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ABSTRACT

A size-structured model is developed to study the growth of tumor cell populations during
chemotherapeutic treatment with two non-cross resistant drugs, Do and Di. The cells
reproduce by fission. Four types of cells are considered: sensitive cells to both Dy and Dy,
cells that are resistant to Do only, cells that are resistant to Dj only, and cells that are
resistant to both Dy and D;. Resistant cells arise by spontaneous genetic mutation from
sensitive cells and are selected during the growth of the mixed population. The model
consists on a system of linear partial differential equations describing the size-density
of each type of cells. That corresponds to chemotherapeutic treatment on a given time
sequence intervals such that, we continuously apply Do at a first interval and next we
apply D; at a second interval, and so forth. We obtain a stable size-distribution theorem
for this case.

Keywords: Size structure, tumor cell population, cellular resistance, evolution operator.

1. Introduction

Our aim in this paper is to describe a stable size-distribution theorem for a math-
ematical model developed to study the cellular resistance in tumor cell popula-
tions during alternated chemotherapeutic treatment with two non-cross resistant
antiblastic drugs, Dy and D;.

We have considered the size-structure to describe the cellular resistance problem
in tumor cell populations because antiblastic drugs are phase-specific, which means
that they only act on a determined sensitivity phase of the cells.
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It is also incorporated in the model the concept of spontaneous genetic mutation
from sensitivity to resistance independent from the selection agent as previously
demonstrated in the classical observations of Luria and Delbruck.

In a previous work [15], we have extended the result of stable size-distribution
for a size-structured mathematical model for the growth of a cell population repro-
ducing by binary fission into two exactly equal parts given in [8, Corollary 7.3]. We
have considered an extension of that model for a tumor cell population in which
two distinct subpopulations is considered: sensitive and resistant. We have shown
the existence of stable size-distribution for each tumor cell subpopulation in two
cases of only one drug treatment on sensitive cells: (a) a non-stop treatment, and
(b) an instantaneous drug action on prescribed times.

For case (a), the model is given by the linear system:

o (1) + 5 (9(a)s (1.0))

= —(u(@) + pr(z) + b(2))s (t, 2) + 4(1 — @)b(22)s(t, 2)

o () + 5 (9(a)r (1,2))

= —(u(z) + b(x))r (¢, z) + 4b(22)r (¢, 2x) + 4ab(2x)s(t, 2x)

where t denotes the time, 2 denotes the size of an individual cell, s = s(¢, z) denotes
the cell size density of sensitive cells at time ¢, r = r(¢,z) denotes the cell size
density of resistant cells at time ¢, o is the constant mutation rate from sensitive
into resistant tumor cells and, g(z) is the size-specific individual growth rate; p(z)
is the size-specific per capita death rate, pur is the drug-kill rate for sensitive cells
per capita per unit of time and, b(x) is the size-specific probability of fission per
unit of time.

The last term of each equation contains the factor 4 = 2 x 2 due to the fact that
a cell divides into 2 parts and the second factor 2 is due to the fact that the size of
daughters cells at (z,z + dz) comes from the size of mothers cells at (2, 2z + 2dz).
Added to this, considerations at the level of the population individual cells lead to
an evolution problem that generates a strongly-continuous semigroup.

The asymptotic behavior of this semigroup heavily depends on the functional
relationship between the cell growth and its size x described by the size-dependent
individual growth rate g. In supposing ¢g(2z) < 2g(x) for all relevant x, i. e., the
time that a cell needs to grow from size x to size 2x increases with their size x, a
stable size-distribution theorem for this problem is given in [15, Theorem 3]:

There exist a Malthusian parameter A1, a stable size-distribution sy, (z) for sen-
sitive cells, and a Malthusian parameter Ao which has a correspondent stable size-
distribution, 7, (x), for resistant cells, such that, as t — oo,

e Ms(t,x;¢9) ~ Crsy, (2)

e 2r(t, @5 ¢) ~ Cora, (x)
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where A1 < Ao, C1 only depends on the first coordinated function of the initial
condition ¢ and Cy only depends on ¢.

The model analyzed in this paper is an extension of the above model. It is for-
mulated as the time-dependent evolution problem (2.6) below, arising from Eq. (2.1)
to Eq. (2.4). In Corollary 3.1 we will state the correspondent result of stable size-
distribution.

Roughly its statement is the following.

There exist real parameters \; < Ny < Ny < Ay (i = 0,1) and, for sufficiently
large T, there exist non-negative bounded linear operators § = §(T;-), #1 = 71(T; ),
7o = 7o(T;+) and 7q = 74(T; ) such that, for all initial condition ¢, as n — oo,

e~ TN+ g(2nT; ¢) — 3(T; )
e TSN (20T ¢) — 71(T; 6)
e TAHX3) 1y (20T @) — 7o(T; )
e 2 TA py(2nT; @) — 7q(T; @)

where

T > 0 is the duration time for each drug;

s(t, @) is the size-density for cells that are sensitive to both Dy and Dy drugs at
time t;

r1(t, d) is the size-density for cells that are resistant to Dy at time t;

ra(t, @) is the size-density for cells that are resistant to Dy at time t;

ra(t, @) is the size-density for cells that are resistant to both Dy and D; at time t.

