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ABSTRACT
A size-structured model is developed to study the growth of tumor cell populations during
chemotherapeutic treatment with two non-cross resistant drugs, D0 and D1. The cells
reproduce by fission. Four types of cells are considered: sensitive cells to both D0 and D1,
cells that are resistant to D0 only, cells that are resistant to D1 only, and cells that are
resistant to both D0 and D1. Resistant cells arise by spontaneous genetic mutation from
sensitive cells and are selected during the growth of the mixed population. The model
consists on a system of linear partial differential equations describing the size-density
of each type of cells. That corresponds to chemotherapeutic treatment on a given time
sequence intervals such that, we continuously apply D0 at a first interval and next we
apply D1 at a second interval, and so forth. We obtain a stable size-distribution theorem
for this case.
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1. Introduction

Our aim in this paper is to describe a stable size-distribution theorem for a math-

ematical model developed to study the cellular resistance in tumor cell popula-

tions during alternated chemotherapeutic treatment with two non-cross resistant

antiblastic drugs, D0 and D1.

We have considered the size-structure to describe the cellular resistance problem

in tumor cell populations because antiblastic drugs are phase-specific, which means

that they only act on a determined sensitivity phase of the cells.
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It is also incorporated in the model the concept of spontaneous genetic mutation

from sensitivity to resistance independent from the selection agent as previously

demonstrated in the classical observations of Luria and Delbruck.

In a previous work [15], we have extended the result of stable size-distribution

for a size-structured mathematical model for the growth of a cell population repro-

ducing by binary fission into two exactly equal parts given in [8, Corollary 7.3]. We

have considered an extension of that model for a tumor cell population in which

two distinct subpopulations is considered: sensitive and resistant. We have shown

the existence of stable size-distribution for each tumor cell subpopulation in two

cases of only one drug treatment on sensitive cells: (a) a non-stop treatment, and

(b) an instantaneous drug action on prescribed times.

For case (a), the model is given by the linear system:

∂s

∂t
(t, x) +

∂

∂x
(g(x)s (t, x))

= −(µ(x) + µF (x) + b(x))s (t, x) + 4(1− α)b(2x)s(t, 2x)

∂r

∂t
(t, x) +

∂

∂x
(g(x)r (t, x))

= −(µ(x) + b(x))r (t, x) + 4b(2x)r(t, 2x) + 4αb(2x)s(t, 2x)

where t denotes the time, x denotes the size of an individual cell, s = s(t, x) denotes

the cell size density of sensitive cells at time t, r = r(t, x) denotes the cell size

density of resistant cells at time t, α is the constant mutation rate from sensitive

into resistant tumor cells and, g(x) is the size-specific individual growth rate; µ(x)

is the size-specific per capita death rate, µF is the drug-kill rate for sensitive cells

per capita per unit of time and, b(x) is the size-specific probability of fission per

unit of time.

The last term of each equation contains the factor 4 = 2×2 due to the fact that

a cell divides into 2 parts and the second factor 2 is due to the fact that the size of

daughters cells at (x, x+ dx) comes from the size of mothers cells at (2x, 2x+2dx).

Added to this, considerations at the level of the population individual cells lead to

an evolution problem that generates a strongly-continuous semigroup.

The asymptotic behavior of this semigroup heavily depends on the functional

relationship between the cell growth and its size x described by the size-dependent

individual growth rate g. In supposing g(2x) < 2g(x) for all relevant x, i. e., the

time that a cell needs to grow from size x to size 2x increases with their size x, a

stable size-distribution theorem for this problem is given in [15, Theorem 3]:

There exist a Malthusian parameter λ1, a stable size-distribution sλ1(x) for sen-

sitive cells, and a Malthusian parameter λ2 which has a correspondent stable size-

distribution, rλ2(x), for resistant cells, such that, as t→∞,

e−λ1ts(t, x;φ) ∼ C1sλ1(x)

e−λ2tr(t, x;φ) ∼ C2rλ2(x)
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where λ1 < λ2, C1 only depends on the first coordinated function of the initial

condition φ and C2 only depends on φ.

The model analyzed in this paper is an extension of the above model. It is for-

mulated as the time-dependent evolution problem (2.6) below, arising from Eq. (2.1)

to Eq. (2.4). In Corollary 3.1 we will state the correspondent result of stable size-

distribution.

Roughly its statement is the following.

There exist real parameters λi1 < λi2 < λi3 < λ4 (i = 0, 1) and, for sufficiently

large T , there exist non-negative bounded linear operators ŝ = ŝ(T ; ·), r̂1 = r̂1(T ; ·),
r̂2 = r̂2(T ; ·) and r̂d = r̂d(T ; ·) such that, for all initial condition φ, as n→∞,

e−nT (λ0
1+λ1

1) s(2nT ;φ)→ ŝ(T ;φ)

e−nT (λ0
3+λ1

2) r1(2nT ;φ)→ r̂1(T ;φ)

e−nT (λ0
2+λ1

3) r2(2nT ;φ)→ r̂2(T ;φ)

e−2nTλ4 rd(2nT ;φ)→ r̂d(T ;φ)

where

T > 0 is the duration time for each drug;

s(t, φ) is the size-density for cells that are sensitive to both D0 and D1 drugs at

time t;

r1(t, φ) is the size-density for cells that are resistant to D0 at time t;

r2(t, φ) is the size-density for cells that are resistant to D1 at time t;

rd(t, φ) is the size-density for cells that are resistant to both D0 and D1 at time t.

In this case, a stable size-distribution becomes a uniform limit of projections

that depends on a convenient choice of the drug duration time T > 0.

As a consequence, each subpopulation has a stable size distribution in the fol-

lowing sense: for all sufficiently large n, the ratio of the number of cells of any

subpopulation of tumor cells in a given size-interval by the total number of cells of

this subpopulation is time independent.

2. The Model and Its Interpretation

We consider four different types of tumor cells:

s-cells: cells sensitive to the action of D0 and D1 antiblastic drugs;

r1-cells: cells that are resistant to the action of D0 and sensitive to the action

of D1;

r2-cells: cells that are resistant to the action of D1 and sensitive to the action

of D0;

rd-cells: cells that are resistant to both D0 and D1 actions.

