be noted that some of the models proposed and studied 
by Michelson and colleagues are similar to the model proposed by 
Rosen [3] in that all take into account cellular competition and acquired 
resistance. 

In this paper, a linear system of two ordinary differential equations 
that model the sensitive and resistant tumor mass is proposed. Included 
are the effects of periodic chemotherapy, which are modeled either 
discretely (drug effects are instant) or piecewise continuously (see 
Figure 6). In the modeling process, we will take several justifiable 
assumptions. First, we will consider only the effects of the drug treat- 
ment on the cancerous tissue, though in previous work the effects of the 
treatment on normal tissue such as bone marrow have been taken into 
account [14, 16] (J. C. Panetta, Chemotherapeutic effects on hemato- 
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poiesis: a mathematical model. Journal of Theoretical Medicine (sub- 
mitted)). Here, we are more concerned with the dynamics of the effects 
of the drugs on the heterogeneous tumor, and the addition of normal 
cell constraints will only make these dynamical issues harder to mathe- 
matically comprehend. However, it should be noted that combining this 
model with a constraint model such as that in (J. C. Panetta. 
Chemotherapeutic effects on hematopoiesis: a mathematical model. 
Journal of Theoretical Medicine (submitted)) could help in discussing 
the complete problem. Next, we will consider the model parameters 
constant, though they can be altered (in a constant fashion--i.e., not 
periodically) to account for known phenomena. We will also consider 
the parameters to be fixed for a particular drug regimen. Furthermore, 
we will consider only induced drug resistance. And finally, we will 
consider any combination of drugs to be non-cross-resistant, with no 
drug buildup over multiple doses. 

With these models, we will answer several questions. First, what are 
the critical parameters in regard to effective drug treatment? This 
question is discussed by Skipper [17], who makes several deductions on 
the critical variables. He suggests that some of the critical parameters 
are: initial burden, mutation rates, doubling time, effectiveness of dose, 
and schedule of dose. And, in reference to combination chemothera- 
peutic regimens, he suggests that average relative dose intensity of the 
drugs in combination and time to overgrowth of cells resistant to one or 
more drugs in a combination are the important critical parameters. 
Second, what are some of the effective drug regimens? We will derive 
conditions with respect to some of the foregoing critical parameters that 
help in determining if a particular treatment will eradicate the tumor 
mass or at least how long the treatment will be effective. Third, what 
can the models tell us about methods of delivering drugs in combina- 
tion? This question is perhaps the most difficult to answer and, accord- 
ing to Birkhead and Gregory [7], combination drug regimens are "pro- 
ving difficult to evaluate." They ask the question, Is it better to deliver 
combination doses of the form A ~ B or A ::* A, where "A" and "B" 
are two non-cross-resistant drugs? In their paper, they conclude that the 
higher the rate of double resistance, the higher the B kill must be to 
make the switch to the drug B. We will consider a similar comparison of 
combination chemotherapy with the models developed here. As of now, 
there are a multitude of cancer drugs available for treatment, each 
having slightly different effects. Therefore, we cannot rely on trial-and- 
error methods of determining effective combinations of these drugs; the 
hope is that these models may help in determining which combinations 
might be more effective. Finally, we will compare these models with 
clinical results. Although the availability of relevant clinical data is 
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limited, we will show that the results of these models, at least in a 
qualitative sense, conform to the known clinical results. 

