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Summary The article provides a mathematical description based on the theory of differential equations, for the
proliferation of malignant cells (cancer). A model is developed which enables us to describe and predict the dynamics
of cell proliferation much better than by using ordinary curve fitting procedures. By using differential equations the
ability to foresee the dynamics of cell proliferation is in general much better than by using polynomial extrapolations.
Complex time relations can be revealed. The mass of each living cell and the number of living cells are described as
functions of time, accounting for each living cell’s age since cell-birth. The linkage between micro-dynamics and the
population dynamics is furnished by coupling the mass increase of each living cell up against the mitosis rate. A
comparison is made by in vitro experiments with cancer cells exposed to digitoxin, a new promising anti-cancer drug.
Theoretical results for the total number of cells (living or dead) is found to be in good agreement with experiments for
the cell line considered, assuming different concentrations of digitoxin. It is shown that for the chosen cell line, the
proliferation is halted by an increased time from birth to mitosis of the cells. The delay is probably connected with
changes in the Ca concentration inside the cell. The enhanced time between the birth and mitosis of a cell leads
effectively to smaller mitosis rates and thereby smaller proliferation rates. This mechanism is different from the
earlier results on digitoxin for different cell lines where an increased rate of apoptosis was reported. But we find it
reasonable that cell lines can react differently to digitoxin. A development from enhanced time between birth and
mitosis to apoptosis can be furnished, dependent of the sensitivity of the cell lines. This mechanism is in general very
different from the mechanism appealed to by standard chemotherapy and radiotherapy where the death ratios of the
cells are mainly affected. Thus the analysis supports the view that a quite different mechanism is invoked when using
digitoxin. This is important, since by appealing to different types of mechanism in parallel during cancer treatment,
more selectivity in the targeting of benignh versus malighant cells can be invoked. This increases the probability of
successful treatment. The critical digitoxin level concentration, i.e. the concentration level where the number of
living cells is not increasing, is approximately 50 ng/ml for the cell line we investigated in this article. Therapeutic
plasma concentration of digitoxin when treating cardiac congestion is about 15—33 ng/ml, but individual tolerances are
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large. The effect of digitoxin during cancer treatment is therefore very promising. The dynamic model constitutes a
new powerful tool, supported by empirics, describing the mechanism or process by which the number of malignant
cells during anti-cancer treatment can be studied and reduced.

© 2004 Elsevier Ltd. All rights reserved.

Introduction

A considerable amount of experiments has been
carried out to test the growth and proliferation of
cells. Although this literature is quantitative and
technical in nature, with suggested polynomials
describing the cell growth and cell proliferation,
lacking is to our knowledge a mathematical dif-
ferential equation describing the process. By using
differential equations the ability to foresee the
dynamics of cell proliferation is much better than
by using polynomial extrapolations. Complex time
relations can be revealed.

Of fundamental importance for all living cells is
the ability to divide (mitosis) or to die by apoptotic
or necrotic death. During treatments of living or-
ganisms possessing malignant cells (cancer), che-
motherapy and/or radiotherapy are/is frequently
used. Cells are very sensitive to cytostatics or ra-
diation during the G2-M phase in the cell cycle.
Therefore the increased relative amount of deaths
caused by the treatment during a short time in-
terval is proportional with the mitosis rate. The
increased death rate caused by chemotherapy and/
or radiotherapy for cell lines with large mitosis
rates will then lead to a large negative value of the
mitosis rate minus the death rate, i.e. a strongly
negative proliferation rate. Disappointingly, this is
also an obstacle to treatment since benign cells
with mitosis rates of the same or higher order will
be strongly attacked and reduced in number and
functional quality by such a treatment. This is due
to the non-selective action of most of the standard
chemotherapeutic drugs or radiation. If the mitosis
rate is larger than the death rate, and both are
small during cancer development, the corre-
sponding negative proliferation rate caused by
treatment is small, and the number of cells are
therefore almost unaffected during “treatment”.
By using small amounts of cytostatics over long
time spans, the benign cells with high mitosis/
deaths rates are more affected than the malignant
cells with low proliferation.

