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Article Title: The Dynamics of Cell Proliferation 

 

Abstract 

The article provides a mathematical description based on the theory of differential equations, 

for the proliferation of malignant cells (cancer). A model is developed which enables us to 

describe and predict the dynamics of cell proliferation much better than by using ordinary 

curve fitting procedures. By using differential equations the ability to foresee the dynamics of 

cell proliferation is in general much better than by using polynomial extrapolations. Complex 

time relations can be revealed. The mass of each living cell and the number of living cells are 

described as functions of time, accounting for each living cell’s age since cell-birth. The 

linkage between micro dynamics and the population dynamics is furnished by coupling the 

mass increase of each living cell up against the mitosis rate. A comparison is made by in vitro 

experiments with cancer cells exposed to digitoxin, a new promising anti cancer drug. 

Theoretical results for the total number of cells (living or dead) is found to be in good 

agreement with experiments for the cell line considered, assuming different concentrations of 

digitoxin. It is shown that for the chosen cell line, the proliferation is halted by an increased 

time from birth to mitosis of the cells. The delay is probably connected with changes in the 

Ca concentration inside the cell. The enhanced time between the birth and mitosis of a cell 

leads effectively to smaller mitosis rates and thereby smaller proliferation rates. This 

mechanism is different from the earlier results on digitoxin for different cell lines where an 

increased rate of apoptosis was reported. But we find it reasonable that cell lines can react 

differently to digitoxin. A development from enhanced time between birth and mitosis to 

apoptosis can be furnished, dependent of the sensitivity of the cell lines. This mechanism is 

in general very different from the mechanism appealed to by standard chemotherapy and 

radiotherapy where the death ratios of the cells are mainly affected. Thus the analysis 

supports the view that a quite different mechanism is invoked when using digitoxin. This is 

important, since by appealing to different types of mechanism in parallel during cancer 

treatment, more selectivity in the targeting of benign versus malignant cells can be invoked. 

This increases the probability of successful treatment. The critical digitoxin level 

concentration, i.e. the concentration level where the number of living cells is not increasing, 

is approximately 50 ng/ml for the cell line we investigated in this article. Therapeutic plasma 

concentration of digitoxin when treating cardiac congestion is about 15-33ng/ml, but 

individual tolerances are large. The effect of digitoxin during cancer treatment is therefore 
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very promising. The dynamic model constitutes a new powerful tool, supported by empirics, 

describing the mechanism or process by which the number of malignant cells during 

anticancer treatment can be studied and reduced. 
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1 Introduction 

A considerable amount of experiments has been carried out to test the growth and 

proliferation of cells. Although this literature is quantitative and technical in nature, with 

suggested polynomials describing the cell growth and cell proliferation, lacking is to our 

knowledge a mathematical differential equation describing the process. By using differential 

equations the ability to foresee the dynamics of cell proliferation is much better than by using 

polynomial extrapolations. Complex time relations can be revealed. 

 

Of fundamental importance for all living cells is the ability to divide (mitosis) or to die by 

apoptotic or necrotic death. During treatments of living organisms possessing malignant cells 

(cancer), chemotherapy and/or radiotherapy are/is frequently used. Cells are very sensitive to 

cytostatics or radiation during the G2-M phase in the cell cycle. Therefore the increased 

relative amount of deaths caused by the treatment during a short time interval is proportional 

with the mitosis rate. The increased death rate caused by chemotherapy and/or radiotherapy 

for cell lines with large mitosis rates will then lead to a large negative value of the mitosis 

rate minus the death rate, i.e. a strongly negative proliferation rate. Disappointingly, this is 

also an obstacle to treatment since benign cells with mitosis rates of the same or higher order 

will be strongly attacked and reduced in number and functional quality by such a treatment. 

This is due to the non-selective action of most of the standard chemotherapeutic drugs or 

radiation. If the mitosis rate is larger than the death rate, and both are small during cancer 

development, the corresponding negative proliferation rate caused by treatment is small, and 

the number of cells are therefore almost unaffected during “treatment”. By using small 

amounts of cytostatics over long time spans, the benign cells with high mitosis/deaths rates 

are more affected than the malignant cells with low proliferation.  

