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Tumor Micro-ecology and Competitive Interactions

§. MicHEeLsoN,T B. E. MiLLER, T A. S. GricksMANT anD J. T, LerTat

t Department of Radiation Medicine and Biology Research Rhode Island

Hospital: and Brown University, Division of Biology and Medicine, Previ-

dence, Rhode Island 02902, U.S.A. and 1t Michigan Cancer Foundation, Meyer

L. Prentis Cancer Center, 110 E. Warren Avenue, Detroit, Michigan 48201,
USA

(Received 6 January 1987, and in revised form 15 April 1987)

Three nested models describing the growth of individual subpopulations in a
heterogeneous environment are described. The models represent the dynamics of
two populations which compete, to varying degrees, for common resources. The
first model describes growth in a totally non-competitive micro-environment, the
second model describes an ecology in which competition is proportional to com-
petitor population size, and the third model ecology extends the model described
by Jansson & Revesz (1974), which allows one population to emerge from the other.
The critical points for each model are defined using the isoclines derived from the
Ordinary Differential Equations (ODE’s) describing competitive growth. The critical
points for each model are characterized by the signs of the eigenvalues of the
variational inatrix at each point. The theoretical results of the analysis show that a
competitive model ecology with Verhulstian logistics allows four critical points: the
origin which is a repeller, two competitive exclusion points, and an equilibrium
state (Waltman, 1983). The extended model ecology of Jansson & Revesz (1974),
allows three critical points: the origin which is a repeller, competitive exclusion of
the first population, and an equilibrium point. Data from a human adenocarciroma
of the colon and murine mammary tumors are used as qualitative measures of the
dynamics of the three micro-ecologies. Issues such as stochastic extension to model

small populations either for clonal extinction or heterogeneous emergence are
discussed.

Introduction

This paper analyzes three nested models which describe subpopulation growth in
heterogeneous tumors, each constrained by logistic growth. The first model describes
a non-competitive environment. The second is a Lotka-Volterra competition Model
with Verhulstian logistics (the CV Model), and the third is an extension of a model
developed by Jansson & Revesz (1974) that describes cellular mutation in a competi-
tive milieu constrained by Verhulstian logistics (the JRE Model). »
Our results show that qualitatively different dynamics can be expected from each
of the models. Growth data obtained from a human adenocarcinoma of the colon
(Dexter & Leith, 1986, Leith et al, 1987), and a murine mammary turnor (data
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provided by Heppner, Miller, and Miller of the Michigan Cancer Foundation) was
used to qualitatively verify growth dynamics in the heterogeneous milieu.

Background

in vivo has been described by logistic dynamics (€.g-
Mayneord, 1932; Steel & Lamerton, 1966; Brunton & Wheldon, 1980; Steel, 1980).
From these general observations, mathematical models for logistic growth have been
developed into a vast literature for both deterministic and stochastic models (e.g.
Laird, 1964, Burton, 1966; Dethlefsen et al., 1968, Fredrickson et al., 1967; Wette
et al., 1974a,b).

All logistic models assume that growth is bounded by limits in the environment.
Damping of the growth rate in the Verhulstian model is due to intraspecific competi-

tion for limited putrients. Evenin modified versions, the growth rate of the population
y for cell loss

is assumed static, and intraspecific competition accounts completel
and damped overall growth. In one form of the Gompertz model, retardation of
growth is attributed to non-specific causes intrinsic to the emerging population. The
rate of growth decays exponentially to zero purely as a function of time. Explicit
cell loss terms are ignored. All the logistic models assume homogeneous populations,
growing at a single rate in a homogeneous environment. In a heterogeneous tumor,
emerging subpopulations may invalidate these assumptions.

We assume that cell populations must compete for vital nutrients, growth factors,

etc. in the tumor milieu. If two populations compete for a common resource, the
generic form for the model ecology is

dp,/dt= [Logistic Growth of Pi] —[Competition P,P,]

In general, tumor growth

(1)
ap,/dt= [Logistic Growth of PZ]—[Competition P,P].

The simplest biological assumption is that the interspecific competition is propor-
tional to the size of the combined populations. In a tumor, the proportionality
constant that represents the interspecific competition between the two populations
nutrients, growth factors, etc. When defining a
defining interspecific
be more efficient

is a measure of competition for
simple model such as (1), the two proportionality constants
competition need not be the same. In fact, one population may
in nutrient acquisition or processing than the other.