2. THE M O D E L  

The general heterogeneous tumor model with induced resistance that 
we will consider is of the form 

dr  
-d-7 = [rl - d l ( t ) ]  x, (1) 

dy = b l d l ( t ) x  + [r 2 _ d2(t)] Y, (2) dt 

where x represents the sensitive cell mass and y represents the resis- 
tant cell mass. The various parameters are as follows. 0 ~< b 1 ~< 1 is the 
induction rate due to the chemotherapeutic drug effective against the 
sensitive cells. This induction rate can range from almost zero to nearly 
50% of the surviving sensitive cells. For example, for small cell lung 
cancer (Section 2.1.3), the induction rate can be as high as 36%. dl(t) 
and dz(t) are periodic functions of period r 1 and r z, respectively, which 
represent the rate of cell lost owing to the non-cross-resistant drugs 
effective against the sensitive and resistant cells, respectively. Note that, 
if y is totally resistant, then d2(t) = 0. For ease of notation, we will use 
the letter "A"  to denote the drug effective against x-cells, the letter "B"  
to denote the drug effective against y-cells. Note that Equation (1) is 
decoupled from Equation (2); thus, we can examine just Equation (1) 
and then determine the dynamics of the resistant compartment, Equa- 
tion (2), separately. 

2.1. PULSED THERAPY CASE 

A convenient method of simplifying the model to a very tractable 
state is to consider that the drug effects are instantaneous; there is an 
immediate reduction in cell mass with each dose. We call this pulsed 
therapy, although this is obviously not physically explicitly related to the 
kinetics of the drugs, it is practical in the sense that clinical data are 
collected in a discrete fashion; thus we model it in a discrete form. This 
model is only a slight modification of Equations (1) and (2) and is of the 
form 

dx + 
d--7 = q x ,  x , ,  = [ f ( O ) ( 1  - R ( O ) ) ] x ; , ,  (3) 

ay 
d--7=r2y, y + = f ( D ) Y 2 r + A V G [ f ( D ) f ( D ) ] R ( D ) x ~ , ,  (4) 

where x~-, and y~-~ represent the cell masses just prior to the nth 
chemotherapeutic dose; xn+~ and y~+~ represent the cell masses just after 
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the nth chemotherapeutic dose; n represents the dose number; r is the 
length of the dose; f(D), a function of dose D, represents the survival 
fraction of cells sensitive to drug A- -see  Berenbaum [18] for possible 
forms of f(D);  f(D), a function of dose D, represents the survival 
fraction of cells resistant to drug A but affected by the non-cross- 
resistant drug B; and R(D) represents the percentage of cells induced 
to resistance as a function of dose (this can range from very small to 
about 50%). In Equation (3), [ f ( D ) ( 1 -  R(D))] represents the percent- 
age of sensitive cells that survive the nth dose of drug A and remain 
sensitive to it, whereas AVG[f(D)f(D)]R(D) in Equation (4) repre- 
sents the percentage of sensitive cells that survive a weighted average of 
both drugs A and B on the nth dose and become resistant. One 
suggested form of this weighted average is 

AVG[JT(D)f(D)] : f ~ ( D ) f l -  ~ ( D ) ,  (5) 

where, if ot = 0, then drug A has no effect on the induced cells but, if 
a = 1, then drug B has no effect on the induced cells. In the absence of 
chemotherapy, the two subpopulations grow exponentially and indepen- 
dently. Therefore, the only interaction between the two populations in 
this specific model is through the sensitive cells being induced to 
resistance by the chemotherapeutic drugs. 

Next, we consider how the parameters of the pulsed model relate to 
those of the original model. First, compare the sensitive cell mass for 
each model [Eqs. (1) and (3)]. Here, the terms f(D)(1 - R(D)) and dl(t) 
both describe the effects of the drug on the sensitive cells. If f(D)(1 - 
R(D)) is small, then few sensitive cells survive the dose. This is equiva- 
lent to a strong dose, which is represented in Equation (1) by a large 
(dl(t))~,; that is, the mean value of dl(t) over one period of treatment 
[see Eq. (41)]. Therefore we observe that 

1 
f ( D ) ( 1 -  R( D ) ) ot \ ('~ ( )] t\\'r" (6) 

In a similar manner, we observe that, for the drug effects on the 
resistant cell mass in the pulsed model [Eq. (4)], small f (D)  again 
represents a strong dose; that is, few resistant cells survive the dose. 
This is equivalent in Equation (2) to a large (d2(t))~ 2. Thus, for the 
resistant cell mass, we observe that 

