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Abstract

A mathematical model is developed that describes the reduction in volume of a vascular tumor in re-
sponse to specific chemotherapeutic administration strategies. The model consists of a system of partial
differential equations governing intratumoral drug concentration and cancer cell density. In the model the
tumor is treated as a continuum of two types of cells which differ in their proliferation rates and their
responses to the chemotherapeutic agent. The balance between cell proliferation and death within the
tumor generates a velocity field which drives expansion or regression of the spheroid. Insight into the
tumor’s response to therapy is gained by applying a combination of analytical and numerical techniques to
the model equations. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Over the past two decades, solid tumor growth has been fertile ground for mathematical
modeling and many such models have appeared in the literature [1-9]. Guided by in vitro ex-
periments involving clusters of tumor cells which are termed multicellular spheroids, the majority
of these models focus on the avascular stage of tumorigenesis and view the tumor as a spherical
mass of cancer cells which are either proliferating, quiescent or dead. Most of the dead cells are
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concentrated in a central necrotic core in which the concentration of vital nutrients is insufficient
to sustain live cells. The necrotic core is surrounded by an annulus containing predominantly live
cells and isolated cells undergoing natural or programmed cell death. The nutrient concentration
increases steadily from the inner to the outer edge of this annulus. Consequently cells towards the
inner boundary are quiescent (they have sufficient nutrient to remain alive but insufficient to
proliferate) whilst those towards the tumor boundary proliferate rapidly [10-12]. Many of the
existing models are comprised of an integro-differential equation describing the temporal evolu-
tion of the tumor boundary and reaction—diffusion equations governing intratumoral distribu-
tions of vital nutrients and growth-inhibitory factors [1-§].

In this study, the response of a vascular tumor to chemotherapeutic treatment is discussed.
Particular attention is paid to the effect that the incorporation of a semi-resistant tumor cell type
has on the tumor’s overall growth dynamics. To date mathematical models of vascular tumor
growth have neglected their spatial heterogeneity and treated the tumor as a spatially-uniform
mass which evolves at some prescribed rate such as logistic or Gompertzian. For example,
Marusic et al. [13] compared the ability of 14 spatially-uniform mathematical models to capture
the in vivo volume growth of two murine tumor cell lines. By contrast to [13], here we derive a
spatially-dependent mathematical model for vascular spheroid growth based firmly on the un-
derlying biology. Our work differs from that of other authors who have developed spatio-tem-
poral models [1-9] in that there is no explicit mention of a diffusible nutrient; instead, equations
are derived that describe the evolution of the tumor volume, the different types of cancer cells that
it contains and the externally-supplied drug. We adopt a modeling approach similar to Byrne and
Chaplain [4] to describe the vascular transfer of drug between the blood and tumor. Where they
considered the constant transfer of nutrient from the vasculature, we study the spatially-depen-
dent transfer of chemotherapeutic drugs into and out of the tumor. Parameter values are taken
from published data on nude mice treated with the anti-cancer agent doxorubicin. Whilst the
inclusion of cell densities renders the model similar to that of Ward and King [9], several features
distinguish this work. For example, Ward and King’s model describes avascular tumor growth in
response to an externally-supplied nutrient whereas we are concerned with the effect that blood-
borne delivery of chemotherapeutic drugs has on the growth of vascular tumors which may
contain several subpopulations whose responses to the therapy differ.

When only one cell type is present, this modeling approach allows for the analytical estimation
of the minimum tumor radius that is achieved after a bolus injection of a single blood-borne
agent; as well as the time of tumor re-growth. We can also derive an equation for the largest
tumor that can be eradicated by this type of treatment. When a semi-drug resistant cell population
also inhabits the tumor, although the speed of the tumor’s recovery is virtually unchanged, tumor
reduction is significantly decreased, leading to a much increased time of cure when the tumor is
exposed to a continuous infusion of the drug.