 

It is well known that increased Ca ions concentrations in the interior of cells strongly enhance 

the probability of so called apoptotic deaths of the cells (Russo 1982). Inhibition of the Na-K 

pump can indirectly increase the apoptotic death rates of cells since the reduced effect of the 

Na-K pump leads to higher Na concentration in the cells’ interior. Therefore the effect of the 

NA-Ca exchanger which pumps Na ions in and Ca ions out of the cell by use of the Na 

gradient over the cell membrane, is reduced. This leads to higher Ca concentration in the 

cells’ interior and increased probability of apoptotic deaths. Recently, analysis of herbal 

extracts used in alternative medicine has revealed that some of these also contain cardiac 
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glycosides, which have been known for a long time to inhibit proliferation of cancer cells by 

inhibition of the Na-K pump across the cell membrane. Inspired by the results presented on 

the anti-cancer effects of cardiac glycosides, Haux et al. (1999) examined the effect of the 

cardiac glycoside digitoxin, and more specifically the effect of digitoxin on different but 

typically malignant cell lines. They showed that digitoxin inhibited the proliferation of cells 

for most of the malignant cell lines by increasing the number of apoptotic cells. However, 

and interestingly, the normal cell lines consisting of lines with large mitosis/deaths rate and 

slow mitosis/death rates, were not affected by the digitoxin treatment. This means that a new 

sort of selectivity in the targeting of benign versus malignant cells, which is not directly 

linked to the proliferation rates of cell lines, is invoked when using digitoxin. In the 

experiments the concentration of digitoxin was not higher than in standard treatments of 

cardiac diseases. Therapeutic digitoxin concentration does not seem to give any bad side 

effects in persons with or without cardiac diseases (Grossmann 1998). Further, Stenkvist et al 

(1979) found that five years after mastectomy the recurrences among breast cancer patients 

not taking digitalis were ten times that in patients taking digitalis. Also, Moxnes and Hausken 

(2003) provided a mathematical dynamic description of the interaction between the organism 

and the drug, analysing the dynamics by using ordinary differential equations. 

 

Inspired by these very promising results, this article builds a mathematical model in order to 

study the proliferation of cells in a more fundamental way. For the cell line the model’s 

intrinsic predictive power is used to analyze the effect of using digitoxin. Of special interest 

is the examination of whether the cell proliferation when using digitoxin follows from very 

simple analytical relationships where the effect of digitoxin can be captured by a simple re-

scaling of the death coefficient of the cells. This mechanism is typically invoked during 

standard chemotherapy and radiotherapy. The analysis supports the view that a quite different 

mechanism is invoked when using digitoxin. This is important, since by appealing to 

different types of mechanism in parallel during cancer treatment, more selectivity in the 

targeting of benign versus malignant cells can be invoked. This increases the probability of 

successful treatment. By using the mathematical model together with the experimental results 

we find for our cell line that the proliferation is halted by an increased time from birth to 

mitosis of the cells. The enhanced time between the birth and mitosis of a cell leads 

effectively to smaller proliferation rates. This mechanism is somewhat different from the 

earlier results on digitoxin for different cell lines where an increased rate of apoptosis was 
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reported. But we find it reasonable that cell lines can react differently to digitoxin. A 

development from enhanced time between birth and mitosis to apoptosis can be furnished, 

dependent of the digitoxin sensitivity of the cell lines.  

 

Further, when introducing digitoxin the simulations are run 30-40 days into the future, and 

model is used to pinpoint the exact critical digitoxin level where the number of living cells is 

decreasing as a function of time.  

 

Simulations are run over 40 days with varying levels of digitoxin to pinpoint that exact 

critical digitoxin level where the number of living cells is decreasing as a function of time.  

 

Section 2 provides the theoretical model. Section 3 presents analytical solutions for simple 

scenarios. Section 4 compares the model with results from in vitro experiments with cancer 

cells exposed to digitoxin. Section 5 concludes. 