In this case, a stable size-distribution becomes a uniform limit of projections
that depends on a convenient choice of the drug duration time 7" > 0.

As a consequence, each subpopulation has a stable size distribution in the fol-
lowing sense: for all sufficiently large n, the ratio of the number of cells of any
subpopulation of tumor cells in a given size-interval by the total number of cells of
this subpopulation is time independent.

2. The Model and Its Interpretation
We consider four different types of tumor cells:

s-cells: cells sensitive to the action of Dy and D; antiblastic drugs;

ri-cells: cells that are resistant to the action of Dy and sensitive to the action
of Dy;

ro-cells: cells that are resistant to the action of D; and sensitive to the action
of Dy;

rq-cells: cells that are resistant to both Dy and D; actions.

The cells grow, die and reproduce by binary fission into two identical daughters.
Any rg-cell produces two identical rq-cells, under division. An s-cell can produce
two identical s-cells, two identical r1-cells or two identical ry-cells, under division.
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Any rq-cell can produce two identical ri-cells or two identical rg-cells, under di-
vision, and, an 7s-cell can produce two identical rs-cells or two identical r4-cells,
under division. It is assumed that any cell of the population is characterized and
distinguished from each other by an appropriate physically conserved quantity de-
noted by z, called the size of a cell of the population. We can interpret the size of
a cell as its volume or mass.

Let Jo, J1,Jo, -+ denote a sequence of intervals where it will occur continuous
applications of the non-cross-resistant anti-blastic drugs Dy and D; .

Thus,

At J,, for n even, only drug Dy acts continuously over the subpopulations of s-cells
and ro-cells;

At J,,, for n odd, only drug D; acts continuously over the subpopulations of s-cells
and ri-cells.

The proposed size-structured model for the evolution of the tumor cells of the
population is described by a nonautonomous linear system, given by following equa-
tions (2.1) to (2.4):

Equation for sensitivity:

0s

5 (12) + % (g(z)s(t, )

= (u(e) + b(a) + (i, + 1m0, 2)s(t,2) 2
+ 4b(2x)s(t, 2z) — a1 - 4b(2x)s(t, 2x) — e - 4b(22)s(t, 2x)

where s(t, z) denotes the size-dependent density of s-cells at time ¢;

Equation for resistance to Dy and sensitivity to Ds:

87“1 0
Bt (t,x) + oz (9(x)r1(t, 2)) 2y
= — (u() + b(a) + e, (t,2))rs (t,2) 22)
+ 4b(2x)r1 (¢, 2z) + a1 - 4b(2x)s(t, 2z) — ag - 4b(2x)r (¢, 2x)
where 71 (¢, z) denotes the size-dependent density of ri-cells at time ¢;
Equation for resistance to D; and sensitivity to Dy:
87“2 0
Bt (t,z) + o (9(@)r2(t, )
(2.3)

= = (u(x) + b(z) + ppy (t, 2))72(, )
+ 4b(2z)ra(t, 2z) + ag - 4b(2x)s(t, 2z) — aq - 4b(2x)ra(t, 2x)

where 75 (¢, ) denotes the size-dependent density of ra-cells at time ¢;
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Equation for resistance to Dy and D;:

i 1,0) + o (glaprat )

= — (u(x) + b(z))ra(t, )
+ 4b(22)r4(t, 2x) + oy - 4b(2x)ra(t, 22) + ag - 4b(2x)r (¢, 22)

where r4(t, x) denotes the size-dependent density of r4-cells at time .

(2.4)

The coefficients a1, a2, g, b, i, tip,, wp, are such that:

ay is the mutation rate constant for s-cells into ri-cells and for ry-cells into r4-cells;
as is the mutation rate constant for s-cells into ro-cells and for rq-cells into r4-cells;
g is the individual size growth rate per unit of time,

L~ gt (25)

b is the probability of division per capita per unit of time;

w is the death rate per capita per unit of time;

up,; (i =0,1) is the D; -drug-kill rate time dependent per capita per unit of time,
given for all z € 2 by

pi(z) (t € Janyi)
(t,z) = k=0,1,2,-
o (¢, 2) { 0 (otherwise) 12

where p; is the D;-drug-kill rate per capita per unit of time.

In order to state the evolution problem, we consider:

1. The size = of the cells is normalized with x < 0 = 1.

2. A given cell can divide itself only if its size is greater than a certain fixed
threshold size £ = a > 0 and all cells of the population have to divide
themselves if their size x tends to the maximal size z = 1.