1 (7) f ( D )  ¢x 2 
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Finally, we can compare the induction parameters of the two forms of 
the model. The effects of induced resistance in Equations (2) and (4) 
are modeled by bdl(t) and AVG[f(D)f(D)]R(D),  respectively. Using 
Equations (5) and (6), we observe that 

I f ( D  ) I 1-a R ( D )  
bo~ [ f ( D )  } 1 -  R ( D )  " (8) 

From this, we see that small b is equivalent to either a small R(D)--only  
a small percentage of sensitive cells are induced to resistance--or 
f (D)  <<f(D)--drugs  affecting the resistant cells are much stronger 
than those affecting the sensitive cells. (This is probably not the case.) 

Now, we will analyze the pulsed model in a manner similar to that in 
[14] and [16]. First, note that Equation (3) decouples from Equation (4). 
Thus, we can first consider just the condition that will lead to sensitive 
cell destruction. Solving Equation (3) on the interval nz <~ t < (n + 1)~-, 
we obtain 

X = Xn,re rl(t-nr), (9) 

where x,~ is the sensitive cell mass at time n~ (i.e., the initial value on 
the given interval). Taking into account the pulsed condition for Equa- 
tion (3), we obtain the following difference equation: 

X ( n + l ) ,  r = f ( D ) ( 1  - R(D))er:xn~, (10) 

which describes the state of the sensitive cells at the beginning of each 
dose. Thus, the condition for the sensitive cells to be destroyed is 

f ( D ) ( 1 - R ( D ) ) e r : < I .  (11) 

Next, let us consider the effects on the resistant cell mass y. The 
solution to the resistant equation on the interval nr  ~< t < (n + 1)~, is 

y = ynre r2(t-nT), (12) 

where Yn~ is the resistant cell mass at time t. In this case, the difference 
equation describing the state of the resistant cells is 

y(n+l).~=[.f(D)y~.~ + AVG[f(D)f(D)]R(D)x'~]e r:, (13) 

and the condition for the resistant cells to be destroyed, given that 
sensitive cells are destroyed (a logical deduction), is 

f ( D ) e r :  < 1. (14) 
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Clearly, we can see that stronger doses [smaller f(D) and f(D)]  and 
shorter periods are better. An example of a successful regimen [condi- 
tions (11) and (14) holding] can be seen in Figure 1, left, and a 
unsuccessful regimen [condition (11) holds, but condition (14) does not] 
is shown in Figure 1, right. (Note that, in each of these graphs, 
interpolation lines are drawn between each dose so that it is easier to 
view.) These two results compare well with graphs of various clinical 
results given by Skipper [17]. 

From foregoing conditions on effective drug treatments, we can form 
conclusions on what some of the critical parameters are. That is, from 
Equations (11) and (14) we see that the dose, period, induction rate, and 
growth rate of the cells are important in determining effective drug 
treatments. Of these parameters, the two that are hardest to clinically 
predict are the induction rates and growth rates. With methods of 
measuring tumor mass by computed tomographic scans [8, 9], some of 
these parameters can be implicitly estimated. More importantly,, there 
are two other questions that we will like to answer. First, if f(D)---1 
(i.e., total resistance), when is the NADIR (the lowest obtainable cancer 
mass)? Second, what is the better method of giving combinations of 
non-cross-resistant drugs? 