The cells grow, die and reproduce by binary fission into two identical daughters.

Any rd-cell produces two identical rd-cells, under division. An s-cell can produce

two identical s-cells, two identical r1-cells or two identical r2-cells, under division.
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Any r1-cell can produce two identical r1-cells or two identical rd-cells, under di-

vision, and, an r2-cell can produce two identical r2-cells or two identical rd-cells,

under division. It is assumed that any cell of the population is characterized and

distinguished from each other by an appropriate physically conserved quantity de-

noted by x, called the size of a cell of the population. We can interpret the size of

a cell as its volume or mass.

Let J0, J1, J2, · · · denote a sequence of intervals where it will occur continuous

applications of the non-cross-resistant anti-blastic drugs D0 and D1.

Thus,

At Jn, for n even, only drug D0 acts continuously over the subpopulations of s-cells

and r2-cells;

At Jn, for n odd, only drug D1 acts continuously over the subpopulations of s-cells

and r1-cells.

The proposed size-structured model for the evolution of the tumor cells of the

population is described by a nonautonomous linear system, given by following equa-

tions (2.1) to (2.4):

Equation for sensitivity:
∂s

∂t
(t, x) +

∂

∂x
(g(x)s(t, x))

= − (µ(x) + b(x) + (µD0 + µD1)(t, x))s(t, x)

+ 4b(2x)s(t, 2x)− α1 · 4b(2x)s(t, 2x)− α2 · 4b(2x)s(t, 2x)

(2.1)

where s(t, x) denotes the size-dependent density of s-cells at time t;

Equation for resistance to D0 and sensitivity to D1:
∂r1

∂t
(t, x) +

∂

∂x
(g(x)r1(t, x))

= − (µ(x) + b(x) + µD1(t, x))r1(t, x)

+ 4b(2x)r1(t, 2x) + α1 · 4b(2x)s(t, 2x)− α2 · 4b(2x)r1(t, 2x)

(2.2)

where r1(t, x) denotes the size-dependent density of r1-cells at time t;

Equation for resistance to D1 and sensitivity to D0:
∂r2

∂t
(t, x) +

∂

∂x
(g(x)r2(t, x))

= − (µ(x) + b(x) + µD0(t, x))r2(t, x)

+ 4b(2x)r2(t, 2x) + α2 · 4b(2x)s(t, 2x)− α1 · 4b(2x)r2(t, 2x)

(2.3)

where r2(t, x) denotes the size-dependent density of r2-cells at time t;
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Equation for resistance to D0 and D1:
∂rd

∂t
(t, x) +

∂

∂x
(g(x)rd(t, x))

= − (µ(x) + b(x))rd(t, x)

+ 4b(2x)rd(t, 2x) + α1 · 4b(2x)r2(t, 2x) + α2 · 4b(2x)r1(t, 2x)

(2.4)

where rd(t, x) denotes the size-dependent density of rd-cells at time t.

The coefficients α1, α2, g, b, µ, µD0, µD1 are such that:

α1 is the mutation rate constant for s-cells into r1-cells and for r2-cells into rd-cells;

α2 is the mutation rate constant for s-cells into r2-cells and for r1-cells into rd-cells;

g is the individual size growth rate per unit of time,

dx

dt
= g(x); (2.5)

b is the probability of division per capita per unit of time;

µ is the death rate per capita per unit of time;

µDi (i = 0, 1) is the Di -drug-kill rate time dependent per capita per unit of time,

given for all x ∈ Ω by

µDi(t, x) =

{
µi(x) (t ∈ J2k+i)

0 (otherwise)
(k = 0, 1, 2, · · · )

where µi is the Di-drug-kill rate per capita per unit of time.

In order to state the evolution problem, we consider:

1. The size x of the cells is normalized with x ≤ xmax = 1.

2. A given cell can divide itself only if its size is greater than a certain fixed

threshold size x = a > 0 and all cells of the population have to divide

themselves if their size x tends to the maximal size x = 1.

3. At division, an individual cell of size x > a produces two daughters cells,

each of them having the size
x

2
.

From these considerations it follows:

(*) there are no cells in the population with size less or equal to
a

2
;

(**) in Eq. (2.1) – Eq. (2.4) the terms involving the 2x argument should be con-

sidered equal to zero if x ≥ 1

2
.

We arrive at the following evolution problem

∂u

∂t
= − ∂

∂x
(g(x)u(t, x)) −ND(t, x)u(t, x)

+ Nα1,α2(x)u(t, 2x)
(t > 0, x ∈ Ω)

u(t,
a

2
) = 0 (t > 0)

u(0, x) = u0(x) (x ∈ Ω)

(2.6)
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where

0 ≤ α1, α2 ≤ α1 + α2 < 1;

ND =


µ+ b+ µD0 + µD1 0 0 0

0 µ+ b+ µD1 0 0

0 0 µ+ b+ µD0 0

0 0 0 µ+ b

 ;

Nα1,α2(x) = 4


(1− α1 − α2)b(2x) 0 0 0

α1b(2x) (1− α2)b(2x) 0 0

α2b(2x) 0 (1− α1)b(2x) 0

0 α2b(2x) α1b(2x) b(2x)

 .

We recall that Nα1,α2(x)u(t, 2x) ≡ 0 (x ∈ Ω1).

Abstract Evolution Problem

Now, we intend to study the solutions of the problem (2.6) considering its time-

dependent evolution. As we can see, the solution operator of problem (2.6) does

not consist on a semigroup of operators. In fact, it is a periodic evolution operator.

In order to simplify the notation we will denote Ω =
[a
2
, 1
]
, Ω0 =

[
a

2
,
1

2

]
and

Ω1 =

[
1

2
, 1

]
.

We make some technical assumptions:

(I) g is a continuous, strictly positive function on Ω.

(II) b is continuous on
[a
2
, 1
)

, identically zero on
[a
2
, a
]
, strictly positive on (a, 1)

and limx↑1

∫ x

a

b(ξ)dξ = +∞.

(III) µ, µ0, µ1 are integrable functions such that, 0 ≤ µ, µ0, µ1 ≤ 1 on Ω, almost

everywhere.