Although this model describes the way in which vascular tumors respond to traditional che-
motherapy, it is our intention to extend the model to study tumor response to new two-step drug
targeting strategies. Jackson and coworkers [14,15] present a detailed mathematical study of
antibody—enzyme conjugates for the activation of anti-cancer prodrugs. The models are able to
predict intratumoral and systemic concentrations of conjugate, prodrug and drug. Validation of
the model is provided by experiments with the L49-sFv-bL fusion protein/cephalosporin doxo-
rubicin system in nude mice bearing 3677 human melanoma xenografts. There have also been



T.L. Jackson, H. M. Byrne | Mathematical Biosciences 164 (2000) 17-38 19

experimental studies of tumor reduction due to this type of treatment which could be used to
validate our modified mathematical model.

The outline of the paper is as follows. In Section 2 we present our mathematical model. In
Section 3 we discuss a simplified version of the model, in which the tumor contains only one type
of drug sensitive cell. The corresponding numerical and analytical results not only provide us with
insight into the behavior of the model but also act as a useful benchmark for comparison with
results presented in Sections 4 and 5 which pertain to tumors containing a drug sensitive and a
drug resistant cell population. A summary of the key results is presented in the concluding Section
6, together with a discussion of their implications for cancer treatment.

2. Model development

The goal of this study is to develop a deterministic model that describes tumor reduction due to
blood-borne chemotherapy. The tumor is viewed as a densely packed, radially-symmetric sphere
of radius R(¢) containing two cell types: a rapidly dividing population p(r, ¢) (# of cells per mm?)
that is highly susceptible to the drug; and a population ¢(r,¢) (# of cells per mm?) that has lower
drug susceptibility. Cell movement is produced by the local volume changes that accompany cell
proliferation and death. It is convenient to associate with such movement a local cell velocity
u(r,?). The spheroid expands or shrinks at a rate which depends upon the balance between cell
growth and division and cell death within the tumor volume, the latter term being modified by the
presence of the drug, d(r,1).

We exploit the spherical symmetry of the problem by assuming henceforth that the spatially-
dependent variables p, g, d and u depend only on the radial distance from the center of the tumor,
r, and time, .

The governing equations for drug concentration and the two populations of tumor cells are
derived by applying the principle of conservation of mass to each species and may be written as
follows:

od

5, TV (ud) = V- (D(r)Vd) + I'(r)(ds(t) — d) ~ I, (1)
op

27 TV (up) = D,Ap + Fy(p) — C,(d.p), 2)
94V (ug) = D,Aq + Fy(g) — C,fd.q). ()

In Eq. (1), D(r) is the diffusion coefficient of the drug in the tumor tissue which may realistically
depend upon r. The function dx(¢) is the prescribed drug concentration in the tumor vasculature
and I'(r) represents the rate coefficient of blood-tissue transfer. Like D(r), I' may depend on
radial position. Finally, A denotes the rate of drug loss due to decay, molecular instability, or
cellular uptake and metabolism. In Eqgs. (2) and (3) D, and D, are the assumed constant random
motility coefficients of the two types of tumor cells and F, and F, are their respective net pro-
liferation rates (rate of natural cell death subtracted from the rate of cell division) in the absence
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of therapy. The functions C, and C, represent the effect of the chemotherapy on each cell pop-
ulation. We remark that there is no coupling between the two cell populations in the cell pro-
liferation rates or the drug-induced cell kill terms. The effect of such interactions will form the
subject of further work.

We anticipate that, in general, the functions D(r) and I'(r) will be non-decreasing functions
satisfying D(r) — Dy and I'(r) — I'y as r — oo. There is experimental evidence that both mo-
lecular diffusion and vascular transfer are lowest near the center of the tumor, increasing to
maximal levels at the tumor periphery [16,17]. The functions F,(p) and F,(q) are generally
bounded functions of cell density satistying F,(0) = F,(0) = 0. Finally, we assume that the
functions C, and C, satisfy Michaelis-Menten kinetics and can be written in the general form
Ci(d,x) = P.dx/(y; + x) for positive parameters f3;,7; (i = p,q).