2.1.1. NADIR 

If both conditions (11) and (14) hold, then the tumor will be eradi- 
cated. But, in many cases, f(D) ---- 1 or at least condition (14) does not 
hold; that is, the drugs have little or no effect on the resistant cells. In 
this case, it is important to know how many doses of the drug can be 
administered before the total tumor mass stops regressing; that is, the 
NADIR. Mathematically, we use a definition similar to that of Skipper 
[17]; that is, the NADIR is the value of n (dose number) such that n 
solves 

Yn~ =1,  (15) 
Xnz 

given that all the other parameters are fixed. Because we explicitly have 
both x~  and y~  for this model, we can analytically fred the NADIR. 
First, note that 

Y0,+I)7 f(D) e(,2_,~).~y,,.: 
x¢,,+,)~ f ( D ) ( 1 - R ( D ) )  xn, 

+ AVG[ f( O)f(  D ) ] R ( D )  e <'2-'~)'. 

f ( D )  (1 - R(D)) 
(16) 
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Making the following substitutions, 

Y?I 'i" 
U n ~ ~ 

X n ¢  

0 "= ;(D) e(r2_rO.r, 
f (D) (1 -R(D) )  

dp = AVG[ f(  O) f( D)]R( D) e(rz-r')T, 
f (D) (1 -R(D) )  

(17) 

(18) 

(19) 

we arrive at the difference equation 

u,,+ 1 = ®u,, + O, (20) 

which has the solution 

u .  = O"u0 + (21) 

To find the NADIR, set Equation (21) equal to 1 and solve for n. Doing 
this, we find that 

0-1+0 ] 
In ( O _ l ) u 0  + O 

n = In O (22) 

and the NADIR is 

I ]) In ( O _ l ) u 0  + ~ 
NADIR = integer part In ® +1.  (23) 

From Figure 2, upper left, we observe that the NADIR is higher for @ 
near 1 and • near 0. This can relate to R(D) being small (small 
induced resistance) and f(D) = f(D) (drug kills are very similar). Figure 
2, upper right, lower left, and lower right), shows the NADIR with 
respect to f(D), f(D), and R(D), using the average defined in Equa- 
tion (5) with a = 0.8. 

FIG. 2. (Upper left) NADIR versus @ and ~; (upper right) NADIR versus F(D); 
(lower left) NADIR versus if(D); (lower right) NADIR versus R(D). 



52 JOHN CARL PANETFA 

2.1.2. Combination Chemotherapy 
One question not fully understood either mathematically or clinically 

is, In what combination should multiple chemotherapeutic drugs be 
given? We will use the pulsed version of our model to help understand 
what can be required in making the decision on how to administer 
combination chemotherapy. 

One way to ask the question is; is it better to give combinations of 
non-cross-resistant drugs (A and B) in sequence (A ~ A ~ A. . .  B 
B =~ B. . .  ) or in combination (A =~ B =~ A =~ B. . .  )? To help answer this 
question, we first need to define a way to describe the group or 
combination of treatments. We will define a cycle as the time needed to 
give a complete combination of  drugs; for example, (A =~ B ~ A =~ B. . .  ) 
has a cycle of 2 r  and ( A = ~ A = ~ B = ~ B = ~ A = ~ A = ~ B = ~ B . . . )  has a 
cycle of 4r ,  where r is the period of each treatment. 

First, we will compare case 1, giving two drugs simultaneously every 
2r  (i.e., AB ~ AB =~ AB. . - )  with case 2, alternating drugs every r 
(A =~B=~A=~B-- . ) .  For  case 1, the difference equations [Eqs. (11) 
and (14)] are modified to be 

x~n+2), = f ( D ) ( 1  - R(D))e2r'*x,,,, (24) 

y¢,+z),=e2"2"(f(D)y,, + f (D) ' -~ f~(D)R(D)x , , )  (25) 

[using Eq. (5) for the function AVG(f(D),f(D))]. For case 2, the 
difference equations are 

x~n +4)~. = I f ( D ) ( 1  - R (O ) )e Z r ' r ]  2xnr, (26) 

Y¢. + 4)~ = eZ'2*f'( D ) [  eZ'2~f(D)y n 

+ f'~(D)R(D)(e2"2"f(D)+ f(D)(1-R(O))e2r'~}x,,]. (27) 

Both have the same conditions for tumor eradication; that is, 

f ( D ) ( 1  - R(D))e 2r'' < 1, (28) 

/ ( D ) e  2"~ < 1. (29) 

But this does not indicate which case will eradicate the cancer faster. To 
do this, we will compare the results of each case over one cycle, with the 
initial tumor burden being totally sensitive. Using Equations (24)-(27), 
we can show that, for a = 0, case 1 and case 2 are equivalent at the end 
of  each cycle and, for 0 < a ~ 1, case 2 has a smaller cancer mass than 
case 1 at the end of  the cycle (Figure 3). 



