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ABSTRACT

A mathematical model of the proliferation cycle of leukemic cells is presented, based
on a description in terms of stochastic point processes. The expected-value equations are
integral equations of the Volterra (renewal) type. Their equivalence with a class of
functional differential equations is proved.

0. INTRODUCTION

In the paper a mathematical model of cell proliferation dynamics is
presented. Section 1 contains notions and results from the theory of
stochastic point processes. In Sec. 2 the integral equations of growth
dynamics are derived. In Sec. 3 a theorem is proved which shows that the
growth equations can be replaced by certain functional differential equa-
tions. An investigation of the solutions of growth equations and some other
problems are described in Part II of the paper.

1. STOCHASTIC POINT PROCESSES

In this section, the notation follows that used in the survey paper [4). A
stochastic point process (SPP) is a randomly located population or a
random sequence of events in time [4, p.301]. For an exact definition some
notions from measure theory are necessary. Namely, let 9U be the space of
all nonnegative integer-valued measures N (-) defined on the o-algebra
B (R) of all Borel sets of the real line R. Further let N(4)< + o for all
bounded 4 €8, and let § be the o-algebra generated by cylinders:

(N:N)<k} (k=0,1,-----, AEB). (1.1)
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DEFINITION 1.1 [4,p. 304]

A SPP is a measurable mapping X from a probability space (R, &, &)
into (9, S).

Remark 1.1. The probability measure P in (90, S) is induced by X, i.e.
P=®X~"H[I]

Remark 1.2. Consider [4, p. 308] a family £ of sequences w={x,},
neZ={0, =1, *2,---}. Each x, is treated as an “event.” Then the

mapping
N(A,wy=card{n:x,Ewn A} (WER, A€®D), 12)

where cardc is the cardinality of the set C, is one-one from @ into 9. It is
possible to introduce in @ a o-algebra F in a way that [4, p. 309] any
probability measure ¥ on (£, F) defines a SPP. Moreover, one can prove
that SPP understood as a sequence of events and SPP understood as
measure-valued mapping are equivalent notions.

DEFINITION 1.2

The process N,=N([1,, f]), where ¢, is a fixed point of the real line, is
called the counting process of the SPP.

Remark 1.3. N, is the number of events in [/, #].
DEFINITION 1.3
The expectation measure (EM) M(A) of the SPP is defined [4, p. 318] as

M(A)=E[N(A)]=fN(A,w)??(dw) (AEB). (1.3)
Q
DEFINITION 1.4
If the EM M(-) is absolutely continuous with respect to the Lebesgue

measure, then the expected density (ED) of a SPP is a locally integrable
function m(#) such that

M(A)=fm(t)dt, (AED) (1.4)
A

or more simply,

M(df)=m(r)dt. (1.5)
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DEFINITION 1.5 [4, p. 344]

A randomly shifted SPP X~ is a SPP constructed from the given SPP X
so that

Xi=Xx,+ Y, (1.6)

where {Y,} is a family of independent identically distributed random
variables independent of {x,}.

Remark 1.4. If B(y)=prob(Y,<y) and there exists a density b=
dB/ dt, then for the EM M* of the SPP X it holds [4, p. 343] that

M’(A)=L{be(t—u)M(du)}dt (1.7)

and the ED m?* (¢) exists. Furthermore, if the ED m () of the SPP X exists,
m*(t)=m(t)*=b(1), (1.8)
where the asterisk denotes convolution.

DEFINITION 1.6 [4, p. 344]

The randomly deleted SPP X is a SPP constructed from the SPP X so
that with given probability p each event x, is retained (independently of all
other events) and with probability 1 —p it is omitted.

Remark 1.5. For the EM of the SPP X it holds that
MA(dt)=pM(dt), (1.9)
and if the ED m (?) exists,
mé(t)=pm(t). (1.10)

DEFINITION 1.7

The sum of the SPPs X' and X? is a SPP including events of X! as well
as of X2

Remark 1.6. For the EM of the sum of SPPs it holds that
M(dt)y= M'(dr)+ M?(dD), (1.11)
and similarly for the EDs (if they exist):

m(t)=m"(£)+m¥(1). (1.12)
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We now construct a simple SPP F which will be useful in further
considerations. Let the number of events be finite and equal L. Each event
occurs (independently) in the time interval [¢, ¢ + df] with probability f (¢)dt.
We assume supp (f) C [0, 4) for some h >0, where the support of fis defined
as

supp(f)= {1:f(1)#0}
and the bar denotes the closure of a set.