 

2 The theoretical model 

Central for the theoretical model are two quantities, the number of cells at different ages, and the 

mass of cells of different ages. Let ( , )N t τ be the number of living cells at time t of ages less than 

or equal to τ in a volume V1. Define the age density ),( τρ t  by  

 

0

( , ) ( , ) / , . . ( , ) ( , ) ,
def

t N t i e N t t u du
τ

ρ τ τ τ τ ρ= ∂ ∂ = ∫  (2.1) 

 

where “def” means a definition. ττρ dt ),(  is the number of living cells with ages in the 

interval from τ to τ+dτ. At time t the total number of living cells of all ages is given by 

 

).,()( ∞= tN
def

tNT  (2.2) 

where the subscript “T” is used to indicate the total number of living cells of all ages. 
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Let ( , )M t τ be the total mass of all living cells at time t of ages less than or equal to τ. Define the 

age mass density ),( τtm  by  

 

0

( , ) ( , ) / , . . ( , ) ( , )
def

m t M t i e M t m t u du
τ

τ τ τ τ= ∂ ∂ = ∫  (2.3) 

 

where ττ dtm ),(  is the total mass of all living cells at time t of ages in the interval from τ to 

τ+dτ. At time t the total mass of all living cells of all ages, i.e. total living biomass in the 

sample volume, is given by 

 

).,()( ∞= tM
def

tMT  (2.4) 

 

We now define the important ratio  

 

( , )( , ) ( , ) 0, ( , ) 0 ( , ) 0,
( , )c c

def def
m tm t when t m t when t

t
ττ ρ τ τ ρ τ

ρ τ
= ≠ = =  (2.5) 

 

which can be interpreted as the average mass of one living cell at time t of age τ . 

 

The rest of this article focuses on the construction of mathematical models of the two main 

quantities; the age density ),( τρ t and the average mass of a cell ( , )cm t τ . 

 

For the age density ),( τρ t  in (2.1) the following equation follows directly from the 

conservation of cells 

 

The number of living cells at time t+dt of ages between τ+dτ and τ+2dτ equals the number 

( , )t dρ τ τ  of living cells at time t of ages from τ to τ+dτ, plus the number ( , )r t d dtτ τ  of living 

                                                                                                                                                                                     
1 This article applies expected values for all variables and we suppress the word expectation. 
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cells reinforced from t to t+dt of ages between τ and τ+dτ, minus the number ( , )l t d dtτ τ  of 

living cell lost from t to t+dt of ages between τ and τ+dτ. This gives 

 

( , ) ( , ) ( , ) ( , ) .t dt d d t d r t d dt l t d dtρ τ τ τ ρ τ τ τ τ τ τ+ + = + −  (2.6) 

 

Taylor expansion of (2.6) up to order O(h), where time t and age τ is coupled such that dt=dτ, 

applying that dt=dτ tends to zero, yields the conservation equation 

 

0( , ) ( , ) ( , ) ( , ), ( ) (0, )
def

t t r t l t
t

ρ τ ρ τ τ τ ρ τ ρ τ
τ

∂ ∂
+ = − =

∂ ∂
 (2.7) 

 

(0, )ρ τ  is the initial age density. The following differential equation follows directly from mass 

conservation of each living cell  

 

0( , ) ( , ) ( , ) ( , ) , ( ) ( ,0)c c c c c c

def
m t dt d m t r t dt l t dt m t m tτ τ τ τ τ+ + = + − =  (2.8) 

 

(2.8) expresses that the mass of a living cell at time t+dt of ages τ+dτ equals the mass of the 

living cell at time t of age τ plus the mass increase ( , )cr t dtτ  from t to t+dt, minus the mass loss 

( , )cl t dtτ  from t to t+dt. ( ,0)cm t  is the mass of an average cell at birth. This mass can vary with 

time due to different external or internal conditions. 

 

Taylor expansion of (2.8) up to order O(h), where time t and age τ is coupled such that dt=dτ, 

applying that dt=dτ tends to zero, yields 

 

0
( , ) ( , ) ( , ) ( , ), ( ) ( , ) ,c c

c c c c

def
m t m t r t l t M t m t d

t
τ τ τ τ τ τ

τ
∞∂ ∂

+ = − =
∂ ∂ ∫  (2.9) 

 

where ( )cM t is the total mass of a living cell during the life cycle.  
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Let us now move on to the specific relations that are connected to the life cycle of the cells. 