H E T E R O G E N E O U S  T U M O R S  

m 

1 o 

II 

¢:~ 
II 

O 

O 

53 



54 JOHN CARL PANETFA 

Next, we will compare case 2 (A =* B =* A =* B . . .)  with case 3 
(A =* A =* B =* B =* A ~ A. . .  ). Again, we will let the initial tumor 
burden be totally sensitive. For  this, we will need to view the tumor 
mass every 4r ;  that is, the cycle is 4~-. The difference equations for case 
3 are 

x(n + 4), = ( [ f ( D ) ( 1 -  g(D))]e2"l~')2Xn~., (30) 

y(,,+4)~. = e2r~'f2( D)[ eZ'2~y, 

+ f'~(D)R(D)er2"~{e r2~" + f ( D ) ( 1 -  R(D))erC~}x.]. (31) 

Note that the conditions for tumor eradication do not change from 
conditions (28) and (29). Comparing case 2 and case 3, we find that, if 

e rl~" < f ( D )  e r~', (32) 

case 2 ends with a smaller cancer mass than does case 3. But this 
condition cannot hold if the treatment is to be effective. This is because 
condition (14) must hold, which implies that er~'< 1, and this is not 
true. Therefore,  case 3 is always better than case 2 when starting with a 
tumor that is initially totally sensitive. 

The preceding problem of determining which combination is better 
leads us to ask, Is it better to follow a dose of drug A with another dose 
of A (A =~ A) or to follow a dose of drug A with a dose of drug B 
(A =~ B)? Using the difference equations 

x¢,+ z)¢ = [ f ( D ) ( 1  - R(D))]2eZr~'~xn~., (33) 

Y(,+ 2), = er2"~[e'2"~Yn + F ( D ) R ( D ) {  e'2"~ + f(D)(1 - R(D))erC~}x.] 
(34) 

to describe A ~ A and the difference equations 

x¢. + 2)~ = f (  D) (1 - R( D) ) e2~'~'xn.~, (35) 

Y¢. +2)~ =f(D)eZ~2~[Y,, + f " ( D ) R ( D ) x . ]  (36) 

to describe A =. B, we can determine which method has the larger total 
cancer mass reduction over one cycle (2~-) in terms of  the ratio of 
resistant to sensitive tumor cells u,, = y,,~/x,,.. The condition for it to 
be better to use A =* A over A =~ B is 

un < f ( O ) ( 1 -  R(D) )  - [  f ( D ) ( 1 -  R ( D ) ) ]  2 e 2 ( r l _ r 2 ) r  __ f a ( D ) R ( D )  
1-[(o) 

_ f~ '+ I (D)R (D) (1 -  R (D) )  e(rl_r~)¢" (37) 

1 -  f ( D )  
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After observing graphs of Equation (37) with respect to f(D) (Figure 4), 
we see that, when the tumor is more x-like [point A on the graphs with 
f ( D ) =  0.3 and R ( D ) =  0.05], then A =~ A is better. But, when the 
tumor is more y-like (point B on the graphs) then A =* B is better. 
Another observation is that the better drug B is, the more likely we 
should switch to it. For example, at point A on Figure 4, left, the model 
suggests that A =~ A be used if f(D) = 0.3, but that A =* B be used if 
f(D) = 0.1. In addition, we can observe from Figure 4, right, that the 
larger R(D) is, the more likely A =* B will be the better choice. That is, 
at point A with R(D)= 0.05, A ~ A is better, but, if R(D)= 0.25, 
A =* B is better. 