In order to obtain an equation for the velocity, u, we assume that there are no voids within the
tumor, that the proportion of the spheroid occupied by tumor cells remains constant, and that the
proportion of vascular space within the tumor remains constant. Using these assumptions, it
follows that ¢ can be expressed in terms of p via the relation

p + q = k = constant. 4)

Adding Egs. (2) and (3), and using (4) to eliminate ¢, leads to the following equation for the local
velocity:

KV -u= (D, — D,)Ap + Ey(p) + Fy(k - p) — Cyld,p) — C,(d,k — p). (5)

Egs. (1), (2) and (5) are sufficient to determine the intratumoral drug concentration d, the cell
density p, and the radial component of the velocity vector u.

In order to assess the tumor’s response to the chemotherapeutic treatment it will be important
to follow the evolution of the tumor volume (= (4/3)nR?, for radial symmetry), or equivalently,
the tumor radius R(z). We do this by noting that, under radial symmetry, the tumor expands at a
rate which is equal to the radial component of the velocity there, that is

drR

< = ulR@),0). (©)
To complete this system we impose the following initial and boundary conditions:

R(O) = ROa p(}",O) ZPO(F)’ d(}", O) = O’ dB(O) = dO’ (7)
WO 0, ar().0) = dylo), (0,0 =0, (8)
p _ 9 _

5 (Oa t) - or (Oa t) - 07 (9)

op Oq
Dp§<R7t) —M<R,t)p(R7t) - 07 Dq&(Rat) —M(R,l)q<R,t) =0. (10>

These conditions imply that we begin with a tumor of given initial cell density and radius, Ry. We
also assume that there is no drug in the tumor tissue at time zero, but that there is an initial
constant concentration of drug in the tumor vasculature at that time. By symmetry, at » = 0 there
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is no flux of drug and the local velocity is zero. The concentration of drug on the tumor boundary
is assumed to be equal to dy(¢), the drug concentration in the surrounding normal tissue. Finally,
for the two cell populations, we impose no flux of p and ¢ at the tumor center and on its outer
boundary.

2.1. Non-dimensionalization

We re-scale our mathematical model in the following manner, denoting non-dimensional
variables with bars:

_ 1_ R2 _
d=dyd, u=Rooii, p=kp, t=-1, r=RoF e:% 1=

a )
o Bido — Y _ D, _ (Dp - Dq)
T e T UliR%oc’ 7= aR}

IR
D )

I'R?

F="1%
D

B

where o is the inverse of the doubling time of untreated tumors [18] assumed to have only one cell
type. After dropping bars for notational convenience, the resulting system of equations to be
solved is

e{aa—‘f+v.(ud)} — V- (D(r)Vd) + T(dy(t) — d) — id, (11)
P4V (up) = o18p + Eyp) — C(d.p), (12)

ot

_ Bdp _ﬁzd(l - D)

Vo b A n+p ptl-p’ (13)
dR

EZM(R(f)J% ”
R(0)=1, d(r,0) =0, .
adé(;, 0 _ 0, d(R(1),1) =dy(t), u(0,7)=0. »

Inherent in this problem are two timescales: the tumor growth timescale (=~ 1 day) and the
much shorter drug diffusion timescale (R}/D = 1 min) [2]. Accordingly, the non-dimensionaliza-
tion process introduces the small parameter 0 < e = aR2/D < 1 into the model equations. Also,
since the diffusion coefficients of the cells, D, and D,, are much smaller than the diffusion coef-
ficient of the much smaller and more motile drug molecules, D, the parameters o, and ¢, will be at
most O(e). We exploit the appearance of these small parameters in order to construct approxi-
mate solutions to Egs. (11)-(16) which are valid in the limit as €, 0y,0, — 0. We make use of
published data for the treatment of nude mice with the anti-cancer drug doxorubicin. Table 1 lists
each parameter, its baseline value, and source.
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Table 1