Moving back to equation (2.7), the loss and reinforcement are given as 

 

( , ) ( , ) ( , ), ( , ) 0,
mod mod

l t t t r tτ µ τ ρ τ τ= =  (2.10) 

where “ mod ” means that this is a testable model assumption. ),( τµ t  is the death rate 

coefficient as a function of time (dependent on external conditions) and age2. A living cell’s 

death rate usually increases with age τ but also depends on growth mechanisms and whether the 

living cell is located in a nutritionally optimal environment at time t. The cell death coefficient 

),( τµ t can generally be divided in two parts, one from apoptotic cell death and one from necrotic 

cell death. We do not separate those two events in this article. r(t, )τ  is the general 

reinforcement. This term will be set to zero in this article since all reinforcements will be 

given through a boundary condition for the age density at age zero ( ,0)tρ . 

 

We assume that the loss and reinforcement of mass for an average cell follow the equations 

 

1 2( , ) ( , ) , ( , ) ( , ) ( , ).n
c c c c mit

mod mod
r t c m t l t c m t l tτ τ τ τ τ= = −  (2.11) 

The mass increase ( , )n
cm t τ  is due to anabolism, where n is a parameter3, the loss term ( , )cl t τ  

is divided in two parts. 2 ( , )cc m t τ  is due to catabolism, and ( , )mitl t τ  is due to mitosis loss of a 

living cell, where 1c  and 2c  are parameters which depend on the temperature and the 

supply/availability of oxygen and other nutrients. 

 

Crucial for cell division is that a living cell can generally only divide when it has reached a 

certain mass size and a specific age. Also the population densities of cells inhibit mitosis due to 

contact inhibition. The following mathematical construction is descriptive 

 

                                                           
2 Strictly speaking, without a more specific relation for this coefficient this equation is a pure definition. 
3 For the distinct process of anabolism there is some discussion in the literature (see e.g. Bartilanffy 1955, 1962) 
of whether n=1 or n=2/3. We find empirical support for n=1 which is used in section 3 and thereafter. 
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( )

( )

2

2
2 2

( , ) ( , ) ( , ) ( )

0, ( , ) ( , ) 0 ( )
( )

(1 ) , 0 1.

mit c c

c c T max

mod
l t r t c m t g

mod when r t c m t or N t N
g

e otherwiseτ β

τ τ τ τ

τ τ
τ

χ χ−

= −

 − ≤ ≥= 
− ≤ ≤

 (2.12) 

 

(2.12) states that a living cell divides only if the mass tends to increase, i.e. a  part of the mass 

increase is converted to offspring. Due to contact inhibition, the cell divides only if the 

population density is below a certain value maxN . The cell starts to divide at the age of 

approximately β . The χ  value expresses the mass fraction of the cell growth that is used to 

mitosis. 1χ =  means that the cell converts all its potential mass growth into mitosis. 

 

In order to close the system a connection between the mass loss due to mitosis and the number of 

offspring must be established. One simple relation is 

 

( , ) ( , ),b
c c

mod
m t m tτ α τ=  (2.13) 

where ( , )b
cm t τ  is the mass of a newly born cell at time t, born from parents of age τ . Different 

age classes have different average mass for cells, and large cells in general give larger offspring 

than smaller cells. The offspring are a constant fraction α of the cells mass.  

 

The number of cells born is now given by the boundary condition 

 

( )( ,0) ( , ) ( , ) / ( , ) , 0,b
mit c

mod
t l t t m t d

ε

ρ τ ρ τ τ τ ε
∞

= >∫  (2.14) 

 

where ε is arbitrarily small but positive (to indicate that the integration does not include zero). 

Equation (2.14) expresses that the reinforced (born) number of cells of age zero is equal with the 

mass loss ( , )mitl t τ  pr time t of cells of age τ , multiplied with the number ( , )tρ τ  of cells of age 

τ , divided with the mass ( , )b
cm t τ  of the newly born cells from cells of age τ , integrated over 
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all cell ages τ , i.e. from zero to infinity.  