2.1.3. Clinical Results 

One clinical test helpful in discussing these models is given in 
Gregory et al. [8] and Souhami et al. [9]. They calculate various critical 
parameters related to their model, such as drug kill and resistant 
proportion, using clinical data from SCLC patients. They derive these 
by delivering two doses of cyclophosphamide and measuring the tumor 
volume between each dose with a Computer Tomography (CT) scan. 
With an estimated cell doubling time of 30 days, the mean tumor 
volume reduction [ 1 -  f(D) in our model] per dose was 95% and the 
mean proportion of the tumor resistance after the first dose was 
approximately 15% [R(D) in our model]. For a doubling time of 70 
days, the mean tumor volume reduction was 91% and the mean propor- 
tion of tumor resistance after the first dose was approximately 36%. In 
both cases, the period between doses was 8 weeks. We would like to see 
how this specific clinical trial relates to our pulsed model. 

First, by calculating the growth-rate parameter, we find that, for the 
doubling time of 30 days, r 1 = 0.0231 and, for the doubling time of 70 
days, r 1 = 0.0099. For our model, we will let r 1 = r 2. Now, we would like 
to see how the parameters given in [8] and [9] relate to our conditions 
on tumor growth and decay; that is conditions (11) and (14). For the 
doubling time of 30 days, condition (11) is 0.155 < 1. Therefore, our 
model would predict that the sensitive cells can be eradicated (they 
come to basically the same conclusion). For the doubling time of 70 
days, condition (11) is 0.1000 < 1 and again our model would predict 
that the sensitive cells would be eradicated. Next, if the drug has no 
effect on the resistant cells [ f (D)  = 1], then, for the doubling time of 30 
days, condition (14) is 3.646 > 1. Therefore the resistant compartment 
would not be eliminated. In fact, the model predicts that we would need 
a non-cross-resistant drug with f ( D ) <  0.274 to also eliminate the 
resistant compartment. For the doubling time of 70 days, condition (14) 
is 1.74 > 1, and again the resistant compartment would not be elimi- 
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nated. Here,  f ( D )  < 0.574 to eliminate the resistant compartment.  This 
is in fact the result observed with SCLC; rapid initial success with 
treatment, but eventual relapse of the cancer. 

Next, we calculated the NADIR for each case. In both cases we 
found that the NADIR was 2. Therefore,  this model predicts that it is 
not practical to give more than the two doses of cyclophosphamide. 
Thus, it can be seen that there is a clear need for a non-cross-resistant 
drug if chemotherapy is to eradicate SCLC. 

Possibly one of the more important aspects of the model is in helping 
determine methods of delivering combination chemotherapy. Gregory 
et al. [8] notes that it is clinically difficult to evaluate combination 
chemotherapy. Thus, we ask, What does our model suggest about 
methods of delivering combination chemotherapy in this specific clinical 
trial? That is, when should we start to give the second non-cross- 
resistant drug? Using the parameters calculated from this set of clinical 
data, we plot condition (37) with respect to f (D) .  Figure 5 represents 
the bifurcation of A =~ A or A =* B being better. Because the ratio of 
resistant to sensitive cells (u n) at which we should switch to the 
non-cross-resistant drug ranges from 0% to 5.5% in the models of these 
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FIG. 5. u~ versus f(D). Bifurcation curve: A ~ B is the better regimen for values 
of u n and f(D) above the curve, and A = A is the better regimen for values for un 
and f(D) below the curve. 
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two cases, and the first dose induced between 15% and 36%, then this 
model predicts that it is important to deliver the non-cross-resistant 
drug next to effectively continue to reduce the total tumor mass. Thus, 
it is important not only to have the non-cross-resistant drug, but, in this 
case, to give it as soon as possible because of the high rate of induced 
resistance. 