An extension of the competitive interaction models was derived by Jansson &
Revesz (1974). They suggest that cells from one population can be transformed into
cells of the other. They observed such transformations in an Ehrlich ascites tumor,
and termed them «endomitoses”. Diploid cells of the tumor become tetraploid by
duplicating their DNA but not dividing. Other tumor systems have been observed
that also display mixed populations (e.g. Dexter ef al, 1981; Nervi et al., 1982;
Jakobsen et al., 1979, 1983; Helio et al., 1985).

The phenomenon of tumor heterogeneity Of intraneoplastic diversity has been
well described (e.g. Heppner, 1983; Heppner ef al., 1984, Spremulli & Dexter, 1983;
Dexter & Leith, 1986; Leith & Dexter, 1986). Conceptually, variant subpopulations
of tumor cells arise in a neoplasm by the process of mutation and selection during
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tumor evolution and progression (Goldie & Coldman, 1979; Goldie et al, 1982,
Foulds, 1954a,b,c,d). As a first approximation we will try to describe such
heterogeneous tumor growth under three model ecologies: a non-competitive growth
model, & Lotka-Volterra competition Model with Verhulstian dynamics (the CV
Model),and an extension of the CV model which allows for populational transforma-
tion as proposed by jansson & Revesz (1974), (the JRE Model). In the CV and
JRE Models, interspecific competition damps the growth rates of the individual
subpopulations, and the measures of gathering and processing efficiencies for
nutrients, growth factors, etc. are represented in each model by the interaction and
growth parameters. In developing our models, we have assumed that the two cell
populations compete for the same resources, and that the “nutrient capacity” of
the environment is limited, i.e. what one population gets the other does not.

Definitions

(1) Given a sequence f, >0 and n -0, a point P is called an omega limit point
of a function if there is a sequence I, such that the function converges to P as
n - o0, The set of all such limit points is the omega limit set of the function.

(2) A critical point (in 2-space) of the ODE system

x'=f(x,)
y'=g(x)
is the solution of f(x, y)=0 and g(x,y)=0.

(3) A trajectory in phase space is a parametric (vector) function (x(s), y(s)) for
s real. If the trajectory is bounded as s - 00, the omega limit set is not empty and
consists of all critical points, trajectories which join them, and closed curves around

them (Waltman, 1983).
(4) A critical point is stable if for any small number &, there exists a value, T,

such that (x(1), y(7)) is within € of the critical point (x*, y*), when > T. 1t is
asymptotically stable if it is stable and the limit of the trajectory is (x*, y*) as t goes

to 0.
(5) Assuming that f and g are differentiable, the variational matrix for the ODE

system is given by
ﬁ_[af/ax af/ay}
ag/ox aglay]

(6) The variational matrix A is evaluated at each critical point. If, for a given
critical point, all the eigenvalues of A have negative real parts, then that point is
asymptotically stable. 1f they have opposite sign, the point is a saddle point, and if
both have positive real parts the point is a repeller.

Analysis
THE NON-INTERACTIVE MODEL

The first model we analyze describes growth in a non-interactive ecology. In this
model, there is no competition for resource and the carrying capacity for each
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population determines the total size of the tumor, the dynamics of growth are
independent and the model is given by

x'=rx(1-x/K;)
y' =ry(1-y/Ks).

If we hypothesize that the carrying capacity of the environment, K, determines
the size of the total tumor, ie. the total population size, x-+y approaches K
Jogistically, the model becomes

x'=rx(1—(x+y)/K)
y'=ry(1—(y+x)/K).

Equation (2) is just a special case of the CV Model (rxy/K is the competitive
interaction term). Therefore, if the environment determines the carrying capacity
of the tumor system, the resources must be competed for, and a competitive
interaction model must be used to describe growth.

Upon simple inspection, the model given by (2) allows four critical points:
E,: (0,0), Ey: (K,,0), Ex: (0, K,), and E;: (K, K,). The origin is a repeller, and
growth along cither axis describes a homogeneous tumor growing logistically in a
host. Emergence of one population from the other is ruled out. E;, the equilibrium
point, is globally stable, and any heterogeneous implant must achieve a total tumor
size of K,+ K, and an end population mix of K,/(K;+K;).

Volumetric and compositional data from the DLD-1 human adenocarcinoma of
the colon rule out these dynamics (see Figs 3 and 5 of Leith et al., 1987). Data
observed in two murine mammary tumor admixtures also appear to rule out these
dynamics (Heppner et al., 1986, personal communication). Rather, there appears
to be some form of interaction in vivo.

(2)

(2)

THE CV MODEL
x'= rlx(l—x/Kl—)\ly)
y =ry(l —y/Ky— AoX).