It is well known that increased Ca ions concen-
trations in the interior of cells strongly enhance the
probability of so called apoptotic deaths of the
cells [8]. Inhibition of the Na—K pump can indi-
rectly increase the apoptotic death rates of cells
since the reduced effect of the Na—K pump leads

to higher Na concentration in the cells’ interior.
Therefore the effect of the Na—Ca exchanger
which pumps Na ions in and Ca ions out of the cell
by use of the Na gradient over the cell membrane,
is reduced. This leads to higher Ca concentration in
the cells’ interior and increased probability of ap-
optotic deaths. Recently, analysis of herbal ex-
tracts used in alternative medicine has revealed
that some of these also contain cardiac glycosides,
which have been known for a long time to inhibit
proliferation of cancer cells by inhibition of the
Na—K pump across the cell membrane. Inspired by
the results presented on the anti-cancer effects of
cardiac glycosides, Haux et al. [4] examined the
effect of the cardiac glycoside digitoxin, and more
specifically the effect of digitoxin on different but
typically malignant cell lines. They showed that
digitoxin inhibited the proliferation of cells for
most of the malignant cell lines by increasing the
number of apoptotic cells. However, and interest-
ingly, the normal cell lines consisting of lines with
large mitosis/deaths rate and slow mitosis/death
rates, were not affected by the digitoxin treat-
ment. This means that a new sort of selectivity in
the targeting of benign versus malignant cells,
which is not directly linked to the proliferation
rates of cell lines, is invoked when using digitoxin.
In the experiments the concentration of digitoxin
was not higher than in standard treatments of
cardiac diseases. Therapeutic digitoxin concentra-
tion does not seem to give any bad side effects in
persons with or without cardiac diseases [7]. Fur-
ther, Stenkvist et al. [1] found that five years after
mastectomy the recurrences among breast cancer
patients not taking digitalis were 10 times that in
patients taking digitalis. Also, Moxnes and Hausken
[6] provided a mathematical dynamic description
of the interaction between the organism and the
drug, analysing the dynamics by using ordinary
differential equations.

Inspired by these very promising results, this
article builds a mathematical model in order to
study the proliferation of cells in a more funda-
mental way. For the cell line the model’s intrinsic
predictive power is used to analyze the effect of
using digitoxin. Of special interest is the examina-
tion of whether the cell proliferation when using
digitoxin follows from very simple analytical rela-
tionships where the effect of digitoxin can be
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captured by a simple re-scaling of the death coef-
ficient of the cells. This mechanism is typically
invoked during standard chemotherapy and radio-
therapy. The analysis supports the view that a
quite different mechanism is invoked when using
digitoxin. This is important, since by appealing to
different types of mechanism in parallel during
cancer treatment, more selectivity in the targeting
of benign versus malignant cells can be invoked.
This increases the probability of successful treat-
ment. By using the mathematical model together
with the experimental results we find for our cell
line that the proliferation is halted by an increased
time from birth to mitosis of the cells. The en-
hanced time between the birth and mitosis of a cell
leads effectively to smaller proliferation rates.
This mechanism is somewhat different from the
earlier results on digitoxin for different cell lines
where an increased rate of apoptosis was reported.
But we find it reasonable that cell lines can react
differently to digitoxin. A development from en-
hanced time between birth and mitosis to apopto-
sis can be furnished, dependent of the digitoxin
sensitivity of the cell lines.

Further, when introducing digitoxin the simula-
tions are run 30—40 days into the future, and model
is used to pinpoint the exact critical digitoxin level
where the number of living cells is decreasing as a
function of time.

Simulations are run over 40 days with varying
levels of digitoxin to pinpoint that exact critical
digitoxin level where the number of living cells is
decreasing as a function of time.

