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ABSTRACT 

A mathematical model of the proliferation cycle of leukemic cells is presented, based 
on a description iu terms of stochastic point processes. The expected-value equations are 
integral equations of the Volterra (renewal) type. Their equivalence with a class of 
functional differential equations is proved. 

0. INTRODUCTION 

In the paper a mathematical model of cell proliferation dynamics is 

presented. Section 1 contains notions and results from the theory of 

stochastic point processes. In Sec. 2 the integral equations of growth 
dynamics are derived. In Sec. 3 a theorem is proved which shows that the 
growth equations can be replaced by certain functional differential equa- 
tions. An investigation of the solutions of growth equations and some other 
problems are described in Part II of the paper. 

1. STOCHASTIC POINT PROCESSES 

In this section, the notation follows that used in the survey paper [4]. A 
stochastic point process (SPP) is a randomly located population or a 
random sequence of events in time [4, p.3011. For an exact definition some 
notions from measure theory are necessary. Namely, let 9Z be the space of 
all nonnegative integer-valued measures N (-) defined on the u-algebra 
a(R) of all Bore1 sets of the real line R. Further let N(A) < + cc for all 
bounded A E ‘33, and let S be the u-algebra generated by cylinders: 

{N:N(A)<k} (k=O,l;-se*, AE%). (1.‘) 
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DEFINITION 1.1 14, p. 304) 
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A SPP is a measurable mapping X from a probability space (52, &, 9) 
into (%, S). 

Remark 1.1. The probability measure P in (%, S) is induced by X, i.e. 
P=9(X_‘) [l]. 

Remark 1.2. Consider [4, p. 3081 a family 52 of sequences w= {xn}, 
n E Z = { 0, ? 1, k 2,. . * }. Each x,, is treated as an “event.” Then the 
mapping 

N(A,w)=card{n:x,EwnA} (WEti, A E%), (1.2) 

where cardc is the cardinality of the set C, is one-one from !J into GJL. It is 
possible to introduce in D a u-algebra F in a way that [4, p. 3091 any 
probability measure 9 on (52, F) defines a SPP. Moreover, one can prove 
that SPP understood as a sequence of events and SPP understood as 
measure-valued mapping are equivalent notions. 

DEFINITION 1.2 

The process N, rN([ t,,, t]), where t, is a fixed point of the real line, is 
called the counting process of the SPP. 

Remark 1.3. N, is the number of events in [to, t]. 

DEFINITION 1.3 

The expectation measure (EM) M(A) of the SPP is defined [4, p. 3181 as 

M(A)=E[N(A)]=(N(A,c@(do) (AE%J). (1.3) 
cl 

DEFINITION 1.4 

If the EM M( .) is absolutely continuous with respect to the Lebesgue 
measure, then the expected density (ED) of a SPP is a locally integrable 
function m(t) such that 

(1.4) 

or more simply, 

M(d) = m(t)&. (1.5) 
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DEFINITION 1.5 [4, p. 3441 

A randomly shifted SPP X” is a SPP constructed from the given SPP X 
so that 

X” *=x,+ Y,, (1.6) 

where { Y,,} is a family of independent identically distributed random 
variables independent of { x, } . 

Remark 1.4. If B(y) =prob( Y,, < y) and there exists a density b = 
dB/dt, then for the EM MS of the SPP X” it holds [4, p. 3431 that 

I 

dt (1.7) 

and the ED m* (t) exists. Furthermore, if the ED m (t) of the SPP X exists, 

ms(t)=m(t)*b(t), (1.8) 

where the asterisk denotes convolution. 

DEFINITION 1.6 [4. p. 3441 

The randomly deleted SPP Xd is a SPP constructed from the SPP X so 
that with given probability p each event x, is retained (independently of all 
other events) and with probability 1 -p it is omitted. 

Remark 1.5. For the EM of the SPP Xd it holds that 

Md(dt) =pM(dt), (1.9) 

and if the ED m (t) exists, 

md(t)=pm(t). (1.10) 

DEFINITION 1.7 

The sum of the SPPs X ’ and X2 is a SPP including events of X ’ as well 
as of X2. 