 

A more simple relation than (2.14) will be used in this article. By assuming that all cells are born 

with the same mass 0
cm  at all times, it follows from (2.12) and (2.14) that 

 

( ) 0 0
1 2( ,0) ( , ) ( , ) ( ) ( , ) / , ( , )n b

c c c c c

mod mod
t c m t c m t g t m d m t m

ε

ρ τ τ τ ρ τ τ τ
∞

 = − =
 ∫  (2.15) 

 

The equation set is now closed. A stepwise algorithm is stated in appendix A. 

 

3 Analytical solutions 

This section presents some analytical solutions when the cells starts to divide immediately at 

time zero, the death coefficient ( , )tµ τ  is constant through time and independent of age, and the 

mass ( , )b
cm t τ  of a newly born average cell is constant through time and independent of age, i.e.  

 
0( , ) , ( , ) , ( ) 1, 1, 1, 1.b

c ct m t m gµ τ µ τ τ α β χ= = = = = =  (3.1) 

 

Using (2.10) and (2.12), integrating (2.7) with respect to τ gives  

 

0
1 20 0

1 2

( ) ( , ) ( ) (1/ ) ( ) ( , ) ( , ) ( )

( ) ( ) ( ),
T T c c

T T

N t r t d N t m c c m t t d N t

c c N t N t

τ τ µ τ ρ τ τ µ

µ

∞ ∞
= − = − −

= − −
∫ ∫  (3.2) 

 

which has the exponential growth solution 

 

0 1 2 0( ) ( ) [( )( )],T TN t N t Exp c c t tµ= − − −  (3.3) 

 

where a dot above a variable means time derivation. ( )d
TN t  is the number of dead cells, and 

( )ad
TN t  is the total number of cells (dead or alive), i.e. ( ) ( ) ( )ad d

T T TN t N t N t= + . The following 

solutions follows directly from (3.3) 
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0
1 20

1 2 0

1 2

( ) ( ) ( ) ( ') ' [ ( ) ( )],

( ) ( ) ( )( ) ( ) ( )

t
d d
T T T T T T

t

ad d T T
T T T

N t N t N t N t dt N t N t
c c

c c N t N tN t N t N t
c c

µµ µ
µ

µ
µ

= ⇒ = = −
− −

− −
= + =

− −

∫
 (3.4) 

 

The fraction of dead cells of the total number of cells is then given as 

 

0
1 2

1 2 0 1 2

( ( ) ( ))( ) ( ), , 0
( ) ( ) ( )( ) ( )

T TT T
tad ad

T TT T

N t N tN t N tlim when c c
c c N t N t c cN t N t

µ µ µ
µ →∞

−
= = − − >

− − −
 (3.5) 

 

Observe from the solution in (3.5) that increasing the death coefficient µ  increases the fraction 

of dead cells 1 2/( )c cµ − and vice versa. This does not mean that the proliferation of cells is 

stopped, since to stop the proliferation one must achieve that 1 2( ) 0c c µ− − < as equation (3.3) 

shows.  

 

The analytical solution of the total number ( )ad
TN t  of cells will be compared with simulation 

results using the more general model in section 2, and with experimental results, in the next 

section.  The solutions given in (3.3)-(3.5) are typical during standard cancer treatments, where 

use of chemotherapy and/or radiotherapy simply means to increase the death coefficient µ  by 

some fraction. We will show that the analytical solution can not in general be used to describe 

the number of cells. This means that using digitoxin does not correspond to a simple increase of 

the death coefficient µ .  

 

4 Simulations 

This section illustrates typical simulations of the model compared with in vitro experiments 

with cancer cells exposed to digitoxin (Haux 1999). We show that the model matches the 

experiments very well.  

 

For the cell type we set 0
cm  to be a constant, which means that all cells at all times t are born 

with the same mass. We further assume 1χ = , which means that the mass growth of a cell 

goes entirely into mitosis. We furthermore set that the death coefficient µ  and the growth 
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parameter c1 are constants through time, i.e. that there is no change in temperature, oxygen 

supply, and nutrino supply during a specific test. More specifically, without loss of generality 

we set c2=0, since we can always redefine c1-c2 when n=1 in (2.12). 