LEMMA 1.1
The EM and ED of an SPP F are given by the formulae

M(A)=Lff(t)dt, (1.13)
A

m(t)= Lf(1). (1.14)
The easy proof, based on the use of Definitions 1.3 and 1.4, is omitted.

2. CONSTRUCTION OF THE MODEL

The basis on which the mathematical model is built is a structural
representation of the proliferation cycle of acute lymphoblastic leukemia,
due to Mauer and Evert [5, 6, 10]. Similar principles lead to the construction
of more sophisticated models (see Part II). Figure 1 shows the route of each
cell through the cycle. Circles denote phases of cell development; the most
important are: 1, DNA synthesis (S); 3, mitosis (M); 4, resting or inactive
phase (GO); 5, initial growth (G1). Phase 0 symbolizes death of the cell.
Possible transfers are denoted with arrows. After leaving phase 5 each cell
enters and leaves phases 1, 2, 3. In phase 3 the cell undergoes division, and
each of the two daughter cells enters phase 0, 4, or 5 with probabilities my,

Fic. 1. Mitotic cycle of acute lymphoblastic leukemia cells. Details in text.
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my, ms respectively. From phase 4 the cell always passes to phase 5. The
time spent by each cell in the ith phase is a random variable v with given
density p; (7). For reasons that will be clear in the sequel, the starting time
for the model is chosen to be r,= —2h (for some yet unspecified constant
h>0). The history of the cycle is characterized by the number N2 of cells in
the ith phase at ;= — 2k together with the initial distributions (ID). The 1D
describes the random time after which a cell occupying the ith phase at
ty= —2h leaves it (independently of all other cells). It is assumed that
density f(¢) of random variable ¢ distribution exists.

The cycle so defined is easy to simulate with the aid of various discrete
simulation techniques [5, 6, 10]. Such “Monte Carlo” methods have, how-
ever, certain disadvantages. To obtain information about the moments of
the process, a number of realizations must be modeled with various initial
seeds for the random-number generators. In addition, in the case of popula-
tion growth the number of necessary logical and arithmetical operations per
unit of model] time increases (exponentially [8]). The mathematical model
developed in this paper describes the expected cell count and seems to be
quite effective in growth-curve modeling [8]. To obtain formulae for higher
moments, a more rigorous approach to SPP techniques is required, (com-
pare [11, Chapter 5] and Sec. 4). These formulae, when obtained, may be
complicated enough to be not programmable in an economic way. In this
case the Monte Carlo methods would be the only reasonable tool. This
interesting subject requires further research.

Consider now the balance of the ith phase (Fig. 2). Introduce SPPs X,*,
Y, G, X;~ (see Fig. 1). The events of these SPPs are: the moments when
cells enter phase i (for X;*), when cells leave phase i (for X,;”). The SPP X,*
will be called the influx, and the SPP X,™ the outflux of phase i. The SPPs
Y; and G, are the partial outfluxes due to cells leaving phase i —1 (for ;)
and leaving the initial pool of N2 cells (for G,). The SPP Y, is X,;* randomly
shifted (Definition 1.5), X, is sum of Y; and G, (Definition 1.7) and G, is a

FiG. 2. Balance of ith phase of the cycle. Details in text.
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SPP of the type considered in Lemma 1.1. So assuming that for all the SPPs
in the cycle EDs exist, and denoting the EDs by x,*, y,, g;, x,~, we have {cf.
(1.8), (1.12))

x (B)y=y () +8(2),
yi(t)=x"(1)+p(1)

Figure 1 shows that X* =X, X;"* =X, X5;"*=X,, while X5"* may be
treated as a randomly deleted (Definition 1.6) SPP 2X; . The SPP2X;, is a
SPP having two simultaneous events in place of each event of X;™. Similarly
X is randomly deleted SPP 2X;” — X.*. Subtraction means here rejecting
from 2X; exactly those events which belong to X5, and makes sense in
this particular case. EDs exist for all the G;>s (Lemma 1.1) and thus for all
the SPPs in the cycle (Remarks 1.4, 1.5, 1.6). It holds then that