3. At division, an individual cell of size x > a produces two daughters cells,

each of them having the size g

From these considerations it follows:

. . . . a
(*) there are no cells in the population with size less or equal to 5;

(**) in Eq. (2.1) — Eq. (2.4) the terms involving the 2z argument should be con-

sidered equal to zero if z > 3

We arrive at the following evolution problem

ou _ _i(g(x)u(t, r)) — Np(t, z)u(t, z)

ot Ox

+ Najas (z)u(t, 2x)
)=0 (t>0)
u(0, ) = u®(z) (x € )

t>0,zeQ)
(2.6)
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where
0<ar,ae <oy +ag < 1;
p+b+ pp, + pp, 0 0 0
0 w+b+ pp, 0 0
Np = ;
0 0 p+b+pup, 0
0 0 0 m+b
(1 — a1 —a2)b(2x) 0 0 0
a1b(2z) (1 — a2)b(2x) 0 0
Nay,a, (@) =4
azb(2z) 0 (1 — a1)b(2x) 0
0 azb(2z) a1b(2z) b(2x)

We recall that Ny, o, (2)u(t,22) =0 (z € Q).

Abstract Evolution Problem

Now, we intend to study the solutions of the problem (2.6) considering its time-
dependent evolution. As we can see, the solution operator of problem (2.6) does
not consist on a semigroup of operators. In fact, it is a periodic evolution operator.

1
In order to simplify the notation we will denote 2 = [g, 1], Qo = E, 5} and
1
Ql == |:§, 1:| .
We make some technical assumptions:

(I) g is a continuous, strictly positive function on €.
(IT) b is continuous on [g, 1) , identically zero on {g, a} , strictly positive on (a, 1)
and limxﬂ/ b(&)dE = +o0.
a
(III) p, po, p1 are integrable functions such that, 0 < p, po, 1 < 1 on , almost
everywhere.

x

d
We can have the function G(z) := / % from Eq. (2.5) interpreted as the
a/2 9

time that a cell needs to grow from the minimal size a to the size x.
Let F; and F; (i = 0, 1) be defined on Q by:

(@) i—exp (- [ HLE) e [ [T b ) (©)
Fy(z) : p( /G/Qg(g)d§>’f’()' p( /a/2 MG dg) (2.7)

and

_AE@ [ @+
E(z) = = exp ( /a/2 G d§> . (2.8)
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We have

E(x) is the probability of a size g cell to reach the size x without dying or being
divided;

F;(z) is the probability of a size g cell to reach the size x without being killed by
D; drug ;

Fi(z) = E(x) for any r;-cell of size x.

By applying a transformation of dependent variables defined by means of the
above functions to the problem (2.6) we have the abstract Cauchy problem (A.1)
in the Appendix A.

After that we consider the semigroups {e
sian product space X* of continuous functions, generated by the unbounded linear

tAi}tZO for i = 0,1 on a Banach carte-

operator A; that correspond to the case of non-stop treatment with the drug D;.
Then from the fact that these semigroups do not commute, we define the weak
solution of the abstract evolution problem (A.1) corresponding to (2.6) by compos-
ing in a sequence the semigroup {e’“°} on Jy then the semigroup {e**1} on J; and
SO on.
We give more details about the above considerations in the Appendix A.

1
Remark. The condition g(2z) < 2¢g(x) for x € Qo = {g, 5} implies the compacity

in the semigroup e (i = 0,1) and the analysis of their asymptotic behavior as
t — 0o becomes easier. The same conclusion follows in the case of the biologically
unrealistic assumption g(2z) > 2g(z) for z € Qy and the compacity is lost in case
of g(2z) = 2¢g(x) for x € Q. See [1, Example 4].

3. Asymptotic Behavior of the Solutions

In the first half of this section we describe the asymptotic behavior for large time
of €0 and e in Theorems 3.1 and 3.2, respectively. These are stable size-
distribution theorems that respectively correspond to a chemotherapeutical treat-
ment with a time continuous Dy action on s-cells and ri-cells and, time continuous
Dy action on s-cells and ri-cells alternately for a same period of time T. After
that, by combining these results, we obtain the asymptotic behavior for large n
of (eTA1eTA0)™ in Corollary 3.1 for T > 0. From that we deduce a stable size-
distribution theorem for problem (2.6).

Notation. Let we represent any ¢ € X* by a column consisting of four coordi-
nate functions ¢1, ¢2, ¢3 and ¢4 belonging to the space X. Following columns are
associated with a such ¢:

o1 1 - o1
¢ =1 g2 |, ¢@ = <¢2> and, ¢ =| 0
®3 @3
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Next developments are based on the assumption

1
(A) g(2z) < 2g(z) for all z € Qp = E, 5}
and also on the following

(B) a > 1/2 and the functions po > 0, 1 > 0 are continuous, not identical to zero
a
Q= [—,1} .
on 5

Cases of Treatment with Only One Drug
If the mutation rates satisfies the inequalities
O<as<a; <1/2,
the asymptotic behavior of the semigroup e*4°, is given by:

Theorem 3.1. Suppose g(2z) < 2g(x), for all x € Qo. There exist real numbers
A) < A < A} < Ay and non-negative functions Sxo, Rixg, Raxg and Rgy, such that

for any ¢ € X*, there exist real constants C’él) (¢1) 7032) ((Z(\Q/)) , CéB) (¢(3)) and
Co (@) so that for any t > 0 we can write
05 (91) Sxg 21 (t 61)
mOC(lS) (¢(3)) Rl,\o 29 (t,¢(3))
P80l <¢(2 ) Roxg - 23 (t,¢(2))
Rax, 24 (8, ®)

etAo ¢ _

where for the z; (i =1,...,4) we have:
li —tA9
dm e™ Nz (8 1)

—tAJ (3)
t—lggloo € %2 (t ¢ )
¢) =

0

0
. _ 0

lim e ”‘223( gi)

t——+o0

lim e M2y (2,
t—+o00

It results that there exists a stable size-distribution for each cell subpopulation in
the tumor cell population under a non-stop treatment with Dy.

Next, we have a similar result of existence of a stable size-distribution for each
cell subpopulation in the tumor cell population under a non-stop treatment with
Dl.

If the mutation rates satisfies the inequalities

0<(11§0¢2<1/2,

the asymptotic behavior of the semigroup e*! is given by the following theorem.
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Theorem 3.2. Suppose g(2x) < 2g(zx), for all x € Qo. There exist real numbers
Al < A3 < A3 < A and non-negative functions Sxi, Ryxi, Roxy and Ray, such that
for any given ¢ € X* there exist real constants Cfl)(@), sz) (6), Cfg)(¢(3)),
C1(¢) so that for any t > 0 we can write

e*ithl) (¢1)Sx z1(t, ¢1)
etA1 o= e/\étcfz) (¢(2))R1/\§ 2(t, ¢(2))
= ) 3
e>‘3t0§3)(¢(3))R2>\§ z3(t, o)
MtCy () Rax, 2l 9)

where

lim e_/\%zi =0 (:=1,2,3) and lim e Mz =0.
t—o0 t—o00

Theorems 3.1 and 3.2 can be proved by means of arguments similar to those given
in the proof to Corollary 3.1 in Appendix C.

Alternate Treatment

Finally we consider the situation where each treatment is applied alternately for a
same period of time T'. First, Dy-treatment is applied during the interval of time
Jo = [0,T7] to kill sensitive and r3-cells and so D;-treatment is applied during the
interval of time J; = [T, 2T to kill sensitive and r;-cells and so on.

We combine the results of both theorems above by considering that the mutation
rates are equals, that is to say, satisfies the relations

O<ax=a1=a<1/2

to give the asymptotic behavior of (eTAl eTAO)n, as n tends to infinity.

Corollary 3.1. Suppose g(2z) < 2g(x), for all x € Qy. For a convenient choice
of T > 0, there exist non-negative bounded linear operators S = S(T,-), Ry =
Ry(T,-),Ry = Ro(T,-),Rq = Ra(T,-) from X* to X, such that, for all $ € X*, as
n — 0o,

efnT()‘?Jr)\i)[(GTAIGTAO)H¢]1 - ?(T, ¢) ’
efnT()\g‘F)\é) [(eT-Al eTAO)n¢]2 — El (T7 ¢) 3
e—nT(A3+23) [(eTAreT AN gl — Ry(T, ¢),

672nT)\4 [(eT.Al 6T'A0)n¢]4 — Ed(T7 ¢) .

Proof. The sketch of the proof of this result is given in Appendix C.
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Remark

1. Malthusian parameters for each kind of cell subpopulation in consideration
are given in Appendix B.
2. For K and ¢ we have:

K =max{K;, KY :i=0,1;j = 1,2,3}

and '
e =min{e;,e? :i=0,1;5=1,2,3},

from Eq. (B.8), Eq. (B.11) and Eq. (B.12) in the Appendix B. Then we take

1
T>-InK.
€
3. Theorem 3.1 gives the stable size-distribution for the case pg = p1 = 0 which
corresponds to the situation where there is no treatment.

4. Conclusion

In the case of prolonged treatment we found that each cell subpopulation considered
has an intrinsic Malthusian parameter and an intrinsic stable size-distribution. In
this direction, Corollary 3.1 essentially explains the fact that for appropriate choice
of T" and for large n each cell subpopulation has their own stable size distribution:
“for all n sufficiently large, the ratio of the size distribution of any subpopulation
of tumor cells in a given size-interval, by the total subpopulation, is constant, inde-
pendent of the time”.

In this work as in the previous one [15], we did need a different kind of extension
of the stable size-distribution notion than the one given in [1,8,21]. They only refer
to a population of individuals of the same species. Notice that if one applies directly
the results found in the literature, the asymptotic behavior of the sensitive cell
subpopulations is completely lost.

Toxicity problems in human chemotherapeutic treatments lead us to think that
these theoretical results may have some experimental relevance.