 

We first simulate the case without digitoxin. The numerical value of the parameters are found 

by estimating values of the parameters c1 and µ such that the total number of cells (dead or 

alive) are in agreement with the measurements. Thereafter we make the crucial assumption 

that introducing digitoxin at subsequently higher concentration levels only changes the 

numerical values of the parameters. For each subsequently higher digitoxin concentration we 

estimate new values for the parameters, but change the values for as few as possible. The 

number of cells (dead or alive) are again compared with the experiments. 

 

Fig. 1: Analytical and experiments results for the number of cells (dead or alive) without 

digitoxin, 0 / , 1dayβ χ= = ,c1=0.6/day,µ=0.3/day, 

0 12 0 0 5

0

4.210 , (0) 10 /c T c cm kg N d mlρ τ ρ τ
∞

−= = ≈ ∆ =∫  

 

Fig. 1 shows the experimental and simulated results without digotoxin. The analytical and 

experimental results correspond. The very good agreement between the analytical model and 

the experimental results strongly simplifies the analysis, implying that the more general model in 

section 2 is not necessary to invoke so far. 

 

We now make the crucial step of introducing digotoxin such that the concentration is 25ng/ml. 

digitoxin. Searching for values of the parameters which facilitate correspondence between 

empirics and simulations for the number of cells (dead or alive), suggest that the analytical 

solution given in section 3 does not fit the data. Fig. 2 and Fig. 3 show two attempts to fit the 

data, but neither of them are good. But by using the general model in section with 1.3 / dayβ = , 

while keeping the other parameters constant as for the case without digitoxin, gives much 

1 2 3 4 5 6
Time @days D400000

600000
800000
1×106

Number of cells

Ana .

Exp T47D
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better fit to the data, as shown in Fig. 4. This is an important tentative observation; The 

introduction of digitoxin gives an increased delay between the time of birth of a cell to the 

time of mitosis. The values of the other parameters do not change!    

 

Fig.2: Analytical and experimental results for the number of cells (dead or alive) using 25 ng/ml 

digitoxin, 0 / , 1dayβ χ= = ,c1=0.6/day, µ=0.57/day. 

0 12 0 0 5

0

4.210 , (0) 10 /c T c cm kg N d mlρ τ ρ τ
∞

−= = ≈ ∆ =∫  

 

 

Fig.3: Analytical and experimental results for the number of cells (dead or alive)  using 25 

ng/ml digitoxin, 0 / , 1dayβ χ= = , c1=0.6/day, µ=0.3/day, 

0 12 0 0 5

0

4.210 , (0) 10 /c T c cm kg N d mlρ τ ρ τ
∞

−= = ≈ ∆ =∫  

 

 

 

Fig.4: Simulation and experimental results for the number of cells  (dead or alive) using 

1 2 3 4 5 6
Time @days D200000

300000
400000
500000
600000
700000

Number of cells

Sim .

Exp T47D

1 2 3 4 5 6
Time @days D400000

600000
800000
1×106

Number of cells

Ana .

Exp T47D

1 2 3 4 5 6
Time @days D200000

300000
400000
500000
600000
700000

Number of cells

Ana .

Exp T47D
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25ng/ml digitoxin, 1.3 / , 1dayβ χ= =  , c1=0.6/day, µ=0.3/day, 

0 12 0 0 5

0

4.210 , (0) 10 /c T c cm kg N d mlρ τ ρ τ
∞

−= = ≈ ∆ =∫  

 

Fig. 5-7 show the number of cells when the digitoxin concentration is 50ng/ml. Figs. 5 and 6 

show two attempts to fit the data with the analytical solution. The fits are not so good.  Fig. 7 

shows the simulation results when the delay from birth to mitosis is increased to 5 / dayβ = , 

while the other parameters have the same values as in the case without digitoxin. Observe 

now the very good agreement with the experimental results. 