Section 2 provides the theoretical model. Sec-
tion 3 presents analytical solutions for simple sce-
narios. Section 4 compares the model with results
from in vitro experiments with cancer cells ex-
posed to digitoxin. Section 5 concludes.

The theoretical model

Central for the theoretical model are two quanti-
ties, the number of cells at different ages, and the
mass of cells of different ages. Let N(t,t) be the
number of living cells at time t of ages less than or
equal to 7 in a volume V.3 Define the age density

p(t, ) by
p(t, 1) &oN(t, 1) /or, ie. N(t1)= / p(t,u)du,
0

(2.1)

3 This article applies expected values for all variables and we
suppress the word expectation.

where “def” means a definition. p(t,7)dr is the
number of living cells at time t with ages in the
interval from t to 7 + dz. At time t the total num-
ber of living cells of all ages is given by

Nr(H)EIN(t, 00). (2.2)

where the subscript “T” is used to indicate the
total number of living cells of all ages.

Let M(t, ) be the total mass of all living cells at
time t of ages less than or equal to . Define the
age mass density m(t, ) by

m(t,0)ZoM(t, 1) /o, i.e. M(t,r):/ m(t,u)du,
0

(2.3)

where m(t, ) dz is the total mass of all living cells
at time t of ages in the interval from t to 7 + dz. At
time t the total mass of all living cells of all ages,
i.e. total living biomass in the sample volume, is
given by

Mr()EM(t, 00). (2.4)
We now define the important ratio
me(t, 0™ ED hen p(t, ) £0,
p(t7) (2.5)

me(t,7)=0  when p(t,7) =0,

which can be interpreted as the average mass of
one living cell at time t of age 7.

The rest of this article focuses on the con-
struction of mathematical models of the two main
quantities; the age density p(t, t) and the average
mass of a cell m¢(t, 7).

For the age density p(t,t) in (2.1) the following
equation follows directly from the conservation of
cells.

The number of living cells at time t + dt of ages
between t+dr and t+2dtr equals the number
p(t,7)dz of living cells at time t of ages from t to
7+ drt, plus the number r(t,7)dzdt of living cells
reinforced from t to t + dt of ages between 1 and
7+ dt, minus the number ((t,)drdt of living cell
lost from ¢t to t + dt of ages between t and < + dr.
This gives
p(t+dt,t+dr)de

= p(t,tr)dt + r(t,7)dcdt — [(t, 7)drdt. (2.6)

Taylor expansion of (2.6) up to order O(h),
where time t and age t is coupled such that

dt = dr, applying that dt = dr tends to zero, yields
the conservation equation

Op(t, 1) n 0p(t, 1)
ot ot

=r(t,7) — (£, 7), p°(1)Ep(0,7),
(2.7)



The dynamics of cell proliferation

559

p(0,7) is the initial age density. The following dif-
ferential equation follows directly from mass con-
servation of each living cell

m.(t +dt, t +dr)

= me(t,7) + re(t, 1) dt — lc(t, 7)dt, (2.8)

def

m2(t)=mc(t,0),

Eq. (2.8) expresses that the mass of a living cell at
time t 4 dt of ages t 4 dt equals the mass of the
living cell at time t of age 7 plus the mass increase
rc(t,7)dt from t to t+dt, minus the mass loss
[(t,7)dt from t to t + dt. m.(t,0) is the mass of an
average cell at birth. This mass can vary with time
due to different external or internal conditions.
Taylor expansion of (2.8) up to order O(h),
where time t and age t is coupled such that
dt = dz, applying that dt = dr tends to zero, yields

omc(t,t) omc(t,7)

=r(t 1) — l(t,7),

ot N ot (2.9)

Mc ()% / me(t, 7)dr,

0
where Mc(t) is the total mass of a living cell during
the life cycle.