(3)

Waltman (1983) analyzes this model in detail. He shows that there are 4 critical
points: Eq: (0, 0); E;: (K4, 0); Ex (0, K,); and Es: (x., y.), a population equilibrium
point. The stability of these points is a function of the choices for (A, A,) as follows:

E, is always a repeller, i.e. if any cells exist in the system at time 0, growth is
inevitable, and extinction is impossible.

E, is either asymptotically stable, i.e. competitive exclusion of the second popula-
tion occurs {when A, K, <1 and A,K,>1),oritisa saddle point, the stable manifold
of which is the x-axis. Therefore, depending on the KjA;, any tumor initially growing
in the open quadrant, i.e. as a heterogeneous tumor, either excludes the second
population, excludes the first population, or attains an equilibrium. 1f the implanted
tumor is pure, i.c. the initial state lies on the x-axis, then E; is asymptotically stable,
and the population approaches K, asymptotically. Similarly for E,.

. e
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E, is an equilibrium point and is determined by the interaction kinetics (K;A;) of
the system. If both KA; are less than 1, then E; is stable. Otherwise, it is a saddle
point. If E, is asymptotically stable, the populations can co-exist at

x+ Kiay =K,

(4)
y + Kz/\zx = Kz.

If E4is a saddle point, the system will go to either E, or E; as a function of the

A’s and the initial conditions.

THE JRE MODEL

In this model we assume that transformation from x to y cells occurs. The model
is given by

x'=rx(1=x/K,—Ay)—px )
y'=ry(1—y/ K; = A2X) + pX.

Note that system (5) is identical to system (3) except for the transformation terms

—px and +px. First we show that Lotka-Volterra Competition type dynamics can

actually be extended to the Jansson and Revesz Model. The CV Model is

x' =rx(1-x/K, —Ay)

. (6)
y= ry(1 ‘)’/Kz—/\zx)-
Expanding
x/:rlx“(rl/Kx)XZ_rl)\le 7)
y' =ny —(rz/Kz)yz— P AoXY.
For their initial model, Jansson & Revesz (1974) derive
D'=aD - D8pF,(U, D)
' (8)

U,:bU— UéuFu(U, D)
where D(t) is the size of a differentiated population at time f, U(t) is the size of
an undifferentiated population at time ¢, and the damped (i.e. logistic) growth of
the populations is described by function Fp and Fy.

They claim that growth is damped due to factors proportional to the number of
cells in the total population, i.e. §p =8y = s and Fp(U, D)=Fy(U,D)=U+ D.
Their equations then become

. D'=aD - 8D’ - 8DU
U'=bU-8U>~8DU.

Their initial model is then a special case of the CV Model, which they extend to

include a transformation factor as follows
DI = aD - DSFD(U, D) - I..LD

U' = bU — UsFy (U, D)+ uD.

(9)

(10)
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Now, considering the general form of the JRE Model (5), one can identify the
critical points of this system as the solutions of

rx(1—-x/K, —Ay)—px=0

(11)
ry(1 -y/ Kz—Azx)‘*‘Px =0
E(): (09 0)
E,: (0, K>)
E,: (x., y.) the solution, if it exists, of
(ry—p)x _(rl/Kl)xz —riA;xy =0
(12)

roy =12/ Kz)y2 —(rApy = p)x=0.
Because, x # 0 we divide the first equation by x and solve,
y=—(1/ M K)x+(r=p)/ 1k
and, (13)
x = (ry)(1 -3/ K2)/ (12229 = P)-
For the solution to remain in the positive quadrant, either
y>plrA: and y<K,
or
y<p/rAsy and y> K.

In the admixture experiments we have always assumed that the implants are far
smaller than the carrying capacity of the mice. Therefore, y < K, and we use¢ the
first series of conditions as our working hypothesis.

The variational matrix is given by :

A= [(rl—p)._(zr‘/Kl)x’Mny

—AnX :\
—Ast2y P r2—~(2r2/K2)y—)\2r2x )

At E, the matrix becomes

[(rx”l’) 0]
p rad

If r, < p, then E, is a saddle point with the unstable manifold lying along the y-axis.

If r,> p then the origin is a repeller.
At E, the matrix is

[(r1~p)—)\1r1K2 0 }
—Ar, Kyt p —Tr '

If p<r—AnK;then E, is a saddle point. Otherwise, it is an attractor.
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We can rule out closed orbits in the closed positive quadrant by using the Dulac
Criterion (Waltman, 1983). The Dulac Criterion states that if there exists a function,
g(x, y), such that the quantity

(q(x, »)f(x, )+ (q(x, ), g(x, ¥)),

does not change sign in a simple closed region about a critical point, then the system
has no closed orbits in that region. Let g(x, y)=1/xy. Then, the sum of partial
differentials is .