} (1> —2h). 2.1

xi (0= x5 (1),
x3 ()= xy (8),
x5 ()= x5 (1), 2.2)
x5 (D =2myx5 (1),
x5 (1) = xq () +2msx3 (1)
Writing x; for x,” (i=1,2,4,5) and x, for 2x; (which means that the

dividing cell in mitosis is counted as two cells) and using (1.2), (2.2), (1.14),
we obtain

x(f)= f " A(t-T)Bx(T)dr+g(f) (1> —2h), (23)
~2h
where

x=col(x;), g=col(g)=col(N2f), 2.4)
A=diag(p,), (2:5)

0O 0 0 0 1

1 0 0 0 O
B=|0 2 0 0 0] (2.6)

0 0 m 0 O

0 0 m 1 O

The Volterra (renewal) equation (2.3) has a well-defined forward-continu-
able solution in various classes of functions (compare Remark 3.1) and
describes the first moment of the population growth.
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It is not difficult to show that expected number N(¢) of cells occupying
phase i is given by the equation

N(5)=N°= f_’Zh(a—l)x(f)dT, 2.7

where N=col(N;), N®=col(N?), I=identity matrix. N4(f) equals twice the
number of cells in the process of mitosis, i.e. the number of daughter cells to
be present when mitosis ends. Each ¥, is a combination of expected values
of counting processes for outfluxes.

The cycle dynamics was modeled [8] with the use of a time-discrete
version of (2.6), (2.7) with results similar to those obtained with Monte
Carlo methods. An example of growth curves (taken from [8]) is depicted in
Fig. 3. It is seen that the growth curves tend to the exponential and that
initial oscillations occur. It will be proved in Part II that the oscillations can
be eliminated if the initial distributions are chosen according to certain
rules (compare [6]). The biological meaning of such choice is also clarified
in Part II.

Some biologically important assumptions must be imposed on the p,’s
and f’s. First of all there must exist a constant 4 >0 [the same as in (2.3)]
such that

supp(p,) C(0,h) (i=1,---,5). (2.8)

This condition means that time spent by the cell in each phase is nonzero
and bounded above (with probability one). This is because in each phase
(except perhaps GO, the nature of which is quite uncertain) specific bio-
chemical processes are observed that cannot last infinitely long. For similar
reasons it must hold that

supp(f)C{—2h,~h) (i=1,---,%). (2.9)
The functions p; and f; are normed probability densities; hence
['pnai= [rna=1 (=129, (2.10)
0 —2h
Pinfi > 0. 2.11)

The formula (2.7) may be replaced by another, more convenient one.
LEMMA 2.1

Assume that the solution of (2.3) is well defined on [—2h, o). Then for
t> — h it holds that

N(1) = fo "Au) [ : Bx(v)dodu. Q@.7)



CELLULAR POPULATION DYNAMICS. I 219

Proof. We have [cf. (7.2)]
N()=N2+ f Lbxt () —x(T)]dr  (¢> —2h) (2.12)
—2h

where b,=1 (i=1, 2, 4, 5), b,=2. From (2.3), (2.4), (2.9), (2.10) it follows
that
f‘ x,-_(T)dT=bif‘ f pi(r—s)x*(s)dsdr+N®  (t> —h)
—2h —2hY =2h
(2.13)

Change of the order of integration in (2.13), use of (2.10), and substitution
into (2.12) implies

Ni(1)=b,.f’ xi+(s)fs+hpi(—,-—s)d'rds (t>—h). (2.14)
t—h ¢
We use (2.2) to obtain

N(t)=f’_hf’”"A(T—s)ax(s)dfds (t> —h). (2.15)

Change of variables gives (2.7). The lemma is proved.