We can have the function G(x) :=

∫ x

a/2

dξ

g(ξ)
from Eq. (2.5) interpreted as the

time that a cell needs to grow from the minimal size
a

2
to the size x.

Let Fi and Fi (i = 0, 1) be defined on Ω by:

Fi (x) := exp

(
−
∫ x

a/2

µi (ξ)

g (ξ)
dξ

)
, Fi(x) := exp

(
−
∫ x

a/2

(µ+ b+ µi) (ξ)

g (ξ)
dξ

)
(2.7)

and

E (x) :=
Fi(x)
Fi (x)

= exp

(
−
∫ x

a/2

µ (ξ) + b (ξ)

g (ξ)
dξ

)
. (2.8)
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We have

E(x) is the probability of a size
a

2
cell to reach the size x without dying or being

divided;

Fi(x) is the probability of a size
a

2
cell to reach the size x without being killed by

Di drug ;

Fi(x) = E(x) for any ri-cell of size x.

By applying a transformation of dependent variables defined by means of the

above functions to the problem (2.6) we have the abstract Cauchy problem (A.1)

in the Appendix A.

After that we consider the semigroups {etAi}t≥0 for i = 0, 1 on a Banach carte-

sian product space X4 of continuous functions, generated by the unbounded linear

operator Ai that correspond to the case of non-stop treatment with the drug Di.
Then from the fact that these semigroups do not commute, we define the weak

solution of the abstract evolution problem (A.1) corresponding to (2.6) by compos-

ing in a sequence the semigroup {etA0} on J0 then the semigroup {etA1} on J1 and

so on.

We give more details about the above considerations in the Appendix A.

Remark. The condition g(2x) < 2g(x) for x ∈ Ω0 =

[
a

2
,
1

2

]
implies the compacity

in the semigroup etAi(i = 0, 1) and the analysis of their asymptotic behavior as

t → ∞ becomes easier. The same conclusion follows in the case of the biologically

unrealistic assumption g(2x) > 2g(x) for x ∈ Ω0 and the compacity is lost in case

of g(2x) = 2g(x) for x ∈ Ω0. See [1, Example 4].

3. Asymptotic Behavior of the Solutions

In the first half of this section we describe the asymptotic behavior for large time

of etA0 and etA1 in Theorems 3.1 and 3.2, respectively. These are stable size-

distribution theorems that respectively correspond to a chemotherapeutical treat-

ment with a time continuous D0 action on s-cells and r1-cells and, time continuous

D1 action on s-cells and r1-cells alternately for a same period of time T . After

that, by combining these results, we obtain the asymptotic behavior for large n

of (eTA1eTA0)n in Corollary 3.1 for T > 0. From that we deduce a stable size-

distribution theorem for problem (2.6).

Notation. Let we represent any φ ∈ X4 by a column consisting of four coordi-

nate functions φ1, φ2, φ3 and φ4 belonging to the space X . Following columns are

associated with a such φ:

φ(3) :=

φ1

φ2

φ3

, φ(2) :=

(
φ1

φ2

)
and , φ̃(2) =

φ1

0

φ3

 .
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Next developments are based on the assumption

(A) g(2x) < 2g(x) for all x ∈ Ω0 =

[
a

2
,
1

2

]
and also on the following

(B) a ≥ 1/2 and the functions µ0 ≥ 0, µ1 ≥ 0 are continuous, not identical to zero

on Ω =
[a
2
, 1
]
.

Cases of Treatment with Only One Drug

If the mutation rates satisfies the inequalities

0 < α2 ≤ α1 < 1/2 ,

the asymptotic behavior of the semigroup etA0 , is given by:

Theorem 3.1. Suppose g(2x) < 2g(x), for all x ∈ Ω0. There exist real numbers

λ0
1 < λ0

2 < λ0
3 < λ4 and non-negative functions Sλ0

1
, R1λ0

3
, R2λ0

2
and Rdλ4 such that

for any φ ∈ X4, there exist real constants C
(1)
0 (φ1) , C

(2)
0

(
φ̃(2)

)
, C

(3)
0

(
φ(3)

)
and

C0 (φ) so that for any t ≥ 0 we can write

etA0φ =


etλ

0
1C

(1)
0 (φ1)Sλ0

1

etλ
0
3C

(3)
0

(
φ(3)

)
R1λ0

3

etλ
0
2C

(2)
0

(
φ̃(2)

)
R2λ0

2

etλ4C0 (φ)Rdλ4

+


z1 (t, φ1)

z2

(
t, φ(3)

)
z3

(
t, φ̃(2)

)
z4 (t, φ)


where for the zi (i = 1, . . . , 4) we have:

lim
t→+∞

e−tλ
0
1z1 (t, φ1) = 0

lim
t→+∞

e−tλ
0
3z2

(
t, φ(3)

)
= 0

lim
t→+∞

e−tλ
0
2z3

(
t, φ̃(2)

)
= 0

lim
t→+∞

e−tλ4z4 (t, φ) = 0 .

It results that there exists a stable size-distribution for each cell subpopulation in

the tumor cell population under a non-stop treatment with D0.

Next, we have a similar result of existence of a stable size-distribution for each

cell subpopulation in the tumor cell population under a non-stop treatment with

D1.

If the mutation rates satisfies the inequalities

0 < α1 ≤ α2 < 1/2 ,

the asymptotic behavior of the semigroup etA1 is given by the following theorem.
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Theorem 3.2. Suppose g(2x) < 2g(x), for all x ∈ Ω0. There exist real numbers

λ1
1 < λ1

2 < λ1
3 < λ4 and non-negative functions Sλ1

1
, R1λ1

2
, R2λ1

3
and Rdλ4 such that

for any given φ ∈ X4 there exist real constants C
(1)
1 (φ1), C

(2)
1 (φ(2)), C

(3)
1 (φ(3)),

C1(φ) so that for any t ≥ 0 we can write

etA1φ =


eλ

1
1tC

(1)
1 (φ1)Sλ1

1

eλ
1
2tC

(2)
1 (φ(2))R1λ1

2

eλ
1
3tC

(3)
1 (φ(3))R2λ1

3

eλ4tC1(φ)Rdλ4

+


z1(t, φ1)

z2(t, φ
(2))

z3(t, φ
(3))

z4(t, φ)


where

lim
t→∞

e−λ
1
i zi = 0 (i = 1, 2, 3) and lim

t→∞
e−λ4tz4 = 0.