List of baseline parameter values used in simulations and their sources
Parameter Value Reference
dy 6 mg/kg [24]
Ry 0.4 cm [24]
o ! day™ [18]°
2 1.9 day™! [33]°
& 60 day™' [38]
& 6 day™' [38]
D 1.7 cm2day ! [34]
Ji 560 M~ 'day™! [35)
r 16 day™' 371

2Kerr et al. (1996) began chemotherapeutic treatment when tumor volume was approximately 150 mm?* (R, ~ 3.4 mm)
we chose the slightly larger initial tumor size of Ry ~ 4 mm.

®Estimated from the growth of untreated tumors presented in Siemers et al. (1997).

¢Value used in Baxter et al. (1992) to study antibody metabolism.

dThere are no reports on the value of &, for doxorubicin, we take &, to equal to a tenth of the &, reported in Robert et
al. (1982).

¢Based on the internalization rate for doxorubicin reported in Dordal et al. (1992) and the assumption that approxi-
mately 10® must internalize to initiate cell death.

TEstimated from the vascular permeability of doxorubicin used in Jain (1987).

3. One cell type

In order to gain some insight into its behavior, we start by considering a simplified version of
the governing equations. The reduced model is obtained by making the following additional
assumptions:

e the tumor contains only one cell type, i.e. ¢ = 0;

e drug diffusion is spatially uniform, i.e. D(r) = D, constant;

o the rate of blood-tissue transfer is spatially uniform, i.e. I'(r) = I', constant;

e in the absence of treatment (d = 0) the net cell proliferation rate is governed by the logistic
growth law so that F,(p) = a;p(1 — (p/d1)), where the positive constants o; and 0, are, respec-
tively the proliferation rate and the carrying capacity in dimensional terms.

Under these assumptions Eqs. (11)—(13), when written in radially-symmetric coordinates, be-
come

od 10 , _ Do [,0d
) e (o RN OB (17
r=1 (18)
10,,
5, (Pu) =1~ fd, (19)

where o = oy (1 — (k/01)) and = f,k/(y, + k). We assume that o, f# > 0 so that the tumor cells
increase in number when no drug is present and the drug is effective at killing the tumor cells. Egs.
(17) and (19) together with (6)—(8) suffice to solve the problem.
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3.1. Analysis

To leading order, we solve Eq. (11) with e = 0 and find

d(r,t) = (dN(t) - gdg(t)> % + édg(t), (20)

where & = I' + /. Substituting with (20) in (13) and integrating subject to u(0,) = 0 leads to the
following expression for the velocity in the tumor

pr r  PR(¢) r Ercosh &r — sinh &r
u(r,t) = (1 —?dg(t)> 32 <dN(t) - ?dg(t)> ZSnh R (21)

Finally, using (21) an ordinary differential equation which describes the temporal evolution of the
tumor radius can be derived. Specifically, substituting (21) into (14) gives

drR pr R p r ER cosh ER — sinh R
yrie (1 — ?dg(t)> 37 ¢ (dN(t) — gdg(f)) ZRsinh iR . (22)

The blood clearance data for many chemotherapeutic agents following a bolus injection can be fit
quite nicely with an exponential or a bi-exponential function [14,15]. For this reason, we consider

d(t) = Ae V' 4 Be ¥
dy(t) = C(e =" —e™=1),

(23)

where values for 4,8, £, and &, can be obtained from experimental data. The normal tissue co-
efficient, C, is given by

C = \ [k + Dhnske + Zhighar + K2 — Dkake + K /.

The parameters kj, and k,; are rates of transfer from the blood to the tissues of the body (in-
cluding the tumor) and from the tissues back into the blood. In terms of the known blood
clearance parameters we have kj, = AB(¢, — &)°/(A+ B)” and ky = (4, + BE))/(4 + B) (see
Appendix A for a derivation of these relations).