Let us now move on to the specific relations that
are connected to the life cycle of the cells. Moving
back to Eq. (2.7), the loss and reinforcement are
given as

1(t, )™ u(t, )p(t,7), r(t, 7)™, (2.10)

where “mod” means that this is a testable model
assumption. u(t, 7) is the death rate coefficient as a
function of time (dependent on external condi-
tions) and age. * A living cell’s death rate usually
increases with age t but also depends on growth
mechanisms and whether the living cell is located
in a nutritionally optimal environment at time t.
The cell death coefficient u(t,t) can generally be
divided in two parts, one from apoptotic cell death
and one from necrotic cell death. We do not sep-
arate those two events in this article. r(t,t) is the
general reinforcement. This term will be set to
zero in this article since all reinforcements will be
given through a boundary condition for the age
density at age zero p(t,0).

We assume that the loss and reinforcement of
mass for an average cell follow the equations

re(t, )™ eime(t,7)", 21

(8, D)™ me(t, 7) — lie(8, 7).

“ Strictly speaking, without a more specific relation for this
coefficient this equation is a pure definition.

The mass increase mc(t, t)" is due to anabolism,
where n is a parameter,’ the loss term [.(t,1) is
divided in two parts. c;mc(t,t) is due to catabo-
lism, and [t (t, 7) is due to mitosis loss of a living
cell, where ¢; and ¢, are parameters which depend
on the temperature and the supply/availability of
oxygen and other nutrients.

Crucial for cell division is that a living cell can
generally only divide when it has reached a certain
mass size and a specific age. Also the population
densities of cells inhibit mitosis due to contact in-
hibition. The following mathematical construction
is descriptive

mod

it (E,7) = (re(t, 1) — came(t, 7))g(7),
0,when(r.(t,7) — c;mc(t, 7)) <0
g(f)"‘éd or Nr(t) > Nmax,
7(1 — e /Py otherwise, 0<y<1.
(2.12)

Eq. (2.12) states that a living cell divides only if the
mass tends to increase, i.e. a part of the mass in-
crease is converted to offspring. Due to contact
inhibition, the cell divides only if the population
density is below a certain value N.x. The cell starts
to divide at the age of approximately f. The y value
expresses the mass fraction of the cell growth that
is used to mitosis. y = 1 means that the cell con-
verts all its potential mass growth into mitosis.
Inorder to close the system a connection between
the mass loss due to mitosis and the number of off-
spring must be established. One simple relation is

(2.13)

where mP(t,t) is the mass of a newly born cell at
time t, born from parents of age t. Different age
classes have different average mass for cells, and
large cells in general give larger offspring than
smaller cells. The offspring are a constant fraction
o of the cells mass.

The number of cells born is now given by the
boundary condition

p(t, O)m:od /00 (lmit(t, )p(t, 1)/ mtc’(t, 7:)) dr, &>0,
(2.14)

where ¢ is arbitrarily small but positive (to indicate
that the integration does not include zero). Eq.
(2.14) expresses that the reinforced (born) number
of cells of age zero is equal with the mass loss
[mit(t, 7) per time t of cells of age 7, multiplied with

mb(t7 t)@d(x m(t, 1),

C

5 For the distinct process of anabolism there is some discussion
in the literature (see e.g. [2,3]) of whether n = 1 or 2/3. We find
empirical support for n=1 which is used in Section 3 and
thereafter.
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the number p(t, 7) of cells of age 7, divided with the
mass mP(t, t) of the newly born cells from cells of
age 7, integrated over all cell ages z, i.e. from zero
to infinity.

A more simple relation than (2.14) will be used
in this article. By assuming that all cells are born
with the same mass m? at all times, it follows from
(2.12) and (2.14) that

p(t,0)
m:c’d/Oc [(cimc(t,7)" — camc(t, 7)) (1) p(t, T)/mg] dr,

m°(t,7)™2'm?

C c’

(2.15)

The equation set is now closed. A stepwise al-
gorithm is stated in Appendix A.