Theorems 3.1 and 3.2 can be proved by means of arguments similar to those given

in the proof to Corollary 3.1 in Appendix C.

Alternate Treatment

Finally we consider the situation where each treatment is applied alternately for a

same period of time T . First, D0-treatment is applied during the interval of time

J0 = [0, T ] to kill sensitive and r2-cells and so D1-treatment is applied during the

interval of time J1 = [T, 2T ] to kill sensitive and r1-cells and so on.

We combine the results of both theorems above by considering that the mutation

rates are equals, that is to say, satisfies the relations

0 < α2 = α1 = α < 1/2

to give the asymptotic behavior of
(
eTA1eTA0

)n
, as n tends to infinity.

Corollary 3.1. Suppose g(2x) < 2g(x), for all x ∈ Ω0. For a convenient choice

of T > 0, there exist non-negative bounded linear operators S = S(T, ·), R1 =

R1(T, ·), R2 = R2(T, ·), Rd = Rd(T, ·) from X4 to X, such that, for all φ ∈ X4, as

n→∞,

e−nT (λ0
1+λ1

1)[(eTA1eTA0)nφ]1 → S(T, φ) ,

e−nT (λ0
3+λ1

2)[(eTA1eTA0)nφ]2 → R1(T, φ) ,

e−nT (λ0
2+λ1

3)[(eTA1eTA0)nφ]3 → R2(T, φ) ,

e−2nTλ4 [(eTA1eTA0)nφ]4 → Rd(T, φ) .

Proof. The sketch of the proof of this result is given in Appendix C.
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Remark

1. Malthusian parameters for each kind of cell subpopulation in consideration

are given in Appendix B.

2. For K and ε we have:

K = max{Ki,K
(j)
i : i = 0, 1; j = 1, 2, 3}

and

ε = min{εi, ε(j)
i : i = 0, 1; j = 1, 2, 3},

from Eq. (B.8), Eq. (B.11) and Eq. (B.12) in the Appendix B. Then we take

T >
1

ε
lnK .

3. Theorem 3.1 gives the stable size-distribution for the case µ0 ≡ µ1 ≡ 0 which

corresponds to the situation where there is no treatment.

4. Conclusion

In the case of prolonged treatment we found that each cell subpopulation considered

has an intrinsic Malthusian parameter and an intrinsic stable size-distribution. In

this direction, Corollary 3.1 essentially explains the fact that for appropriate choice

of T and for large n each cell subpopulation has their own stable size distribution:

“for all n sufficiently large, the ratio of the size distribution of any subpopulation

of tumor cells in a given size-interval, by the total subpopulation, is constant, inde-

pendent of the time”.

In this work as in the previous one [15], we did need a different kind of extension

of the stable size-distribution notion than the one given in [1,8,21]. They only refer

to a population of individuals of the same species. Notice that if one applies directly

the results found in the literature, the asymptotic behavior of the sensitive cell

subpopulations is completely lost.

Toxicity problems in human chemotherapeutic treatments lead us to think that

these theoretical results may have some experimental relevance.

Appendix A. Abstract Evolution Problem

Transformation of Variables

Let H0 and H1 denote the matrix operators which corresponds respectively to the

following formal transformations of dependent variables

S = g
s

F0
, R1 = g

r1

E
, R2 = g

r2

F0
, Rd = g

rd

E
,

and

S = g
s

F1
, R1 = g

r1

E
, R2 = g

r2

F1
, Rd = g

rd

E
,

with g , Fi and Fi (i = 0, 1) and E defined respectively by (2.5), (2.7) and (2.8).



Mathematical Model for Tumor Cell Population Growth 295

Substituting in (2.6) the formal transformation

U(t, x) = Hu(t, x) =

{
H0 u(t, x) (t ∈ J2k)

H1 u(t, x) (t ∈ J2k+1)

we have the following transformed problem:
∂U

∂t
= −g(x)∂U

∂x
(t, x) +Mα1,α2(t, x)U(t, 2x) (t > 0, x ∈ Ω)

U
(
t,
a

2

)
= 0 (t > 0)

U(0, x) = U0(x) (x ∈ Ω)

(A.1)

with

Mα1,α2(t, x)U(t, 2x) ≡ 0, for all t ≥ 0, if x ∈ Ω1,

where

Mα1,α2(t, x) =


M0
α1,α2

(x) (t ∈ J2k)

M1
α1,α2

(x) (t ∈ J2k+1)

for

M0
α1,α2

(x) =


(1− α1 − α2)k0(x) 0 0 0

α1k
0
0(x) (1 − α2)k(x) 0 0

α2k0(x) 0 (1− α1)k0(x) 0

0 α2k(x) α1k
0
0(x) k(x)

 ,

M1
α1,α2

(x) =


(1− α1 − α2)k1(x) 0 0 0

α1k1(x) (1 − α2)k1(x) 0 0

α2k
0
1(x) 0 (1− α1)k(x) 0

0 α2k
0
1(x) α1k(x) k(x)

 ,

k(x) = 4g(x)
b(2x)

g(2x)

E(2x)

E(x)
,

ki(x) = 4g(x)
b(2x)

g(2x)

Fi(2x)
Fi(x)

= k(x)
Fi(2x)

Fi(x)

and

k0
i (x) = 4g(x)

b(2x)

g(2x)

Fi(2x)
E(x)

= k(x)Fi(2x).

Abstract Cauchy Problem

In order to get to the solution of (A.1), we consider for i = 0, 1 the unbounded

linear operators Ai on X4, where X = {φ ∈ C(Ω) : φ(a/2) = 0} with the sup-norm,
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defined by

D(Ai) =
{
U ∈ (X ∩ C1(Ω \

{
1
2

}
))4 : U ′ (a/2) = 0, limx↓ 1

2
[− g(x)U ′(x)]

and limx↑ 1
2

[− g(x)U ′(x) +M i
α1,α2

(x)U(2x)] exist and are equal
}
,

(AiU)(x) = −g(x)U ′(x) +M i
α1,α2

(x)U(2x) (x ∈ Ω, U ∈ D(Ai)) .