Appendix A. Abstract Evolution Problem
Transformation of Variables

Let Hy and H; denote the matrix operators which corresponds respectively to the
following formal transformations of dependent variables

S 1 T2 Td
S=9g—,Ri=9g—=,Re=9g—, Ru=9g—

gfo’ 1 gE7 2 gfov d gE7

and S T T T
S=g—,Ri=g—, Ra=g—=>, Ri=g—,

gf1 1 QE 2 g]_.l d QE

with g , F; and F; (¢ = 0,1) and E defined respectively by (2.5), (2.7) and (2.8).
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Substituting in (2.6) the formal transformation

Hy u(t, .77) (t € Jzk)
H; u(t, .77) (t € J2k+1)

U(t,z) = Hu(t,x) = {

we have the following transformed problem:

88_[15] = —g(m)g—g(t,x) + Mo, 0, (t,2)U(E,22) (6> 0,2 € Q)
U(t3)=0 (t>0) (A1)
U(0,z) = U%x) (xr €Q)
with
Mo, 0, (t,2)U(t,22) =0, for all ¢ >0, if z € Oy,
where
Mg, oy () (t € Jop)
Mo, 0 (t,m) =
Mg, o,(x)  (t € Jors1)
for
(1 — 1 — Ozz)ko({]]) 0 0 0
o 2 — a1kd(z) (1 — an)k(z) 0 0
Mal,az( ) N Oégk'()(w) 0 (1 — a1)k0(l‘) 0 ’
0 agk(x) arkd(x) k(x)
(1 — 1 — ag)kj(l‘) 0 0 0
1 z) — alkl(w) (1 — ag)kj(l‘) 0 0
Mo 0(@) = azkd () 0 (1—a)k(z) 0 |’
0 azk?d(x) ark(z) k(z)
— 4oz b(2z) E(2z)
ka) = d9(e) o T2
4oz b(2z) F;(2z) ~ k(x F;(2z)
W =90 e 7w Y RE
and
K (a) = ag(a) 22D TRD oy (00,

Abstract Cauchy Problem

In order to get to the solution of (A.1), we consider for ¢ = 0,1 the unbounded
linear operators A; on X, where X = {¢ € C(Q) : #(a/2) = 0} with the sup-norm,
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defined by

D(A;) = {U e (XNCHQ\{3})*: U (a/2) = 0,lim, 1 [~ g(2)U' (z)]

and lim,,1 [ — g(2)U'(2) + M},

1
3 Q1,002

(2)U(2z)] exist and are equal } )

(AU)(z) = —g()U'(z) + M

1,02

(@)U(2z) (x € ,U € D(A)).

One can demonstrate, using arguments similar to those given in [8], the following
result.

Theorem A.1. A; (i =0,1) is closed densely defined linear operator on X* which
generates a linear Cy-semigroups {etAi}tZ() on X*.

If g(22) < 2g(x) for x € Qy, then i is a compact operator for t > G(1).

The solution of (A.1) is given by composition of the solution operators {e*41};>0
and {e*0};5.

Results in Theorem A.1 have correspondents in the initial problem (2.6), i.
e., weak solutions of problem (2.6) are given by a sequence of composition of the
following semigroups

Hy e Hyu® and Hy'e"Hyu! (t >0)

where, the transformation H; (i = 0,1) is an isomorphism from Banach space X
onto X* with Xo = {¢ € X : ¢/E is bounded } and ||¢[lo = ||¢/E|co-

Appendix B. Spectral Properties of A; (and e*4)(i = 0,1)

In this section, we will follow the results contained in [8] and [20]. We also refer the
reader to [16,11].

1
The Spectrum of A4;(¢ = 0,1), Case a > 3

1
Suppose a > 3 (i.e., the maximal size of a daughter cell is less than the minimal size

of a mother cell). For a detailed study of the general case, see [12, Chapter II]. We
make use of the above condition to study U solutions of the equation \U — A;U = f
for A € C and f € X*. By doing so, we conclude that = € €y implies in 2z € O
and then we first integrate on €27 and on Qy afterwards. Explicitly we have:

In Q4,

_ G -Gy (L L NGOG gy
Ulx)=e U<2> +/1/2e f(é)g(g) (B.1)

In Qo,

U(z) = eMNOB=6ED g, (A,x)U<3>+éMi L\ fo2) (B.2)

ap,09 9 a0
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where - d
ﬁ-ijlaaz (>\7 .'17) = ‘/0/2 e)\(G(g)iG(2E))M(§t17OZ2 (5)?;
and
CAM“‘ (/\7 fv SC)

a,ag

_ / MNGEO-G(2)
a/2

We also notice that

/2 g(n)

£ + M, o (©) ( / “ e*<G<">G<2€>>f<n>ﬂﬂ &

(1 -1 —az)mo(A, ) 0 0 0
a1my (A, ) (I = a2)m(A, 2) 0 0
MY, oy =
asmo (A, ) 0 (I —ai)mo(Nz) O
0 agm(A, ) army(\x) 7w\ )
and
(1-—a; —az)m(\x) 0 0 0
armi(\, ) (1 —ag)m(\ ) 0 0
MY, 0 =
a7 (A, ) 0 (I—-a)r(Az) O
0 amd(\ x) arm(\ ) (A, )
with
¢ - dé v _ d¢
T\, x :/ MG -G(29) O——, m(\x :/ NGOG . -5
o= s e A=, ©e
and

z B d¢ )
0\ z) = MG(O)-G(29)) L0 g) =5 =0,1).
7'('7,( 711:) /(1/26 z(g)g(£)7 (Z ) )