One nice consequence of this model is that, when we have the 
parameters set for a particular patient, then the model can act as a 
predictor for how to proceed with the therapy. Thus, through the 
NADIR calculation along with the predicted time to switch to the 
second non-cross-resistant drug, we can help in determining the possi- 
ble future course of chemotherapy. 

2.2. PIECEWISE-CONTINUOUS T H E R A P Y  CASE 

Next, we consider the chemotherapeutic drugs acting in a piecewise- 
continuous fashion governed by the piecewise-continuous functions 
d i ( t )  in Equations (1) and (2). The piecewise-continuous functions can 
be in the form of the step function [Eq. (38)], the exponential function 
[Eq. (39)], or the modified exponential function [Eq. (40); see Figure 6]. 

D i, n 7  <~ t < a i + n r  

di(t)  = ~ 0, a i + n z < < . t < ( n + l ) ~ -  , (38) 

di(t) = Oi  e -a i ( t -n~) ,  n z  <~ t < ( n  + 1)z, (39) 

di( t ) = D i (  e -aAt -nr )  - e - C ' ( t - n ' ) ) ,  n'r <~ t < ( n + 1)~', c i > a i ,  (40) 

where D is drug strength. 
By defining the mean value function as 

i = 1,2, (41) 

we are able to find the bifurcation from exponential growth to decay of 
Equations (1) and (2). Integrating Equation (1) over its period rx, we 
obtain the condition 

l ( d i ( t ) ) ,  ' > 1, (42) 

which is required to prevent sensitive cell growth. If this condition does 
n o t  hold, then there will be both sensitive and resistant cell growth. If 
this condition holds, then the sensitive cells will decay, and we find that 
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the condition for the decay of the resistant cells is governed by 

l (d2( t ) )~2  > 1. (43) 
F 2 

In Section 2.1, we observed how the parameters for the pulsed model 
and this form of the model are related [see Eqs. (6)-(8)]. Here, we note 
that the two bifurcation equations in this section [Eqs. (42) and (43)] are 
also directly related to the bifurcation equations for the pulsed case 
[Eqs. (11) and (14)], given the proportionality relations in Equations (6) 
and (7). 

3. CONCLUSIONS 

In this paper, a heterogeneous tumor model with chemotherapy and 
induced drug resistance is discussed. It is the hope that, by a close 
investigation of these models, we will come to a better understanding of 
the kinetics of cancer chemotherapy and be able to help determine 
more effective methods of delivering combinations of chemotherapeutic 
drugs. 

In these models, we have considered some of the ma'in critical 
parameters including dose, period, induction rate, and growth rate. 
These parameters are important to know because, if the clinical data 
does not allow us to determine them either directly or implicitly, then 
the model will have little hope of being of any use in determining 
effective combination chemotherapeutic treatments. As noted earlier, 
with newer clinical techniques available (e.g., CT scans) for measuring 
tumor mass, we have a better hope of determining these critical param- 
eters and thus more accurately modeling the chemotherapeutic effects. 
In fact, using these measurements in our model, we are able to derive 
conditions needed for tumor reduction. These basic conditions give us a 
place to start looking for effective treatment regimens. In fact, we have 
shown how these conditions fit well with clinical data from SCLC. 

When we had determined these conditions on tumor growth and 
decay, we were able to find conditions for effective methods of deliver- 
ing combination chemotherapy. In the pulsed therapy case, we analyti- 
cally derived the condition to determine when we should switch to a 
second non-cross-resistant drug. This condition was related to the ratio 
of resistant to sensitive tumor cells. From this, we determined that we 
should switch to drug B sooner if the rate of induction is high or drug B 
is very effective. Note that this is a similar conclusion to that given by 
Birkhead and Gregory [7]: the higher the rate of double resistance, the 
higher the B kill must be to make the switch to drug B. 

It is the hope that the models in this paper can form the basis for 
more mathematical models and may help qualitatively guide clinical 
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