One can demonstrate, using arguments similar to those given in [8], the following

result.

Theorem A.1. Ai (i = 0, 1) is closed densely defined linear operator on X4 which

generates a linear C0-semigroups {etAi}t≥0 on X4.

If g(2x) < 2g(x) for x ∈ Ω0, then etAi is a compact operator for t ≥ G(1).

The solution of (A.1) is given by composition of the solution operators {etA1}t≥0

and {etA0}t≥0.

Results in Theorem A.1 have correspondents in the initial problem (2.6), i.

e., weak solutions of problem (2.6) are given by a sequence of composition of the

following semigroups

H−1
0 etA0H0u

0 and H−1
1 etA1H1u

1 (t ≥ 0)

where, the transformation Hi (i = 0, 1) is an isomorphism from Banach space X4
0

onto X4 with X0 = {φ ∈ X : φ/E is bounded } and ‖φ‖0 = ‖φ/E‖∞.

Appendix B. Spectral Properties of Ai (and etAi)(i = 0,1)

In this section, we will follow the results contained in [8] and [20]. We also refer the

reader to [16,11].

The Spectrum of Ai(i = 0,1), Case a ≥ 1

2

Suppose a ≥ 1

2
(i.e., the maximal size of a daughter cell is less than the minimal size

of a mother cell). For a detailed study of the general case, see [12, Chapter II]. We

make use of the above condition to study U solutions of the equation λU−AiU = f

for λ ∈ C and f ∈ X4. By doing so, we conclude that x ∈ Ω0 implies in 2x ∈ Ω1

and then we first integrate on Ω1 and on Ω0 afterwards. Explicitly we have:

In Ω1,

U(x) = eλ(G( 1
2 )−G(x))U

(
1

2

)
+

∫ x

1/2

eλ(G(ξ)−G(x))f(ξ)
dξ

g(ξ)
. (B.1)

In Ω0,

U(x) = eλ(G( 1
2 )−G(x))π̂Mi

α1,α2
(λ, x)U

(
1

2

)
+ ζ̂Mi

α1,α2
(λ, f, x) (B.2)
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where

π̂Mi
α1,α2

(λ, x) =

∫ x

a/2

eλ(G(ξ)−G(2ξ))M i
α1,α2

(ξ)
dξ

g(ξ)

and

ζ̂Mi
α1,α2

(λ, f, x)

=

∫ x

a/2

eλ(G(ξ)−G(x))

[
f(ξ) +M i

α1,α2
(ξ)

(∫ 2ξ

1/2

eλ(G(η)−G(2ξ))f(η)
dη

g(η)

)]
dξ

g(ξ)
.

We also notice that

π̂M0
α1,α2

=



(1 − α1 − α2)π0(λ, x) 0 0 0

α1π
0
0(λ, x) (1− α2)π(λ, x) 0 0

α2π0(λ, x) 0 (1− α1)π0(λ, x) 0

0 α2π(λ, x) α1π
0
0(λ, x) π(λ, x)


and

π̂M1
α1,α2

=



(1 − α1 − α2)π1(λ, x) 0 0 0

α1π1(λ, x) (1− α2)π1(λ, x) 0 0

α2π
0
1(λ, x) 0 (1 − α1)π(λ, x) 0

0 α2π
0
1(λ, x) α1π(λ, x) π(λ, x)


with

π(λ, x) =

∫ x

a/2

eλ(G(ξ)−G(2ξ))k(ξ)
dξ

g(ξ)
, πi(λ, x) =

∫ x

a/2

eλ(G(ξ)−G(2ξ))ki(ξ)
dξ

g(ξ)

and

π0
i (λ, x) =

∫ x

a/2

eλ(G(ξ)−G(2ξ))k0
i (ξ)

dξ

g(ξ)
, (i = 0, 1).

The continuity for x =
1

2
gives the following condition from equations (B.1) and

(B.2)

(Id− π̂Mi
α1,α2

(λ))U

(
1

2

)
= ζ̂Mi

α1,α2
(λ, f) (i = 0, 1) (B.3)

where we use the notation for i = 0, 1

πi

(
λ,

1

2

)
:= πi(λ), π

0
i

(
λ,

1

2

)
:= π0

i (λ),
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π̂Mi
α1,α2

(
λ,

1

2

)
:= π̂Mi

α1,α2
(λ) and ζ̂Mi

α1,α2

(
λ, f,

1

2

)
:= ζ̂Mi

α1,α2
(λ, f).

If det(π̂Mi
α1,α2

(λ) − Id) 6= 0, we can solve U

(
1

2

)
in Eq. (B.3) and the resolvent

operator for Ai is given by

U(x) = Uλ(x) = ((λId −Ai)−1f)(x)

=


eλ(G( 1

2 )−G(x))Uλ

(
1

2

)
+

∫ x

1/2

eλ(G(ξ)−G(x))f(ξ)
dξ

g(ξ)
(x ∈ Ω1)

eλ(G( 1
2 )−G(x))π̂Mi

α1,α2
(λ, x)Uλ

(
1

2

)
+ ζ̂Mi(λ, f, x) (x ∈ Ω0) .

Then, λ ∈ ρ(Ai). This resolvent operator is compact.

If det(Id − π̂Mi
α1,α2

(λ)) = 0 then, by solving Eq. (B.3) with f ≡ 0, we can find

non trivial eigenfunctions for Ai. So λ ∈ σ(Ai).

Notation. For i = 0, 1 let λi1, λ
i
2, λ

i
3 and λ4 denote the real eigenvalues of Ai. We

recall that they satisfy:

π0(λ
0
1) =

1

1− (α1 + α2)
, π0(λ

0
2) =

1

1− α1
, π(λ0

3) =
1

1− α2
and π(λ4) = 1 ,

π1(λ
1
1) =

1

1− (α1 + α2)
, π1(λ

1
2) =

1

1− α2
, π(λ1

3) =
1

1− α1
and π(λ4) = 1 .