Remark 2.1. The above reasoning may be generalized to the case when
the probabilities m,, ms, m, are functions of time [i.e. B=B(f)] and the
distribution of the phase-i residence time depends on the moment at which
the cell enters phase i [i.e. p;(7)=p(7, 1), A(T)=A(r, #)]. From the viewpoint
of SPP theory, the operations of random shift and random deletion must be
replaced by a more general operation of clustering [4]. This is done in [9].
The analogues of (2.3), (2.7) are then

x(5)= f—tzhA(t — 7, T)B(7)x(7)dr +g(1), (2.16)

N(1)= fo § f, i A(u, 0)B(0)X(v) dv du. 2.17)

3. REFORMULATION OF THE MODEL

In this section we prove a theorem which enables investigation of
solutions of (2.3), (2.7) as solutions of a certain linear functional differential
equation [7, Chapters 16-23]. The theorem holds for integral equations
more general than (2.3):
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THEQOREM 3.1
Let:

(1) K(t)€ BV(— o, 0] be a real (n, n) matrix function of bounded variation
without singular part, defined for s €(— o0, 0],

(2) K(?)EBV]0, ), K(£)= —K(—1),

(3) supp(K)C(— 4, 0),

(@) u=col(y), u:[—2h, T]>R™ be bounded, Lebesgue measurable and
T>0,

(5) B, k=1,---,m, be real (n, n) matrices,

(6) g=col(g), g:[—2h, T]>R" be bounded, Lebesgue measurable,

(7) supp(g)C[—2h, —h).
Then:

(A) the integral Volterra equation

x(1)= f_’th(t—ﬂ[ > (7B [x(T)dr +g() *)

k=1

has on [—2h, T] a square-integrable solution, which is absolutely continuous
(AC)on (—h, T),
(B) on [0, T'] the solution of (*) satisfies

x(t)= K(f-’r)[ S uk(’r)Bk]X(‘T)dT, (2)
t—h =1
and
(C) almost everywhere
x(1)= f [K(s) [[ § uk(s"'f)Bk]X(S"'t)}, (®)

(D) generally, Egs. (a) and (b) are equivalent (in the sense of solutions
equal almost everywhere) for initial conditions @ from the subspace @ of
C[— h, 0} defined as

m

<1>={q>e Cl~h, 0]: 9(0)= f_"hk(—s){ s uk(s)nk]<p(s)ds}, ©

where C{— h, 0] is the Banach space of n-vector real functions continuous on
[ - h’ 0]’

(E) solutions of (*), (a), (b) are infinitely forward continuable (if u and g
are extended onto [ —2h, 0)).
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Remark. 3.1. The functions ¥, may be treated as multiplicative con-
trols of the system (2.3). Such controls will be introduced in Part II in
connection with optimal treatment protocols for leukemia. Substitution of
m=1,u =1, K=A, B,=B into (*) proves that (2.3) is a special case of (*).

Remark. 3.2. Part (A) of the theorem makes clear why the initial
distributions can “spoil” the smoothness of solutions for t €[ —2h, 0).

Proof of Theorem 3.1. (The words “almost everywhere” are omitted,
because it is clear where they should be used.) Assumptions (2), (3), (5), (6)
imply that K(t— 7)Z,u.(7)B, is square integrable on [—2A, T]X[—2h, T],
and g(f) is square integrable on [—2h, T)]. Therefore a square-integrable
solution of () exists on [—~2h, T}. The solution is bounded [assumptions
(2), (6)]. Furthermore the solution is AC for ¢ > — h fassumptions (2), (7)],
hence (A). To prove (B) it suffices to use assumptions (2), (6). We prove (D)
now. Equation (b) may be rewritten (this follows from the unsymmetric
Fubini theorem [3; 12, Theorem 10.3, p. 501]) as

x(1)= f_ohds{H(s, HYx(s+1), (3.1)

where
H(s, )= fjhd,{k(f)}[ él w(r+ z)nk}. 32)

For the existence of the integral in (3.2) it suffices that u is integrable with
respect to the measure generated by K. From assumption (1) we know that K
is sum of the AC part K and jumps of amplitudes K;, |2 K,| < 0o. This is
depicted in Fig. 4. All »,’s are integrable with respect to K because they are