‘(’1/K1J’)_("2/sz)“P/y2-

Therefore, if E, is not asymptotically stable, E; must be. Note, that there is no
critical point on the x-axis, i.e. competitive exclusion of the y population is imposs-
ible as long as the x population exists. In fact, under this model, y cells will emerge
from the x population at the given rate p, even when pure tumors are implanted.

Discussion

In the following three subsections we discuss the types of data observed from in
pivo experiments and how they relate to the theoretical models, the emergence of
populations and the types of dynamics which one should expect in a micro-ecology
described by the JRE Model, and the dangers of extrapolation of our results to the
small population case.

OBSERVED DATA: EQUILIBRIA AND EXCLUSION

The experimental data upon which these analyses were based have previously
been published (Leith et al, 1987). In this regard, we note that the heterogeneous
DLD-1 (human adenocarcinoma) appears to attain a stable compositional equi-
librium at an 88:12 (D:A) composition. A 50:50 admixture always returns to the
stable point, and starting at the stable point the tumor remains stable and grows
bigger than any other admixture. These dynamics are similar to those observed by
Jansson & Revesz (1974) in the Ehrlich ascites tumor.

Mammary tumor admixture data from a 50:50 mix of 410.4 and 66C14 cells
exhibits compositional divergence (see Fig. 1(a)(b)) as follows

4 tumors 0-10% type 66C14
2 tumors 10-20% type 66C14
1 tumor 70-80% type 66C14
1 tumor 80-90% type 66C14
2 tumors 90-100% type 66C14.

We term dynamics which exhibit two tracts of competitive exclusion “segrega-
tional”.
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Mammary tumor admixtures in a 50:50 mix of 44FT0 and 66 cells exhibit
compositional equilibrium as shown in Fig. 2(a) and (b)

2 tumors 0-10% type 66
2 tumors 10-20% type 66
5 tumors 20-30% type 66
0 tumors 30-40% type 66
2 tumors 40-50% type 66.

These equilibrium dynamics are similar to those observed in the Ehrlich ascites
data described by Jansson & Revesz (1974) and the DLD-1 data described by Leith
et al. (1987).

Waltman (1983) described three types of exclusion dynamics in the CV Model.
Populations may be excluded when one successfully outcompetes the other for vital
nutrients (we term these dynamics CE 1 and CE 11). Or, populations can be excluded
when neither is a good competitor, but the initial status of the tumor heavily favors
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one over the other (we call this CE 1II). Trajectories following CE TII dynamics
bifurcate as a function of initial conditions in the ecology (see Fig. 3). Populations
can also achieve a co-existent equilibrium as a function of the interactive terms KA,
(when both are less than 1).

In the JRE Model, CE I and CE III type trajectories that describe exclusion of
the x population are the only allowable exclusion dynamics. However, two new
types of dynamics exist. We term them “emergence exclusion” and “‘emergence
equilibrium”. We discuss these dynamics in greater detail below.

POPULATION EMERGENCE: EQUILIBRIUM AND EXCLUSION

Figure 4 shows the emergence of y cells from a pure tumor of type x cells which
grows according to the JRE Model specifications. The simulated tumor was implan-
ted at time 0. The result is a heterogeneous tumor that converges to a compositional
equilibrium after y cells emerge. The parameters used to generate the phase plot
were K, A, = 0-071 and K,A,=1-34. These same parameter settings in the CV Model
result in competitive exclusion of any y population (CE II dynamics) injected at
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time 0. However, in the JRE Model, even when p is small (1077), there still emerges
a clone of y cells that grows to an equilibrium point of 6:5x 10" cells in a tumor
of 1:4%10” cells.

We have observed two types of clonal emergence. In the first, when the transforma-
tion rate is less than the reproduction rate of the x cells, the origin is a repeller.
The x’s replenish faster than they are removed due to competition or transformation.
If the A; allow it, we call the equilibrium they attain an “emergence equilibrium”.
When the transformation rate is greater than the rate at which the x cells replenish
the population, the origin is a saddle point. This situation may arise in the presence
of strong mutagens. In this case, the x cells leave the system (either by dying or
transforming into y cells) faster than they enter it. Therefore, the dynamics of this
ecology dictate a CE I type of exclusion. We call these dynamics ‘‘emergence
exclusion”.