Localization of the Eigenvalue for Ai(i = 0,1)

In this section we suppose each function µi (i = 0, 1) to be continuous and non

identical to zero on Ω. This technical condition is sufficient, for instance, to prove

Lemma B.1 below.

The analyticity and monotonicity, of π(λ) and πi(λ) when restricted to real λ,

imply the following results in this section which extend their correspondent results

in [8, Sec. 6] and [20, Sec. 3.4].

Lemma B.1. For i = 0 or i = 1: πi(λ) < π(λ), for all λ ∈ R.

Eigenvalues of A0

Suppose 0 < α2 ≤ α1 <
1

2
. Then, we have:

Corollary B.1. If g(2x) < 2g(x) for x ∈ Ω0, then there exists ε > 0, such that,

λ ∈ σ(A0) implies Re(λ) ≤ λ4 − ε.

Eigenvalues of A1

Suppose 0 < α1 ≤ α2 <
1

2
. Then, we have:
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Corollary B.2. If g(2x) < 2g(x) for x ∈ Ω0, then there exists ε > 0, such that,

λ ∈ σ(A1) implies Re(λ) ≤ λ4 − ε.

In particular we have the following corollary.

Corollary B.3. If 0 < α1 = α2 = α <
1

2
, then

(i) λ0
1 < λ0

2 < λ0
3 < λ4.

(ii) λ1
1 < λ1

2 < λ1
3 < λ4.

If in addition µ0 ≡ µ1, then π0 = π1, π
0
0 = π0

1, λ
0
1 = λ1

1, λ
0
2 = λ1

2 and λ0
3 = λ1

3.

Spectral Decompositions related to Ai and etAi(i = 0,1)

For details about the basic results used in this section we refer to [11, Sec. 4.2,

Appendix 2.4].

Consider a ≥ 1

2
, 0 ≤ α1 = α2 = α <

1

2
and g(2x) < 2g(x) for x ∈ Ω0. So,

λi1 < λi2 < λi3 < λ4, for i = 0, 1. (B.4)

We have a direct sum decomposition

X4 = N (λ4Id−Ai)⊕R(λ4Id−Ai) (B.5)

with spectral projection Pi : X4 → N (λ4Id−Ai) given by

Piφ = Ci(φ)Uλ4 (B.6)

where the first three components of Uλ4 are equal to zero and its fourth component

is

Rdλ4(x) =

{
e−λ4G(x) (x ∈ Ω1)

e−λ4G(x)π(λ4, x) (x ∈ Ω0)
. (B.7)

Pi is the residue at λ = λ4 in the Laurent development for the resolvent operator

(λId−Ai)−1. Functions Ci(φ) are not the same for i = 0, 1.

Remark. etAi (i = 0, 1) is eventually compact C0-semigroup.

Then, for all t ≥ 0,

(a) σ(etAi) ⊂ {0} ∪ etσP (Ai) .

(b) N (λ4Id−Ai) is invariant for etAi and etAiPiφ = etλ4Piφ.

(c) There exist real numbers Ki ≥ 1 and εi > 0 such that, for all t ≥ 0,

‖etAi(Id− Pi)‖ ≤ Kie
t(λ4−εi)‖Id− Pi‖. (B.8)
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Notation. (i) [φ]k represents the kth component of φ ∈ X4.

(ii) A(j)
i (resp. etA

(j)

i ) represents for i = 0 and j = 1, 3, or i = 1 and j = 1, 2, 3 the

principal order j square sub-matrix operator of Ai (resp. etAi) acting on Xj. In

cases i = 0 and j = 2, Ã(2)
0 ( resp. etÃ

(2)
0 ) represents the principal order 3 square

sub-matrix operator of A0 ( resp. etA0) having zero entries in their second row and

second column as well as, acting on Z = X × {0} ×X .

There exist direct sum decompositions for i = 0, 1

Xj = N (λijId−A
(j)
i )⊕R(λijId−A

(j)
i ) (j 6= 2, if i = 0). (B.9)

P
(j)
i : Xj → N (λijId−A

(j)
i ) (j 6= 2, if i = 0) denotes a spectral projection.

For i = 0, j = 2, we have

Z = X×{0}×X = P
(2)
0 Z⊕(Id−P (2)

0 )Z, where P
(2)
0 Z = N (λ0

2Id−Ã
(2)
0 ) . (B.10)

In all of the above-mentioned cases, we have that etA
(j)
i ( resp. etÃ

(2)
0 ) are

C0-semigroups generated by A(j)
i ( resp. Ã(2)

0 ) and the following lemma.

Lemma B.2. There exist K
(j)
i ≥ 1, ε

(j)
i > 0 such that, for all t ≥ 0,

‖etA
(j)
i (Id− P (j)

i )‖ ≤ K(j)
i et(λ

i
j−ε

(j)
i

)‖Id− P (j)
i ‖ (B.11)

and

‖etÃ
(2)
0 (Id− P (2)

0 )‖ ≤ K(2)
0 et(λ

0
2−ε

(2)
0 )‖Id− P (2)

0 ‖. (B.12)

Appendix C. Proofs of the Main Results

Proof of Corollary 3.1

We have λ0
1 < λ0

2 < λ0
3 < λ4 and λ1

1 < λ1
2 < λ1

3 < λ4 from Corollary B.3 where

π(λ4) = 1, π(λ0
3) =

1

1− α = π(λ1
3) which implies λ0

3 = λ1
3. We have also π0(λ

0
2) =

1

1− α, π0(λ
0
1) =

1

1− 2α
, π1(λ

1
2) =

1

1− α, π1(λ
1
1) =

1

1− 2α
. Moreover,

σ(A0) ∩ R = {λ0
1, λ

0
2, λ

0
3, λ4} and σ(A1) ∩ R = {λ1

1, λ
1
2, λ

1
3, λ4}.