Remark 1.6. For the EM of the sum of SPPs it holds that 

M(dt)=M’(dt)+M*(dt), (1.11) 

and similarly for the EDs (if they exist): 

m(t)=m’(t)+m*(t). (1.12) 
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We now construct a simple SPP F which will be useful in further 
considerations. Let the number of events be finite and equal L. Each event 
occurs (independently) in the time interval [t, t + dt] with probabilityf (t)df. 
We assume supp (j) c [0, h) for some h > 0, where the support off is defined 
as 

supp(f)= { r:f(t)+O} 

and the bar denotes the closure of a set. 

LEMMA 1.1 

The EM and ED of an SPP F are given by the formulae 

M(A)=Ll‘f(W, (1.13) 
A 

m(t)= Lj(t). (1.14) 

The easy proof, based on the use of Definitions 1.3 and 1.4, is omitted. 

2. CONSTRUCTION OF THE MODEL 

The basis on which the mathematical model is built is a structural 
representation of the proliferation cycle of acute lymphoblastic leukemia, 
due to Mauer and Evert [5,6, lo]. Similar principles lead to the construction 
of more sophisticated models (see Part II). Figure 1 shows the route of each 
cell through the cycle. Circles denote phases of cell development; the most 
important are: 1, DNA synthesis (S); 3, mitosis (M); 4, resting or inactive 
phase (GO); 5, initial growth (Gl). Phase 0 symbolizes death of the cell. 

Possible transfers are denoted with arrows. After leaving phase 5 each cell 
enters and leaves phases 1, 2, 3. In phase 3 the cell undergoes division, and 
each of the two daughter cells enters phase 0, 4, or 5 with probabilities mr,, 

FIG. 1. Mitotic cycle of acute lymphoblastic leukemia cells. Details in text. 
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m,, m, respectively. From phase 4 the cell always passes to phase 5. The 
time spent by each cell in the ith phase is a random variable r with given 
density pi (7). For reasons that will be clear in the sequel, the starting time 
for the model is chosen to be to= - 2h (for some yet unspecified constant 
h > 0). The history of the cycle is characterized by the number Njo of cells in 
the ith phase at to= -2h together with the initial distributions (ID). The ID 

describes the random time after which a cell occupying the ith phase at 
to = -2h leaves it (independently of all other cells). It is assumed that 
density A(t) of random variable t distribution exists. 

The cycle so defined is easy to simulate with the aid of various discrete 
simulation techniques [5, 6, lo]. Such “Monte Carlo” methods have, how- 
ever, certain disadvantages. To obtain information about the moments of 
the process, a number of realizations must be modeled with various initial 
seeds for the random-number generators. In addition, in the case of popula- 
tion growth the number of necessary logical and arithmetical operations per 
unit of model time increases (exponentially [8]). The mathematical model 
developed in this paper describes the expected cell count and seems to be 
quite effective in growth-curve modeling [8]. To obtain formulae for higher 
moments, a more rigorous approach to SPP techniques is required, (com- 
pare [ 11, Chapter 51 and Sec. 4). These formulae, when obtained, may be 
complicated enough to be not programmable in an economic way. In this 
case the Monte Carlo methods would be the only reasonable tool. This 
interesting subject requires further research. 

Consider now the balance of the ith phase (Fig. 2). Introduce SPPs Xi+, 
yi, Gi, Xi- (see Fig. 1). The events of these SPPs are: the moments when 
cells enter phase i (for Xi+), when cells leave phase i (for Xi-). The SPP Xi’ 
will be called the influx, and the SPP Xi- the outflux of phase i. The SPPs 
q and Gi are the partial outfluxes due to cells leaving phase i- 1 (for &) 
and leaving the initial pool of Nio cells (for GJ. The SPP q is Xi’ randomly 
shifted (Definition 1.5), Xi- is sum of Yi and Gi (Definition 1.7) and Gi is a 

Fxo. 2. Balance of itb phase of the cycle. Details in text. 
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SPP of the type considered in Lemma 1.1. So assuming that for all the SPPs 
in the cycle EDs exist, and denoting the EDs by xi+, yi, gi, xi-, we have [cf. 