Analytical solutions

This section presents some analytical solutions
when the cells starts to divide immediately at time
zero, the death coefficient u(t,z) is constant
through time and independent of age, and the mass
mP(t,7) of a newly born average cell is constant
through time and independent of age, i.e.

u(t,t)=p, ml(t,r)=m? g(r)=1,

f=0, z=1. (3.1)

Using (2.10) and (2.12), integrating (2.7) with
respect to t gives

=1,

Nr(t) = /0OO r(t,t)dc — uNq(t)

=(1/m% /0oo (c1 — ca)mc(t,7)p(t,7)dt — uN(E)

= (c1 — )N (t) — e (t), (3.2)
which has the exponential growth solution
Nr(t) = Nr(to) exp[(c1 — ¢z — p)(t — to)], (3.3)

where a dot above a variable means time deriva-
tion. N¢(t) is the number of dead cells, and N29(¢) is
the total number of cells (dead or alive), i.e.
N2d(t) = Nr(t) + N4(t). The following solutions fol-
lows directly from (3.3)

NE(E) = ur(£) = NE(E) = / e (£

= Ne(t) — Mr(to)],

CG—C—u
N3(t) = Ne(t) + N§(t) = (1 - CE?NT(C?—:NT(to) -

(3.4)

The fraction of dead cells of the total number of
cells is then given as

Nr(t) _ u(N:(t) — Nr(to))
N(E) (1 — c)Ne(t) — uNr(to)

(3.5)
lim N0 # ,whenc¢; —¢; —u>0.

t~o NM(E) ¢ -G

Observe from the solution in (3.5) that increas-
ing the death coefficient u increases the fraction of
dead cells p/(cy — ¢;) and vice versa. This does not
mean that the proliferation of cells is stopped,
since to stop the proliferation one must achieve
that (¢; — ¢; — 1) < 0 as Eq. (3.3) shows.

The analytical solution of the total number
N2d(t) of cells will be compared with simulation
results using the more general model in Section 2,
and with experimental results, in the next section.
The solutions given in (3.3)—(3.5) are typical during
standard cancer treatments, where use of chemo-
therapy and/or radiotherapy simply means to in-
crease the death coefficient u by some fraction.
We will show that the analytical solution cannot in
general be used to describe the number of cells.
This means that using digitoxin does not correspond
to a simple increase of the death coefficient pu.

Simulations

This section illustrates typical simulations of the
model compared with in vitro experiments with
cancer cells exposed to digitoxin [4]. We show that
the model matches the experiments very well.
For the cell type we set m? to be a constant,
which means that all cells at all times t are born
with the same mass. We further assume y =1,
which means that the mass growth of a cell goes
entirely into mitosis. We furthermore set that the
death coefficient u and the growth parameter c;
are constants through time, i.e. that there is no
change in temperature, oxygen supply, and nutrino
supply during a specific test. More specifically,
without loss of generality we set ¢; =0, since we
can always redefine ¢; — ¢c; when n=11in (2.11).
We first simulate the case without digitoxin. The
numerical value of the parameters are found by
estimating values of the parameters ¢, and u such
that the total number of cells (dead or alive) are in
agreement with the measurements. Thereafter we
make the crucial assumption that introducing
digitoxin at subsequently higher concentration
levels only changes the numerical values of the
parameters. For each subsequently higher digitoxin
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Number of cells

k| —%— Exp T47D

1 10° / P
800000 Ana
600000 B :
400000

i Time * days *

1 2 3 4 5 6
Figure 1 Analytical and experiments results for the

number of cells (dead or alive) without digitoxin = 0/
day, y =1, ¢; =0.6/day, u = 0.3/day, m? =4.2 x 10"
kg, Nr(0) = [~ p2dr ~ p2At = 10°/ml.

concentration we estimate new values for the pa-
rameters, but change the values for as few as
possible. The number of cells (dead or alive) are
again compared with the experiments.

Fig. 1 shows the experimental and simulated
results without digotoxin. The analytical and ex-
perimental results correspond. The very good
agreement between the analytical model and the
experimental results strongly simplifies the analy-
sis, implying that the more general model in Sec-
tion 2 is not necessary to invoke so far.