1
The continuity for z = 3 gives the following condition from equations (B.1) and
(B.2)

(1= g, W (5) =G, VD) =01 (B3)

2 &1,

where we use the notation for i = 0,1

e (A%) =m(N), T (A%) =70\,
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AL <>‘7 %) = T (>‘) and é—Mi (Aafa 1> = éA-Mi (Aaf)

ap,ag ap,ag ap,ag 2 ap,ag
1
If det(frj\,m1 o (A) — Id) # 0, we can solve U <§> in Eq. (B.3) and the resolvent

operator for A; is given by

U(z) = Ux(z) = (Md = Ai) "' f)(2)

1 1 - ) d¢
NGB -G@N Y <_> +/ MGO-66) )% (L eq
A D) 12 f(é)g(f) ( 1)

1 1 A
e’\(G(E)_G(w))ﬁ'M;il,az (N, 2)Uy <§> + (N fr) (e Q).

Then, A € p(A;). This resolvent operator is compact.
If det(Id — i, ., (M) = 0 then, by solving Eq. (B.3) with f = 0, we can find
non trivial eigenfunctions for A;. So A € o(A4;).

Notation. For i = 0,1 let A}, A}, A\{ and A4 denote the real eigenvalues of A;. We
recall that they satisfy:

1 1
0 0 0
= e — — 1
mo(A7) T~ (o1 £ oa)’ 7o (A3) T m(A3) = T and 7m(A\g) =1,
m(A1) = SR m(A3) = ! T(\3) = L and m(\g) =1
A 1— (o1 +ag)’ 12 1—as’ 3 1—o 4 ’

Localization of the Eigenvalue for A;(i = 0,1)

In this section we suppose each function u; (¢ = 0,1) to be continuous and non
identical to zero on 2. This technical condition is sufficient, for instance, to prove
Lemma B.1 below.

The analyticity and monotonicity, of 7(A) and m;(A) when restricted to real A,
imply the following results in this section which extend their correspondent results
in [8, Sec. 6] and [20, Sec. 3.4].

Lemma B.1. Fori=0 ori=1: m(\) < (), for all X € R.

Eigenvalues of Ag

Suppose 0 < as < a3 < 3 Then, we have:

Corollary B.1. If g(2z) < 2g(z) for x € Qq, then there exists € > 0, such that,
A € o(Ap) implies Re(\) < Ay — €.

Eigenvalues of A,

1
Suppose 0 < a1 < as < 3 Then, we have:
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Corollary B.2. If g(2z) < 2g(z) for x € Qq, then there exists € > 0, such that,
A € o(Ay) implies Re(X) < Ay — €.

In particular we have the following corollary.
1
Corollary B.3. [f0<aj=a=a< 3 then

(i) AV <A <29 < Ay
(i) M <Al <A <Ay

If in addition po = p1, then mo = w1, 7§ = 79, A9 = A1, A = AL and \J = AL.

Spectral Decompositions related to .4; and e (i = 0,1)

For details about the basic results used in this section we refer to [11, Sec. 4.2,
Appendix 2.4].
Consider a >

,0< g =ag =a< - and g(2z) < 2g(z) for = € Q. So,

N =
N

A< N < M < Ny, fori=0,1. (B.4)
We have a direct sum decomposition
Xt = N\Id— A;) @ R(\Id— A) (B.5)
with spectral projection P; : X* — N(\4Id — A;) given by
Pi¢ = Ci(¢)Un, (B.6)

where the first three components of Uy, are equal to zero and its fourth component

o—2aG() (x € )
R _ . B.7
dk4('r) {6)\4G(E)7T(>\47x) (.’17 S QO) ( )

1S

P; is the residue at A = A4 in the Laurent development for the resolvent operator
(Md — A;)!. Functions C;(¢) are not the same for i = 0, 1.

Remark. ¢! (i = 0,1) is eventually compact Cy-semigroup.
Then, for all ¢ > 0,
(a) o(et) C {0} Uetor(A)

(b) N(\sld — A;) is invariant for e*4i and et Pip = e P
(c) There exist real numbers K; > 1 and ¢; > 0 such that, for all ¢ > 0,

tA; . i t()\ —&4
— 4 = [ 4
et (Id — P))|| < Kqe )

Id— Py|. (B.8)
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Notation. (i) [¢]x represents the k' component of ¢ € X*.