(1.0 (1.12)1 

xi-(t)=Yi(t)+gi(t)V 

Yi(t)=Xi+(f)*Pi(t) I 
(t> -2h). (2.1) 

Figure 1 shows that X,+ = X;, Xc =X;, Xc = Xc, while Xc may be 
treated as a randomly deleted (Definition 1.6) SPP 2X;. The SPP 2X; is a 
SPP having two simultaneous events in place of each event of X,-. Similarly 
X,+ is randomly deleted SPP 2X< - Xc. Subtraction means here rejecting 
from 2X,- exactly those events which belong to Xc, and makes sense in 
this particular case. EDs exist for all the Gi’s (Lemma 1.1) and thus for all 
the SPPs in the cycle (Remarks 1.4, 1.5, 1.6). It holds then that 

x:(t)=x;(t), 

x;(t>=x;(f), 

x:(l)=x;(t), (2.2) 
x,‘(t)=2m,x<(t), 

Writing xi for xi_ (i= 1,2,4,5) and x3 for 2x< (which means that the 
dividing cell in mitosis is counted as two cells) and using (1.2) (2.2), (1.14), 

we obtain 

x(t)=s’ A(t-~)Bx(~)d~+g(l) (t > -29, (2.3) 
-2h 

where 

x = col( Xi), g = col( gJ = COl( Ni”fi), (2.4) 

A = diug( p,), (2.5) 

00 0 01 
10 0 00 

0 0 m4 0 0 
(2.6) 

0 0 m5 1 0 

The Volterra (renewal) equation (2.3) has a well-defined forward-continu- 
able solution in various classes of functions (compare Remark 3.1) and 
describes the first moment of the population growth. 
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It is not difficult to show that expected number Ni(t) of cells occupying 
phase i is given by the equation 

N(t)=N”=j’ (B-l)x(~)d~, (2.7) 
-2h 

where N=col(N,), Na=col(N,O), I =identity matrix. NJ(t) equals twice the 
number of cells in the process of mitosis, i.e. the number of daughter cells to 
be present when mitosis ends. Each Ni is a combination of expected values 
of counting processes for outfluxes. 

The cycle dynamics was modeled [8] with the use of a time-discrete 
version of (2.6), (2.7) with results similar to those obtained with Monte 
Carlo methods. An example of growth curves (taken from [S]) is depicted in 
Fig. 3. It is seen that the growth curves tend to the exponential and that 
initial oscillations occur. It will be proved in Part II that the oscillations can 
be eliminated if the initial distributions are chosen according to certain 
rules (compare [6]). The biological meaning of such choice is also clarified 
in Part II. 

Some biologically important assumptions must be imposed on the pls 
and i’s. First of all there must exist a constant h > 0 [the same as in (2.3)] 
such that 

SUPP(pi)C(O,h) (i=1**‘*,5). (2.8) 

This condition means that time spent by the cell in each phase is nonzero 
and bounded above (with probability one). This is because in each phase 
(except perhaps GO, the nature of which is quite uncertain) specific bio- 
chemical processes are observed that cannot last infinitely long. For similar 
reasons it must hold that 

SUPP(f,) C [ - 2k - h) (i= 1;. * ,5). 

The functions pi and j; are normed probability densities; hence 

(2.9) 

s h 
p,(t)df= s -hJ(t)&=l (i=1,.**,5), (2.10) 

0 -2h 

Pi,J a 0. (2.11) 

The formula (2.7) may be replaced by another, more convenient one. 

LEMMA 2.1 

Assume that the solution of (2.3) . IS well defined on [ - 2h, 00). Then for 
t > - h it ho& that 

(2.7’) 
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Proof. We have [cf. (7.2)] 

ly(t)=N,O+ J f [b,x,+(T)-xi_(T)]dT (t > -2h) (2.12) 
-2h 

where bi = 1 (i= 1, 2, 4, 5) b3=2. From (2.3), (2.4), (2.9), (2.10) it follows 
that 

s ’ xi-(T)dT=bi ’ 
J/ 

7 

pi(T-S)Xi+(S)drdT+N~ (t> -h) 
-2h -2h -2h 

(2.13) 

Change of the order of integration in (2.13), use of (2.10), and substitution 
into (2.12) implies 

N,(t)=biJ’ Xi+(S)Js+$i(T-S)dTd (t> -h). (2.14) 
1-h I 

We use (2.2) to obtain 

“‘hA(~-~)B~(~)d~~ (t> -h). (2.15) 

Change of variables gives (2.7). The lemma is proved. 