3.1.1. Long time response

It is of interest to determine the long time behavior of the tumor in response to a bolus injection
of a chemotherapeutic agent. As t — oo, d — 0, u — r/3 and (dR/df) — R/3. This implies ex-
ponential growth of the tumor as a long time response to the treatment, i.e. the drug is ineffective
on a long timescale because its decay and removal via the vasculature ensure that it eventually
disappears from the tumor.

3.1.2. Response of a small tumor

Analysis of Eq. (22) enables us to predict what dynamics will occur when treating a small tumor
(this may refer to the final stages of treatment, after the drug has reduced the tumor to a suffi-
ciently small size, or when there is early tumor detection so that the tumor is already small when
treatment begins). When 0 < R < 1, Eq. (22) reduces to (dR/d¢) ~ (1 — pdy(t))R/3, and expo-
nential decay is predicted as long as dy(¢) > 1/f. At time ¢, given by the solution of dy(t.) = 1/p,
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the tumor achieves its minimum radius, Ry;,. If Ry, is sufficiently small that the continuum model
is no longer valid, i.e. Ryuin < R., we assume that the drug has forced the tumor into remission.
This remission could lead to a cure or the cells could approach an avascular dormant state.
However, if Ry, > R, we can estimate the time ¢, at which the tumor will resume growth and the
minimum radius achieved by assuming that in Eq. (23) &, < &; (which is generally true of these
experimentally determined parameters):

1.1
fo~ ——In— =252 h,
& pC (24)

Runin ~ Ro(BC)'/3% ¢!/320-5C) 0 6R,.

With parameters taken from Table 1, the time of relapse following a single bolus injection is
approximately 25.2 h at which time the tumor is about 60% of its original size. We can also es-
timate the critical radius needed to constitute a spheroid, R., by assuming the critical cell number
to be O(100) cells. Using this information together with R,,;,,, we can predict the largest tumor that
a single dose of a particular drug can eradicate as

R,

Rinax ~ . . 25
(BC)'*% e1/302(1-50) (25)

3.1.3. Effect of administration schedule

The dosing strategy can effect the drug concentrations in the blood, normal tissue and tumor.
Fig. 1 shows a comparison between a bolus injection and continuous infusion of the same amount
of drug over an 8 h period. Here we assume R, = 0.02 cm. In each case the drug is administered
every seven days and the tumor radius is measured at one week intervals. The results show that
tumor responds slightly better to the bolus injection strategy giving a cure three weeks sooner than
continuous infusion. However, because the drug levels in the blood are significantly higher for
bolus administration than for continuous infusion, the decrease in toxic effects associated with
continuous infusion may make it the preferred strategy.

=~
=
~

£ £

5 S * Cure
3 0.15

[0} [0}

3 Continuous %

]

(UZ @ 0.1

18 I8

‘0'1 Bolus 6 005

£ £

3 3

|-0 F 0
0 5 10 15 20 % 18 2 2 24 26

Time (weeks) Time (weeks)

Fig. 1. Diagrams comparing the tumor’s response to the delivery, over an 8 h period, of equal amounts of drug ad-
ministered either by a bolus injection or by continuous infusion.The bolus injection leads to a rapid reduction of the
tumor, with a cure effected after 22 weeks rather than 25 weeks for continuous infusion. Parameter values: see Table 1.
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3.1.4. Effect of different vascular distributions on tumor response to therapy

If the tumor is entirely avascular, I' = 0, and the drug can only enter the tumor via diffusion
from the surrounding normal tissue. In this case, it takes longer for the drug to accumulate in the
tumor, and hence, the response is delayed. Equally, no drug is able to escape back into the
vasculature, so that the positive effects of therapy may eventually outweigh those of constant
blood-tissue transfer as seen in Fig. 2.