(i) AEj) (resp. etAf;”) represents for i =0 and j =1,3,0or ¢ =1 and j = 1,2,3 the
principal order j square sub-matrix operator of A; (resp. e®4i) acting on X7. In
cases i = 0 and j = 2, A(()Z) ( resp. etAt(Jz))
sub-matrix operator of Ag ( resp. e*4)
second column as well as, acting on Z = X x {0} x X.

represents the principal order 3 square
having zero entries in their second row and
There exist direct sum decompositions for i = 0, 1

X9 = NOTd - AY) @ R(NTd — AD) (j #2, it i =0). (B.9)

P9 xi NNiId — AY)Y (j # 2, if i = 0) denotes a spectral projection.
For i =0, j = 2, we have

7 =Xx{0}xX = PP z&(Id-P*)Z, where PYZ = N(\oId—AP). (B.10)

A

In all of the above-mentioned cases, we have that etA” ( resp. e ) are
Co-semigroups generated by .Agj ) ( resp. A(()Q) ) and the following lemma.
Lemma B.2. There exist Ki(j) > 1, sl(j) > 0 such that, for allt >0,
et (1d — PO < KP4 1d — PV (B.11)
and .
le4s” (1d — P < K§et 0867 11d — B (B.12)

Appendix C. Proofs of the Main Results

Proof of Corollary 3.1

We have Ay < A < Ay < Ay and A} < M) < A} < A4 from Corollary B.3 where
1

m(\) =1, 7(A\9) = o= 7(A\}) which implies A\ = A\}. We have also mo(\) =
-«

1 1 1 1
T mo(A}) = , mg) =, m(\) =

1 -2« 1l -« 1 -2«

. Moreover,

U(AO) NR= {)‘(1)7)‘ (2)7)‘(3)7)‘4} and U('Al) NR= {)‘%7)‘%7)%7)‘4}

From (B.4) the real number A4 is the strictly dominating eigenvalue of A and Ay
(satisfies respectively the Corollaries B.1 and B.2 ) and Uy, given in (B.6)(B.7)
satisfies AUz, = MUy, A1Ux, = M\U,, and we have from Nucl(Ag — A\ Id) =
Nucl(A; — A\ Id) =R -{U,,} and (B.5):

X*=R-{Uy,} @ Im(Ag — \Id) and X* =R - {Uy,} ® Im(A; — M\ 1d).
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We remark that the functions Py, Py : X* — R - {U,,} are not the same because in
general Co(¢) # C1(9).

Given ¢ € X*, we can write

n

(eT.AleTA())TL¢: Z(eQ(n—(j—l))/\4TPO+e(2(n—(j—1))—1)/\4TP160)(6160)]'—1 )

j=1
+ (6100)" ¢
(C.1)
and
0
TA® TAD \n 1 (3)
(8160)"¢ = 8 + <(e e hT)ret ) (C.2)
0
[(6100)" ],

where we are using the notation: §; := €71 (Id — P;) and &y := eT4o(Id — Pp).
Taking into account (B.8) we have from (C.1)

||e—2nT/\4 (eT.Al eTAo)n ||
n

j—1 n
< {14 Koe ™) Z (KlKoe_T(EOJrEl))] n (KlKoe—T(go+€1)) ' (C.3)
j=1
Notation
5 = T4 (1d — PP 619 = eTA4” (1 — P
552 = T4 (1d — PPy 6 = A7 (1d — P?)
5§ = T4 (1d — (V) 61V = T4 (1d — PV

We observe by direct calculation that the following hold

o POP® — pPpB <.
o (PP9)® =0and ((AV4)®) =o.

o 6P =6 PP =0.
These relations imply

eTA(()S)¢(3) — eTAgPé3)¢(3) + eTA(()s) (Id _ Pé3))¢(3) — eTAgPé3)¢(3) + 6(()3)¢(3)
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We can also deduce the following

(1) (1) 0
3) 3) et et 2 2 (2)
eT AT T A ¢(3) = 0 + [eTAl (5(()3)¢(3)) :|

0 2

0
0

4™ [eTAf) (Pé?’%(?’))@)}

0

2

0

+ eTA PO TAT §(2) 4 o
[afwazm]

(C.4)
3

It follows from (B.11) and (B.12) the inequalities:

[eTA(f”eTAés)(;S(?’)} < T (AT +AT) H¢(3)H

1

|:6T,A§3)6T,A(()3)¢(3):| < (T(8+73) (1 +I(ézs)‘fTe((;»)) ||¢(3)||
2

[eTA(13)eTA(()3)¢(3)} < T (A+29) (1 +K§3)6—T5(13)) ||¢(3)|| .
3

. 7A® TAD . .
On other side, we can also use for e*“*0~ and e*“*1 "~ the following expressions

)
eT 4o 0 0
TA® TA
e = H(T) el Aa-o) 0
0 1 (0]
eTAU-a) — ¢TAS) 0 eTA1-a)
and
)
eT A 0 0
TAP TA! M Al
e " = et ta-a) — eT'Al et - 0
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where