Remark 2.1. The above reasoning may be generalized to the case when 

the probabilities m.,, m5, m, are functions of time [i.e. B= B(t)] and the 
distribution of the phase-i residence time depends on the moment at which 
the cell enters phase i [i.e. pi(7)=pi(7, t), A(T)=A(T, t)]. From the viewpoint 
of SPP theory, the operations of random shift and random deletion must be 
replaced by a more general operation of clustering [4]. This is done in [9]. 
The analogues of (2.3), (2.7’) are then 

x(t)=/’ A(t- 7, T)B(T)X( T> d7 + g(t), 
-2h 

(2.16) 

N(t)=l”j-’ A(u, u)B(u)x(u)dudu. 
0 I--u 

(2.17) 

3. REFORMULATION OF THE MODEL 

In this section we prove a theorem which enables investigation of 
solutions of (2.3), (2.7) as solutions of a certain linear functional differential 
equation [7, Chapters 16-231. The theorem holds for integral equations 
more general than (2.3): 
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THEOREM 3.1 

LA: 

(1) I@ t) E BV( - co, 0] be a real (n, n) matrix function of bounded variation 
without singular part, defined for s E ( - 00, 01, 

(2) K(t) E BV[O, oo), K(t) = - K( - t), 

(3) supp(K) c ( - h, 01, 

(4) u= col(ui), u : [ - 2h, T]-tR”’ be bounded, Lebesgue measurable and 

T>O, 
(5) B,, k= 1; . . ,m, be real (n, n) matrices, 
(6) g = col( gi), g : [ - 2h, T]+R” be bounded, Lebesgue measurable, 

(7) supp(g) c [ - 2h, - h). 

Then : 

(A) the integral Volterra equation 

x(t)=j“ K(t--7) 

[ 1 

2 uk(~)Bk x(T)dT+g(t) 
-2h k-l 

(*I 

has on [ - 2h, T] a square-integrable solution, which is absolutely continuous 

(AC) on (-h, T), 
(B) on [0, T] the solution of (* ) satisfies 

x(t) = j--;(-)[ $, uk(T)Bk]x(T)dT, 

and 
(C) almost everywhere 

(b) 

(D) generally, Eqs. (a) and (b) are equivalent (in the sense of solutions 
equal almost everywhere) for initial conditions cp from the subspace @ of 
C[ - h, O] defined as 

@= rpEC[-h,O]:dO)=Cl(-s)[ $Iuk(s)B+‘(s)a+ (‘) 

where C[ - h, 0] is the Banach space of n-vector real functions continuous on 

I-h, 01, 
(E) solutions of (*), (a), (b) are infinitely forward continuable (if u and g 

are extended onto [ - 2h, 00)). 
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Remark. 3.1. The functions u, may be treated as multiplicative con- 
trols of the system (2.3). Such controls will be introduced in Part II in 
connection with optimal treatment protocols for leukemia. Substitution of 
m=l,u,=l,K=A,B,=Binto(*)provesthat(2.3)isaspecialcaseof (a). 

Remark. 3.2. Part (A) of the theorem makes clear why the initial 
distributions can “spoil” the smoothness of solutions for t E[ - 2h, 0). 

Proof of Theorem 3.1. (The words “almost everywhere” are omitted, 
because it is clear where they should be used.) Assumptions (2), (3), (5), (6) 
imply that K(t- T)X~U,JT)B~ is square integrable on [-2h, T]X[-2h, T], 
and g(t) is square integrable on [ -2h, T]. Therefore a square-integrable 
solution of (*) exists on [ -2h, T]. The solution is bounded [assumptions 
(2), (6)]. Furthermore the solution is AC for t a -h [assumptions (2), (7)], 
hence (A). To prove (B) it suffices to use assumptions (2), (6). We prove (D) 
now. Equation (b) may be rewritten (this follows from the unsymmetric 
Fubini theorem [3; 12, Theorem 10.3, p. Sol]) as 

k(t)=J’ d,{H(s, t)}x(s+ t), 
-h 

where 

(3.‘) 