In order to investigate the effect of a spatially dependent blood-tissue transfer function we now
take

I, Ry<r<R,

I'(r)=TH(r —Ry) {O, 0<r<Ry.
in Eq. (17). This localizes the vasculature to the outer edge of the tumor, in an annulus of
width R — Ry, leaving the inner core entirely avascular. Note that with this choice of I'(r) there
is no vascular exchange when the tumor is sufficiently small (i.e. 0 < R < Ry). The results
presented in Fig. 2 demonstrate the effect of incorporating this function with Ry = 0.32 ¢cm into
Eq. (1). When the same parameter values are used, simulations show that when the blood-
tissue transfer depends on radial position, the tumor’s response is superior to that of an
avascular tumor.

0.42 T T

0.4

0.38

o
w
=]

0.34

Tumor Radius (cm

Constant Blood-Tissue Transfer

No Blood-Tissue Transfer
0.24

'Rv =0.32 Spatially Dependent Transfer
1

10 15

Time (hrs)

Fig. 2. Sketch showing how the presence of a vasculature exchange affects the tumor’s response to therapy. Initially the
model with constant blood-tissue transfer yields the most rapid reduction in the tumor volume. However, for later
times the model with spatially-dependent blood-tissue transfer gives rise to the largest reduction in tumor volume.
Parameter values: see Table 1; Ry = 0.32 cm denotes the dimensional tumor radius at which a vascular first appears for
the model with spatially-varying blood-tissue transfer.
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4. Two cell types

We now re-introduce the second cell population into our model (¢ > 0) and assume that these
cells are less responsive to the therapy. Being independent of the cell densities, the intratumoral
drug profiles are unaltered by the re-introduction of ¢ into the model. Recalling that cellular
diffusion can be neglected with respect to the convective motion, we fix o; = g, = 0 in Eqgs. (12)
and (13) and focus on the following non-dimensional equations which describe the evolution of
the p-cells, the cell velocity and the tumor radius:

op 1o, , p Bidp

= —pl1-L£) -2 26
b =p(1-2 ) - B (26)
1o , P q) Bidp  Prdq

- —p(1-L£ P IR o b SO i 27
r? Gr(r ) p( 51) —szq( 02 n+p ntq 27
drR

o = u(R.1), (28)

where o is now equal to the growth rate of the susceptible cell type, «;. As in Section 3, the drug
concentration d(r, ¢) is known in terms of R(¢), dy(¢) and dp(¢) from Eq. (20). We remark also that,
by incompressibility, the density of the g-cells is known in terms of the density of the p-cells:

g=1-p
4.1. Analysis

In order to make analytical progress, the following simplifying assumptions are made:

o>1, yp>1, B>1 with &NO(I).
The first assumption ensures exponential growth of the tumor when no drug is present. The latter
assumptions mean that the response of both cell types to the treatment is linear. Under these
assumptions, and with ¢ = 1 — p, Eqgs. (26) and (27) reduce to

0 1 0

ot =p(1- 1) >
1 0 _ Bid | B, B

e e R Gl )] .
drR

dr u(R, 1) Y

Now if the density of drug-resistant cells is small we introduce the small parameter 0 < n < 1 and
seek solutions of the form

p=1—np, q=np, u=uo+nu, R=Ry+nR. (32)
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Substituting (32) into (29) and (30) and equating to zero terms of O(x") enables us to determine
ug, uy, Ry, Ry and p. Of particular interest is establishing conditions under which the drug resistant
population grows or decays.