 

Fig.5:Analytical and experimental results for the number of cells  (dead or alive) using 50 ng/ml 

digitoxin, 0 / , 1dayβ χ= = ,c1=0.6/day,µ=0.7/day, 

0 12 0 0 5

0

4.210 , (0) 10 /c T c cm kg N d mlρ τ ρ τ
∞

−= = ≈ ∆ =∫   

 
 

 

Fig.6:Analytical and experimental results for the number of cells (dead or alive)  using 50 ng/ml 

digitoxin, 0 / , 1dayβ χ= = ,c1=0.6/day,µ=0.3/day, 

0 12 0 0 5

0

4.210 , (0) 10 /c T c cm kg N d mlρ τ ρ τ
∞

−= = ≈ ∆ =∫   

 

 

1 2 3 4 5 6
Time @days D400000
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800000
1×106
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Exp T47D
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Fig. 7: Simulation and experiments results for the number of cells  (dead or alive) using 50 

ng/ml digitoxin, 5 / dayβ =  ,c1=0.6/day, µ=0.3/day, 

0 12 0 0 5

0

4.210 , (0) 10 /c T c cm kg N d mlρ τ ρ τ
∞

−= = ≈ ∆ =∫  

 

The tentative hypothesis based on the results for 25ng/ml digitoxin is strongly supported, i.e. 

the introduction of digitoxin only enhance the time delay from birth to mitosis of the cells, 

and higher values of digitoxin leads to larger time delays. 
 

Fig. 8 assumes no exposure to digitoxin for the first 29 days, with a concentration of 50ng/ml 

digitoxin at day 30 and for each day thereafter. Observe how the number of living cells starts 

to flatten out at day 30 and thereafter. 

 
 

 

Fig. 8: The number of cells  when the digitoxin level is 50ng/ml after day 30. 

  

A closer inspection shows that the critical concentration level is around 50 ng/ml digitoxin 

for this cell line, which is not very sensitive to digitoxin ( Haux (1999)). 

 

4 Conclusion 

The article provides a mathematical description based on the theory of differential equations, 

for the proliferation of malignant cells (cancer). A model is developed which enables us to 

10 20 30 40
Time @days D2×108
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1 2 3 4 5 6
Time @days D150000
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350000
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describe and predict the dynamics of cell proliferation much better than by using ordinary 

curve fitting procedures. Theoretical results for the total number of cells (living or dead) is 

found to be in good agreement with experiments for the cell line considered, assuming 

different concentrations of digitoxin. The numerical results show that by introducing amounts 

of digotoxin, the time from birth to mitosis increases, which effectively gives a mitosis delay. 

The delay is probably connected with changes in the Ca ions concentration inside the cell. 

The enhanced time between the birth and mitosis of a cell leads effectively to smaller 

proliferation rates. This mechanism is very different from the mechanism appealed to by 

standard chemotherapy and radiotherapy where the death ratios of the cells are mainly 

affected. Based on the literature and the present results we have established the following 

different mechanisms effectively reducing proliferation: a) necrotic death, b) apoptosis and c) 

enhanced time between birth and mitosis. The last mechanism is as far as we know new.  

 

By systematically analyzing and building models for the mechanisms appealed to by standard 

treatment, and by use of digitoxin or other drugs which are likely to emerge, we expect that a 

more specific treatment can be found for a given cell line, which increases the probability of 

a successful treatment. The critical digitoxin level concentration, i.e. the concentration level 

where the number of living cells is not increasing, is approximately 50 ng/ml for the cell line 

we investigated in this article. It is most likely closer to 25 ng/ml for other malignant cell 

lines (prostate cells for example; Haux 2000).  Therapeutic plasma concentration of digitoxin 

when treating cardiac congestion is about 15-33ng/ml, but individual tolerances are large. 

The effect of digitoxin during cancer treatment is therefore very promising. 
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Appendix A 

Assume that all quantities are given at time t. The following algorithm is used for calculating 

the values at time t t+ ∆ and τ τ+ ∆ ,where tτ∆ = ∆  
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The boundary condition is given by 
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The total numbers of living cells are 
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