For the existence of the integral in (3.2) it suffices that u is integrable with 
respect to the measure generated by k. From assumption (1) we know that k 
is sum of the AC part K and jumps of amplitudes Ki, ICiKil < CCL This is 
depicted in Fig. 4. All u,‘s are integrable with respect to I? because they are 

FIG. 4. Function k(t). Details in the proof of Theorem 3.1. 
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Lebesgue integrable, and are integrable with respect to the atomic measure 
generated by jumps because they are bounded [12, p. 4691. Hence [12, 
Theorem 3.5, p. 4571 H(s, t) is well defined. For similar reasons [12, 
Theorem 5.8, p. 4571 H(s, t) is BV with respect to s and Lebesgue measur- 
able with respect to t. Hence [7, p. 941 (3.1) is a well-defined functional 
differential equation (FDE) and with initial condition cp(t) E C[ - h, 0] has 
an AC solution on [0, T] for arbitrary T > 0. Equation (a) has for the initial 
condition cp(t)~ C[ - h, 0] a well defined solution (assumption 3) which is 
AC on (0, T]. However, at t = 0, the solution has a jump, the amplitude of 
which is equal to zero if and only if cp E @ [compare (c)l. 

Assume now that x(t) is a solution of (b) with initial condition cp(t). We 
have 

x(f)-x(o)= j’j’k(,,[ 2 ~&+~)B,]x(s+[)&~~ 
0 -h k 

where for t= ti, I? has jumps. Assumption (3) implies (compare Fig. 4) 

~K,+K(O)=K(-k)=O; 
I 

(34 

hence 

r=: fh k(4) 2 ( )B x(W-i(O) x (5)B x(0 [ k ‘k ’ k] [ k uk k] (t>O). 

(3.5) 

Integration of (3.5) implies 

I,= -I,‘$ j’ K(S-5) x a (s)B 
Eh [kk k] 0 k 

x(s)hdE+ j’K(O)[ z u,(~)B,]“(~)& 

(3.6) 
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Similarly, changing variables in (3.3) 

I,= F Ki( I,‘- II:, + i,‘)[ T u,W+W~~ (3.7) 

Finally, using (3.3), (3.4), (3.6), (3.7), we show that 

x(‘)--(O)= -i;,“(s-l)[ T ux(s)Bk]x(s)h 

+ 2 uk(s)Bk x(s)& 1 k 
(3.8) 

Knowing that x(t) restricted to [ - h, O] equals rp(t), we obtain 

x(r) = - jr i(s-t) 
[ 1 
x u,(s)B, x(s)ds+‘&,, 

I-h k 

qo= 2 uk(s)Bk ‘4’(S) U!S + T(o). 
k 1 

(3.9) 

(3.10) 

If tp E @, we have q0 = 0 and we can write (3.9) in form of (a). Conversely, if 
cp~@, then the solution of (a) is AC on [0, T], and using the above 
reasoning we can return to (b). This proves (D). To prove (C) we must show 
that the solution of (*) on [ - h, 0] belongs to Cp. This is obviously implied 
by assumption (7), because there exists 6 > 0 such that supp( g) c[ - 2h, 
-h - 61, the solution x(t) of (*) is continuous on [-h, 0] and satisfies 
condition (c). Solutions of (a) are obviously infinitely forward continuable: 
hence (E). The theorem is proved. 

Remark 3.3. Theorem 3.1 may be regarded as a generalized version of 
the convolution differentiation formula. 

4. CONCLUSIONS 

Theorem 3.1 permits us to investigate the solutions of the population 
dynamics equation with the aid of the theory of linear functional differen- 
tial equations. In Part II of the paper this will be done, with emphasis on 
the free growth rate, population desynchronization, and choice of initial 
distributions for modeling. Furthermore, the optimal-control problem will 
be introduced. 

It was noted by Professor Robert Bartoszynski of the Mathematical 
Institute in Warsaw that the stochastic population process described in this 
paper may be treated as a multitype age-dependent branching process with 
immigration [2, 111. However, the formulae (2.3), (2.7), (2.7’), the generaliza- 
tion mentioned in Remark 2.1, and Theorem 3.1 seem to be new. 
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It is seen that a full probabilistic description of the process with B = B(t), 
A(T)= A(T, t) (see Remark 2.1) can be obtained using the probability 
generating functional techniques [4]. The results will be described in a 
separate paper. 
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