Other modelers (Goldie & Coldman, 1979; Goldie er al, 1982) suggest that
resistance to chemotherapy results from a mutation to the genetic structure of the
cell, i.e. x’s become y’s. They estimate that the rate of transformation is one mutation
per 10® mitoses. Our initial analyses show that the emerging clone, should it survive
an initial growth phase, will either attain an equilibrium mixture, or will, in the face
of no back mutations, entirely exclude the original population. Therefore, clonal
emergence, even in an established tumor need not result in assigning the emerging
clone to a minority status. Furthermore, we have shown that if an equilibrium point
is attained, it is globally stable. Therefore, in these models, displacement from
equilibrium will result in equilibrium dynamics that return the population to its
asymptotic state.

The model proposed by Goldie & Coldman (1979) for the emergence of resistant
subpopulations results in a theoretical population which is still highly sensitive to
drug therapy. One criticism of the Goldie-Coldman model has been that certain
tumors observed in vivo (especially those of the GI tract) are predominantly drug
resistant (Goldie, personal communication, 1986). Goldie & Coldman have been
able to account for this phenomenon by adjusting the growth rates of the emerging
population so that by sheer speed the drug resistance of the entire population can
be established (Goldie, personal communication, 1986). Our studies with the JRE
model suggest a second mechanism, in which two populations, with the same growth
dynamics, can attain an equilibrium point which corresponds to the drug resistant
state.

EXTRAPOLATION TO SMALL POPULATIONS: A DANGER

Deterministic models are limited to describing population behavior by some
measure of central tendency, rather than describing the individual behavior of each
population member. On the other hand, experimentalists are constrained by the
sensitivity of their assays in interpreting their data. So what may appear to be
competitive exclusion might, in fact, be an equilibrium point achieved far below
the sensitivity threshold of an assaying technique. Furthermore if p is very small,
predicted emergence of a clone may, in fact, be thwarted because early rendom
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deaths incurred by the new clone upon emergence result in population extinction
before the “average” behavior of the model can take affect.

In the CV and JRE Models, we can adjust the model parameters representing
environmental factors so that an equilibrium point is set as near to exclusion limits
as we choose. For example, (see system (4)), suppose we wish to exclude the x
population in the CV Model. Fix y. and all model parameters except A,. Let m be
any small number ={. Then, we can adjust A, so that x. becomes less than m. We
term this phenomenon “asymptotic criticality”, because, qualitatively, the x popula-
tion appears to be excluded in of our assays, when, in fact, an equilibrium point
has been achieved with population sizes so small that we will probably never observe
them.

On the other hand, predicted equilibria at population levels near either axis may
never accrue. As each clonal variant (y cell) emerges, it faces it’s own individual
competition scenario with the resident population (x cells). When modeling with
deterministic models, moderate fluctuations about the mean activity levels in large
populations are ignored in that they will probably not result in population extinction.
However, in small populations, even minor fluctuations about the mean could result
in a measurable probability for population exctinction. Therefore, for dynamics in
a small population, one should employ a stochastic model for either emergence or
extinction, and not extrapolate these results to the axis. When the population gets
“big enough”, the deterministic models described above can take over, and if the

equilibrium points are globally asymptotically stable, the end dynamics remain as
described.

Summary

We have identified three micro-ecologies under which heterogeneous tumors may
evolve. The first is the non-interactive growth ecology. The tumors grows to size
K,+ K, with end population mix K,/ K,+ K,. Using both compositional and
volumetric data observed in the DLD-1 (Leith et al., 1987) and murine mamimary
tumor systems, we have ruled out these dynamics for these types of tumors.

The second ecology is described by the CV Model. The tumor will never g0
extinct. Furthermore, either competitive exclusion point can be asymptotically stable.
There also exists a compositional equilibrium point which may be asymptotically
stable. When a pure tumor of either type is implanted, the resultant tumor will
remain pure and grow logistically, approaching the asymptotic carrying capacity of
the environment for that cell species.

The third ecology is described by the JRE Model. In this ecology, the origin can
be either a repeller or a saddle point with the unstable manifold lying along the
y-axis. What this means is that when one starts with a pure tumor of type x and a
transformation rate, p. If p is greater than the growth rate of the x population, the
trajectory tends toward {he origin in the x-direction and toward E, in the y-direction.
If p is less than the growth rate of the x population, the origin is a repeller, and
the trajectory tends away from it in both the x- and y-directions. Competitive
exclusion of the x population is an acceptable dynamic, but there is no dynamic
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for competitive exclusion of the y population. As long as there are x cells present,
y cells will, on average, emerge. Additionally, when the E, critical point is a saddle
point, a stable equilibrium point must exist.

We would like to thank Dr James Goldie for his helpful suggestions in the preparation of
this manuscript.
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