T
H(T)¢=a / (T €O (T4 dp, with CF () (x) = K§ () ¢ (22)
0

and

T
W(T)¢ = a / e 00 (A7) dp, with CF () (x) = K () ¢ (22)
0

and from that

oTAW T A 0 0
(eTA(13)eTA(()3>) P® = H, (T) TAL ) TAG o) 0
Wi (T) 0 eTAu- eTAL )
with
Hy(T) = (6TA(11*“> — eTA(ll)> eTAél) + TAG-0 H (T)
and

Wi (T) =W (T) T4 4 eTAa-a (eTA%w) - eTAél)) :

i

The operators A(l—a) (i=0,1) and A(;_,) are represented by the operators L
defined below for ky(z) = (1 — a)ki(z) and kr(x) = (1 — a)k(z), respectively:
D(L) given by

{u EX:UCC@\ (D, (3 =0 n(-g@) T (@) + hu(o)u(20)
and liIrll(—g(ac)j—u(x)) exist and are equal }
zl3 T

for all w € D(L),

" ~g@) (@) + ke (@u(2z) (o € )
~g(a) (@) (rem).

The following formula holds

eTAY TAGY ),
3) pA®
eT.A1 eT'AO 0 _ 0 +
0 0

0
A (T4 @) (zﬁ)] 2

0

0
0

+ P

(3) /723
eTA1 eTA0
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and from this we have expressions for
(eTA§3>eTA§)3)>2 ¢® and (eTA§3>eTAgs>)3 o
and from (B.8), (B.11) (B.12) we have the estimations
H |:(6TA§3>6TA(()3>)3 ¢(3)}
2

< TGN (ATOIANN) 41y ke 60 ()

and

ey
3

< 2T (Xa+23) (eQT()‘?-Mi—/\é—/\ 9) 14 K(3 T6(3>) H¢(3)H

Following the same procedure, we can proof the analogous relations for
n
oTAY eTA((f)) @,

Finally, we have

eTAY e TAY — (TN T AT p(1) 4 (T A (T AV (Id - ng) . (C.7)
From (C.7) we can write
(eTA<11> oT A ) 2
_ eTA‘l’eTA(ll)Pél) (eTA§1>eTAgl>) + eTA§1)5él) {eT)\‘l’eTA(ll)Pél) + eTAP(gél)}

2
0 (1) 1 (1) (1) 0 1) (1 (1) 1 (1) (1
— TN o TA; Po( ) <6T.A1 eTA ) eTA o T A} 5(() ) T A Pé ) (eTA1 5(() ))

. . TAD pam\4 .
and successively. Thus, we have an expression for (e’ 1 e % for which
€) 4 0 ! W\ J
1) _
(eTA1 oTAS ) T(X9+A1) Z(Ké )o—Tes )
Jj=0

From this we can prove, by finite induction, the following estimate for arbitrary
n>1
H( TAD TA‘”)”
et et

Finally, from (C.3), (C.5) (C.6) and (C.8) by taking into account the condition
T> %ln K,i. e., Ke~T¢ < 1, the proof of the Corollary 3.1 is completed.

3

T(A+A]) Z <Kél)efTe(<)1>)j ‘ (C.8)

j=0
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Evolution Problem (2.6)

Mathematically, the existence of stable size-distribution in the evolution
problem (2.6) is given by the long time behavior of (eTAleTAO)nng
(H'eTAH Hy 'eTA0 Hy) ¢ for large n. We have from Corollary 3.1 and their
notations:

Corollary C.1. Suppose g(2z) < 2g(x), for all x € Qy. Then, for a conve-

nient choice of T, we can find nonnegative linear operators S = S’(T,-),Rl =
Ri(T,"),Ra = Ro(T,-), Ra = Ru(T,") in L(X§; Xo) such that, for all ¢ € X4,

e~ nT(AT+AT) [(H;1GTA1 H1H516TADHO)n¢] — S(T o),
e TSN [(H T4 H Hy e Ho) g, — Ri (T, ¢),
e TSN [(H YeTA Hy Hy L4 Ho) ], — Ro(T,

( ) T

e~ 2T [(H T4 HyHy ' eT40 Ho)"¢), — Ra(T),
Proof. Let we consider for (i =0,1) (j = 1,2,3) the following notations:

(a) P;:= H*lpH and §; := H; '6;H;
) (B = g PO = g pO gD 50 = gD @) ang
eTA(J> — Hf /) TA,EJ)Hi( )

By exploring the particular diagonal form of the operators H;, and by using similar
arguments that we are used in proof of the Corollary 3.1 we observe that

(i) HiPj=H;'P;=P;, P,=PFH; & =06H, [& &],=/[0160,
( ) By changlng m (C 1) PQ by PQHQ, PI(SO by P1H1(50 and (51(50 by (51(50,W€ ob-

tain another analogous formula to ( C.1) and changing (e”*4 7 TA(s))”(ﬁ(:g)

by (eTAgg)eTAl()B))”qS(S) in (C.2) we obtain an analogous formula to (C.2).
Then, we have a analogous formula to (C.3) with K; K, replaced by
1 Hg 1 Holll| Hy 1| Ha || K1 Ko

and so on, we obtain the proof of Corollary C.1.
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