We now make the crucial step of introducing
digotoxin such that the concentration is 25 ng/ml
digitoxin. Searching for values of the parameters
which facilitate correspondence between empirics
and simulations for the number of cells (dead or
alive), suggest that the analytical solution given in
Section 3 does not fit the data. Figs. 2 and 3 show
two attempts to fit the data, but neither of them
are good. But by using the general model in section
with f = 1.3/day, while keeping the other param-
eters constant as for the case without digitoxin,
gives much better fit to the data, as shown in
Fig. 4. This is an important tentative observation;
‘the introduction of digitoxin gives an increased
delay between the time of birth of a cell to the
time of mitosis. The values of the other parameters
do not change!’

Figs. 5—7 show the number of cells when the
digitoxin concentration is 50 ng/ml. Figs. 5 and 6
show two attempts to fit the data with the ana-

Number of cells

700000
600000 —k— Exp T47D
500000 -~
400000 o i N Ana.
300000 =i
2000007 1= = .
Time - days *
1 2 3 4 5 6

Figure 2 Analytical and experimental results for the

number of cells (dead or alive) using 25 ng/ml digitoxin
B =0/day, y =1, ¢; = 0.6/day, u = 0.57/day, m? = 4.2 x
10-"2 kg, N7(0) = Jo: p2dr = p0AT =105 /ml.

1 10° i —k— Exp T47D
800000 .
600000 . - Ana.
400000 ;*'/,"f
-~ Time - days *
Figure 3 Analytical and experimental results for the

number of cells (dead or alive) using 25 ng/ml digitoxin
p = 0/day, =1, ¢, = 0.6/day, 1= 0.3/day,
m2 = 4.2 x 1072 kg, Nr(0) = [;° p2dt ~ plAr = 10°/ml.

Number of cells

1o00co A [+ eoram
500000 j/ ,
400000 T | Sim
300000 P
200000 =
1 n Time * days *
2 3 4 5
Figure 4 Simulation and experimental results for the

number of cells (dead or alive) using 25 ng/ml digitoxin,
p = 1.3/day, =1, ¢, = 0.6/day, 1= 0.3/day,
mQ =4.2 x 1072 kg, Nr(0) = [;° p2dt ~ plAr = 10°/ml.

lytical solution. The fits are not so good. Fig. 7
shows the simulation results when the delay from
birth to mitosis is increased to = 5/day, while the
other parameters have the same values as in the
case without digitoxin. Observe now the very good
agreement with the experimental results.

Number of cells

350000 —b=5 | —— Exp T47D

300000 =

250000 J,f" e Ana

200000 -

1500004 .

% !
Time * days *
1 2 3 4 5
Figure 5 Analytical and experimental results for the

number of cells (dead or alive) using 50 ng/ml digitoxin
f = 0/day, 7=1, ¢, = 0.6/day, u=0.7/day
mQ = 4.2 x 1072 kg, Nr(0) = [,° p2dt ~ plAr = 10°/ml.

Number of cells
1 10° - —— Exp T47D
800000 <
600000 — - Ana.
400000 —
et ] Time - days *
3 4 5 6

Figure 6 Analytical and experimental results for the
number of cells (dead or alive) using 50 ng/ml digitoxin
p = 0/day, =1, ¢, = 0.6/day, 1= 0.3/day,
md =42 x 1072 kg, Nr(0) = J,° p2dt ~ pQAr = 10° /ml.
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Number of cells

350000

—%— Exp T47D

300000 P

200000 s

150000 ,,/T

} - Time * days *
3 4 5 6

Figure 7 Simulation and experiments results for the

number of cells (dead or alive) using 50 ng/ml digitoxin
B =5/day, ¢; = 0.6/day, u=0.3/day, m? =42 x 10"
kg, N7 (0) = [;° pQdr ~ pQAr = 10°/ml.

Sim Number of cells
—w— Cells

- Living cells

1109 /|
7
|

o 20 30 4o M dayst
Figure 8 The number of cells when the digitoxin level
is 50 ng/ml after day 30.