From (B.4) the real number λ4 is the strictly dominating eigenvalue of A0 and A1

(satisfies respectively the Corollaries B.1 and B.2 ) and Uλ4 given in (B.6)(B.7)

satisfies A0Uλ4 = λ4Uλ4 , A1Uλ4 = λ4Uλ4 and we have from Nucl(A0 − λ4Id) =

Nucl(A1 − λ4Id) = R · {Uλ4} and (B.5):

X4 = R · {Uλ4} ⊕ Im(A0 − λ4Id) and X4 = R · {Uλ4} ⊕ Im(A1 − λ4Id).
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We remark that the functions P0, P1 : X4 → R · {Uλ4} are not the same because in

general C0(φ) 6= C1(φ).

Given φ ∈ X4, we can write

(eTA1eTA0)nφ =


n∑
j=1

(e2(n−(j−1))λ4TP0 + e(2(n−(j−1))−1)λ4TP1δ0)(δ1δ0)
j−1

φ

+ (δ1δ0)
nφ

(C.1)

and

(δ1δ0)
nφ =


0

0

0

[(δ1δ0)
nφ]4

+

(
(eTA

(3)
1 eTA

(3)
0 )nφ(3)

0

)
(C.2)

where we are using the notation: δ1 := eTA1(Id − P1) and δ0 := eTA0(Id − P0).

Taking into account (B.8) we have from (C.1)

∥∥e−2nTλ4
(
eTA1eTA0

)n∥∥
≤
{
1 +K0e

−Tλ4
} n∑
j=1

(
K1K0e

−T (ε0+ε1)
)j−1

+
(
K1K0e

−T (ε0+ε1)
)n
.

(C.3)

Notation

δ
(3)
0 = eTA

(3)
0 (Id− P (3)

0 ) δ
(3)
1 = eTA

(3)
1 (Id− P (3)

1 )

δ̃
(2)
0 = eT Ã

(2)
0 (Id− P (2)

0 ) δ
(2)
1 = eTA

(2)
1 (Id− P (2)

1 )

δ
(1)
0 = eTA

(1)
0 (Id− P (1)

0 ) δ
(1)
1 = eTA

(1)
1 (Id− P (1)

1 )

We observe by direct calculation that the following hold

• P (3)
1 P

(3)
0 = P

(3)
0 P

(3)
1 ≡ 0.

• (P
(3)
1 ψ)(2) = 0 and

(
(P

(3)
0 ψ)(2)

)∼
= 0.

• δ(3)
0 P

(3)
0 = δ

(3)
1 P

(3)
1 = 0.

These relations imply

eTA
(3)
0 φ(3) = eTλ

0
3P

(3)
0 φ(3) + eTA

(3)
0 (Id− P (3)

0 )φ(3) = eTλ
0
3P

(3)
0 φ(3) + δ

(3)
0 φ(3).
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We can also deduce the following

eTA
(3)
1 eTA

(3)
0 φ(3) =

 eTA
(1)
1 eTA

(1)
0 φ1

0

0

+


0[

eTA
(2)
1

(
δ

(3)
0 φ(3)

)(2)
]

2

0



+ eTλ
0
3


0[

eTA
(2)
1

(
P

(3)
0 φ(3)

)(2)
]

2

0



+ eTλ
1
3P

(3)
1 eT Ã

(2)
0 φ̃(2) +


0

0[
δ

(3)
1 eT Ã

(2)
0 φ̃(2)

]
3

 . (C.4)

It follows from (B.11) and (B.12) the inequalities:∥∥∥[eTA(3)
1 eTA

(3)
0 φ(3)

]
1

∥∥∥ ≤ eT(λ0
1+λ1

1)
∥∥φ(3)

∥∥
∥∥∥[eTA(3)

1 eTA
(3)
0 φ(3)

]
2

∥∥∥ ≤ eT(λ0
3+λ1

2)
(
1 +K

(3)
0 e−Tε

(3)
0

) ∥∥φ(3)
∥∥

∥∥∥[eTA(3)
1 eTA

(3)
0 φ(3)

]
3

∥∥∥ ≤ eT(λ1
3+λ0

2)
(
1 +K

(3)
1 e−Tε

(3)
1

) ∥∥φ(3)
∥∥ .

On other side, we can also use for eTA
(3)
0 and eTA

(1)
1 the following expressions

eTA
(3)
0 =



eTA
(1)
0 0 0

H (T ) eTA(1−α) 0

eTA
0
(1−α) − eTA

(1)
0 0 eTA

0
(1−α)


and

eTA
(3)
1 =



eTA
(1)
1 0 0

eTA
1
(1−α) − eTA

(1)
1 eTA

1
(1−α) 0

W (T ) 0 eTA(1−α)


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where

H (T )ψ = α

∫ T

0

e(T−µ)A(1−α)C0
0

(
eTA

(1)
0 ψ

)
dµ, with C0

0 (ϕ) (x) = k0
0 (x)ϕ (2x)

and

W (T )ψ = α

∫ T

0

e(T−µ)A(1−α)C0
1

(
eTA

(1)
1 ψ

)
dµ, with C0

1 (ϕ) (x) = k0
1 (x)ϕ (2x)

and from that

(
eTA

(3)
1 eTA

(3)
0

)
φ(3) =


eTA

(1)
1 eTA

(1)
0 0 0

H1 (T ) eTA
1
(1−α)eTA(1−α) 0

W1 (T ) 0 eTA(1−α)eTA
0
(1−α)


with

H1 (T ) =
(
eTA

1
(1−α) − eTA

(1)
1

)
eTA

(1)
0 + eTA

1
(1−α)H (T )

and

W1 (T ) = W (T ) eTA
(1)
0 + eTA(1−α)

(
eTA

0
(1−α) − eTA

(1)
0

)
.

The operators Ai(1−α) (i = 0, 1) and A(1−α) are represented by the operators L

defined below for kL(x) = (1− α)ki(x) and kL(x) = (1− α)k(x), respectively:

D(L) given by{
u ∈ X : U ∈ C1(Ω \ { 1

2}),
du

dx
(
a

2
) = 0, lim

x↑ 1
2

(−g(x)du
dx

(x) + kL(x)u(2x))

and lim
x↓ 1

2

(−g(x)du
dx

(x)) exist and are equal

}
for all u ∈ D(L),

Lu(x) =


−g(x)du

dx
(x) + kL(x)u(2x) (x ∈ Ω0)

−g(x)du
dx

(x) (x ∈ Ω1) .