} K (%)
K (%)
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i
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FiG. 4. Function li(t). Details in the proof of Theorem 3.1.
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Lebesgue integrable, and are integrable with respect to the atomic measure
generated by jumps because they are bounded [12, p. 469]. Hence [12,
Theorem 3.5, p. 457] H(s, ) is well defined. For similar reasons {12,
Theorem 5.8, p. 457] H(s, ¢) is BV with respect to s and Lebesgue measur-
able with respect to ¢. Hence [7, p. 94] (3.1) is a well-defined functional
differential equation (FDE) and with initial condition ¢(r)&€ C[— 4, 0] has
an AC solution on [0, 7] for arbitrary T > 0. Equation (a) has for the initial
condition ¢(¢)€ C[— A, 0] a well defined solution (assumption 3) which is
AC on (0, T]. However, at t=0, the solution has a jump, the amplitude of
which is equal to zero if and only if ¢ €® [compare (c)].

Assume now that x(¢) is a solution of (b) with initial condition ¢(¢). We
have

X(1) = x(0) = fo ’ f_“hl‘((s)[ S s +£)Bk]x(s +§)dsdi
+3K, fo ’{ S w+ t,.)Bk}x(é*- dE=L+L (150, (33)
where for =1, K has jumps. Assumption (3) implies (compare Fig. 4)
> K+ R(0)=KR(~ k) =0; (34)

hence

2 { - f; hr«s—s)[ > uk(sm]x(s)ds

= (¢ l:i(s - £)[ > uk(s)Bk]x(s) ds— I-((O)[ > uk(g)Bk}x(g) (£>0).
E—h k k
(3.5)

Integration of (3.5) implies

n-- 4 ¢ LEL D uk(s)nk]x(s)dsd& f K(O)[ uk(ﬁ)nk]x(é)dé
=_ j;'_hf((s—- 1)[ % “k(s)Bk]x(s) ds+ ffhk(s)[ % uk(s)Bk:lx(s)dg

+R(0) j; ’[ s uk(s)Bk]x(s)ds'. (3.6)
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Similarly, changing variables in (3.3),

I= ;K,( fo 4 j;io)[%uk(s)Bk}x(s)ds. 3.7)

t+¢

Finally, using (3.3), (3.4), (3.6), (3.7), we show that

qg—qm=—f'

-

K(s— t)[ > uk(s)Bk]x(s)ds'
h

k

+ f_ohf((s)[ % uk(s)Bk]x(s)ds. (3.8)
Knowing that x(¢) restricted to [ — A, 0] equals ¢(#), we obtain
x(f)=— f ! k(s—t)[ > uk(s)Bk}x(s)ds+‘I'o, 3.9)
t—h k
o= [* K@) S w(s)8. Jots)ds+900). (3.10)
~h K

If o €®, we have ¥, =0 and we can write (3.9) in form of (a). Conversely, if
@€ ®d, then the solution of (a) is AC on [0, T], and using the above
reasoning we can return to (b). This proves (D). To prove (C) we must show
that the solution of (#) on [~ A, 0] belongs to ®. This is obviously implied
by assumption (7), because there exists § >0 such that supp(g)c[—2h,
— h— 6], the solution x(¢) of (*) is continuous on [—hA, 0] and satisfies
condition (c). Solutions of (a) are obviously infinitely forward continuable:
hence (E). The theorem is proved.

Remark 3.3. Theorem 3.1 may be regarded as a generalized version of
the convolution differentiation formula.

4. CONCLUSIONS

Theorem 3.1 permits us to investigate the solutions of the population
dynamics equation with the aid of the theory of linear functional differen-
tial equations. In Part 1I of the paper this will be done, with emphasis on
the free growth rate, population desynchronization, and choice of initial
distributions for modeling. Furthermore, the optimal-control problem will
be introduced.

It was noted by Professor Robert Bartoszyfiski of the Mathematical
Institute in Warsaw that the stochastic population process described in this
paper may be treated as a multitype age-dependent branching process with
immigration [2, 11]. However, the formulae (2.3), (2.7), (2.7'), the generaliza-
tion mentioned in Remark 2.1, and Theorem 3.1 seem to be new.
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It is seen that a full probabilistic description of the process with B =B(¢),
A(1)=A(r, f) (see Remark 2.1) can be obtained using the probability
generating functional techniques [4]. The results will be described in a
separate paper.
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