The tentative hypothesis based on the results
for 25 ng/ml digitoxin is strongly supported, i.e.
‘the introduction of digitoxin only enhance the
time delay from birth to mitosis of the cells, and
higher values of digitoxin leads to larger time
delays’.

Fig. 8 assumes no exposure to digitoxin for the
first 29 days, with a concentration of 50 ng/ml
digitoxin at day 30 and for each day thereafter.
Observe how the number of living cells starts to
flatten out at day 30 and thereafter.

A closer inspection shows that the critical con-
centration level is around 50 ng/ml digitoxin for this
cell line, which is not very sensitive to digitoxin [4].

Conclusion

The article provides a mathematical description
based on the theory of differential equations, for
the proliferation of malignant cells (cancer). A
model is developed which enables us to describe
and predict the dynamics of cell proliferation much
better than by using ordinary curve fitting proce-
dures. Theoretical results for the total number of
cells (living or dead) is found to be in good agree-
ment with experiments for the cell line considered,
assuming different concentrations of digitoxin. The
numerical results show that by introducing
amounts of digotoxin, the time from birth to mi-
tosis increases, which effectively gives a mitosis
delay. The delay is probably connected with

changes in the Ca ions concentration inside the
cell. The enhanced time between the birth and
mitosis of a cell leads effectively to smaller pro-
liferation rates. This mechanism is very different
from the mechanism appealed to by standard
chemotherapy and radiotherapy where the death
ratios of the cells are mainly affected. Based on
the literature and the present results we have es-
tablished the following different mechanisms ef-
fectively reducing proliferation: (a) necrotic
death, (b) apoptosis and (c) enhanced time be-
tween birth and mitosis. The last mechanism is as
far as we know new.

By systematically analyzing and building models
for the mechanisms appealed to by standard
treatment, and by use of digitoxin or other drugs
which are likely to emerge, we expect that a more
specific treatment can be found for a given cell
line, which increases the probability of a successful
treatment. The critical digitoxin level concentra-
tion, i.e. the concentration level where the num-
ber of living cells is not increasing, is
approximately 50 ng/ml for the cell line we in-
vestigated in this article. It is most likely closer to
25 ng/ml for other malignant cell lines (prostate
cells for example; [5]). Therapeutic plasma con-
centration of digitoxin when treating cardiac con-
gestion is about 15—33 ng/ml, but individual
tolerances are large. The effect of digitoxin during
cancer treatment is therefore very promising.
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Appendix A

Assume that all quantities are given at time t. The
following algorithm is used for calculating the
values at time t + At and t© + Az, where At = At

vVt =0,

p(t+ At, T+ A1) = p(t, 1) — Atup(t, 1),

p(0,7) =0 when 1©#0, p(0,0)=Nr(0)/Az.
(A1)

vt =0,

If cimc(t,7)" — came(t,7) =0, or  Nr(t) = Npaxs
me(t + At, 7 + A1),

=mc(t,7) + At[cimc(t,1)" — camc(t, 7)),
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else
mc(t + At, T+ A1),
= mc(t,7) + At[cimc(t, 1)",
— ame(t, )][1 — 7(1 — exp[-7*/F])],
mc(0,7) =0 when 1 +#0,mc(0,0) =m_.
The boundary condition is given by
vVt #£0,At #£0,
If cyme(t,7)" — camc(t,7) <0, or Nr(t) = Nmax,
then p(t + At,0) = 0,m.(t + At,0) =0,
else
p(t+ At,0)

= /(yOC p(t,7)(cymc(t,7)" — camc(t, 7)),

(1 — exp[—7?/f*]) de/m°r, m.(t + At,0) = m°.

(A3)

The total numbers of living cells are

NT(t):/Ooop(t,f)d‘E, N?(t):/ox,up(t,r)drdt,
NES(E) = N () + NE(O)

(A.2)

(A4)
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