The following formula holds

eTA
(3)
1 eTA

(3)
0

ψ

0

0

 =

 eTA
(1)
1 eTA

(1)
0 ψ

0

0

+


0[

eTA
(2)
1

(
eTA

(3)
0

)(2)
(
ψ

0

)]
2

0



+


0

0eTA(3)
1 eT Ã

(2)
0

ψ

0

0




3


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and from this we have expressions for(
eTA

(3)
1 eTA

(3)
0

)2

φ(3) and
(
eTA

(3)
1 eTA

(3)
0

)3

φ(3)

and from (B.8), (B.11) (B.12) we have the estimations∥∥∥∥[(eTA(3)
1 eTA

(3)
0

)3

φ(3)

]
2

∥∥∥∥
≤ e3T(λ0

3+λ1
2)
(
e2T(λ0

1+λ1
1−λ

0
3−λ

1
2) + 1 +K

(3)
0 e−Tε

(3)
0

)∥∥∥φ(3)
∥∥∥ (C.5)

and ∥∥∥∥[(eTA(3)
1 eTA

(3)
0

)3

φ(3)

]
3

∥∥∥∥
≤ e2T(λ1

3+λ0
2)
(
e2T(λ0

1+λ1
1−λ

1
3−λ

0
2) + 1 +K

(3)
1 e−Tε

(3)
1

) ∥∥∥φ(3)
∥∥∥ . (C.6)

Following the same procedure, we can proof the analogous relations for(
eTA

(3)
1 eTA

(3)
0

)n
φ(3).

Finally, we have

eTA
(1)
1 eTA

(1)
0 = eTλ

0
1eTA

(1)
1 P

(1)
0 + eTA

(1)
1 eTA

(1)
0

(
Id− P (1)

0

)
. (C.7)

From (C.7) we can write(
eTA

(1)
1 eTA

(1)
0

)2

= eTλ
0
1eTA

(1)
1 P

(1)
0

(
eTA

(1)
1 eTA

(1)
0

)
+ eTA

(1)
1 δ

(1)
0

{
eTλ

0
1eTA

(1)
1 P

(1)
0 + eTA

(1)
1 δ

(1)
0

}
= eTλ

0
1eTA

(1)
1 P

(1)
0

(
eTA

(1)
1 eTA

(1)
0

)
+ eTλ

0
1eTA

(1)
1 δ

(1)
0 eTA

(1)
1 P

(1)
0 +

(
eTA

(1)
1 δ

(1)
0

)2

and successively. Thus, we have an expression for
(
eTA

(1)
1 eTA

(1)
0

)4

for which

∥∥∥∥(eTA(1)
1 eTA

(1)
0

)4
∥∥∥∥ ≤ e4T(λ0

1+λ1
1)

4∑
j=0

(
K

(1)
0 e−Tε

(1)
0

)j
.

From this we can prove, by finite induction, the following estimate for arbitrary

n ≥ 1 ∥∥∥(eTA(1)
1 eTA

(1)
0

)n∥∥∥ ≤ enT(λ0
1+λ1

1)
n∑
j=0

(
K

(1)
0 e−Tε

(1)
0

)j
. (C.8)

Finally, from (C.3), (C.5) (C.6) and (C.8) by taking into account the condition

T > 1
ε

lnK, i. e., Ke−Tε < 1, the proof of the Corollary 3.1 is completed.
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Evolution Problem (2.6)

Mathematically, the existence of stable size-distribution in the evolution

problem (2.6) is given by the long time behavior of
(
eTA1eTA0

)n
φ =

(H−1
1 eTA1H1H

−1
0 eTA0H0)

nφ for large n. We have from Corollary 3.1 and their

notations:

Corollary C.1. Suppose g(2x) < 2g(x), for all x ∈ Ω0. Then, for a conve-

nient choice of T , we can find nonnegative linear operators Ŝ = Ŝ(T, ·), R̂1 =

R̂1(T, ·), R̂2 = R̂2(T, ·), R̂d = R̂d(T, ·) in L(X4
0 ;X0) such that, for all φ ∈ X4,

e−nT (λ0
1+λ1

1) [(H−1
1 eTA1H1H

−1
0 eTA0H0)

nφ]1 → Ŝ(T, φ) ,

e−nT (λ0
3+λ1

2) [(H−1
1 eTA1H1H

−1
0 eTA0H0)

nφ]2 → R̂1(T, φ) ,

e−nT (λ0
2+λ1

3) [(H−1
1 eTA1H1H

−1
0 eTA0H0)

nφ]3 → R̂2(T, φ) ,

e−2nTλ4 [(H−1
1 eTA1H1H

−1
0 eTA0H0)

nφ]4 → R̂d(T, φ) .

Proof. Let we consider for (i = 0, 1) (j = 1, 2, 3) the following notations:

(a) Pi := H−1
i PiHi and δi := H−1

i δiHi

(b)
(
H−1
i

)(j)
:= H

(−j)
i , P

(j)
i := H

(−j)
i P

(j)
i H

(j)
i , δ

(j)
i = H

(−j)
i δ

(j)
i H

(j)
i and

eTA
(j)
i := H

(−j)
i eTA

(j)
i H

(j)
i .

By exploring the particular diagonal form of the operators Hi, and by using similar

arguments that we are used in proof of the Corollary 3.1 we observe that

(i) HiPj = H−1
i Pj = Pj , Pi = PiHi; δi = δiHi,

[
δ1 δ0

]
4

= [δ1δ0]4 .

(ii) By changing in (C.1) P0 by P0H0, P1δ0 by P1H1δ0 and δ1δ0 by δ1δ0, we ob-

tain another analogous formula to ( C.1) and changing (eTA
(3)
1 eTA

(3)
0 )nφ(3)

by (eTA
(3)
1 eTA

(3)
0 )nφ(3) in (C.2) we obtain an analogous formula to (C.2).

Then, we have a analogous formula to (C.3) with K1K0 replaced by

‖H−1
0 ‖‖H0‖‖H−1

1 ‖‖H1‖K1K0.

and so on, we obtain the proof of Corollary C.1.
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