4.1.1. Drug-free growth
With d = 0 substitution of (32) into Egs. (29)-(31) leads to the following equations:

1 0

o(1) : 2 a—(r up) =1, (33)
dr
d—to = uO(R()?t)’
6p 10 ~

O(n) : o r_2 ? (ruop) = o,
1 0 .
S5 (Pu) = (1= )p, (34)
dr Ouy
d—tlzul(Rm 1+ R — o % (Ro, 1)

Assuming that p(r,0) = p, and that R(¢ = 0) = 1, the solutions of (33) and (34) are
1 —
up(r,t) = g, plrt)=pye "y (r,1) = M e~(1=) 0 <r<e®=Ry(t).
(35)

As expected, Eq. (35) demonstrates that when d = 0 the perturbations decay over time if o, < 1,
1.e. if the drug resistant population proliferates less rapidly than the drug-sensitive population. In
this case, the fraction of resistant cells ultimately vanishes, leaving only the original dominant cell
type. The elimination of the resistant cell type is due to the fact that we consider a small per-
turbation from the one cell type case and assume slower proliferation of the sensitive cells. Also, in
this model there is no direct effect of one cell type on the other. Such coupling would certainly
alter the population dynamics and will be the subject of future work.

4.1.2. Continuous infusion of the drug, d(r,t) = d.
Assuming constant drug concentration within the tumor mass results in the following equations:

O(1) lzg(rzuo):l—&dc,
7 Or 7 (36)
%_MO(ROJ‘)’
% 10 ) )

O Lt s o lrhup) = (- 224 )5
1 © B _& _ _& -
f’zar(rul)_Ka 7 ) <1 0 )P (37)
ar, cu
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Assuming, as above, that p(r,0) = p, and R(¢ = 0) = 1, the solutions of (36) and (37) are
B

uo(r, ) = _V_dc
1

pen=en (1) 1)

" :ﬁoK%—f—jde) - (1 —f—jdcﬂrexp{[dc(&_&) » _az)]t}’ (38)

3 1 T2

17(“—%) 3
0 < r < Ry2) :e( ),

From (38) we see that perturbations in the cell density will grow if
1 - 0%}
Bi/7) = (Ba/72)

and decay otherwise. Also, the tumor will regress, to first-order, if d. > y,/f,, but perturbations
will decay if

d. >
(

1—0(2

Bi/n) — (Ba/72)

Now the two limiting curves which mark the transition between growth and decay of the per-
turbations intersect when 3, = f* = w,f3,7,/7, giving a threshold for the drug’s effect on the re-
sistant cell population.

To be physically realistic we will assume that d., a,, f, > 0. Another common assumption in
what follows is that (8,/7,) < (B,/7,), i.e. the g-cells are less sensitive to the drug than the p-cells.
Figs. 3 and 4 are bifurcation diagrams showing how the behavior of the tumor, as predicted by the
asymptotic theory above, is affected by the parameters 5, and d.. The results presented in Fig. 3
correspond to the case a, < 1 so that the drug-resistant g-cells proliferate less rapidly than the
drug-sensitive cells. The diagram can be used to identify optimal regions of parameter space for
successful treatment, with treatment being regarded as successful if the tumor radius is decreasing
(Ro and R, ]) and the drug resistant population (¢ = np) is decaying (p |).

Fig. 3 shows that if §, < 5, then there is no level of drug that will result in a cure. However as
d. increases from zero with f, > " a region is created in which the tumor’s radius is decreasing to
leading order, as are the perturbations in tumor radius and resistant cell density, i.e. this region
gives rise to a cure.

In Fig. 4, oo > 1 which means that the drug-resistant population proliferates more rapidly than
the drug-sensitive population. In this case, 5, = f° = o,f3,7,/7, contradicts the assumption that
the g-cells are less sensitive to the drug than the p-cells ((f,/y,) < (B,/7,))- This means that the
key curves do not intersect and there is no optimal parameter regime for successful treatment.

d. <
(

4.1.3. Response of a small tumor
When 0 < R < 1, the concentration of drug in the tumor will be equal to the concentration of
drug in the normal tissues (i.e. d(r, 1) = dy(¢)). We know that the long time behavior of the drug in
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Fig. 3. Bifurcation diagram for the case «, < 1 showing the decomposition of (f,,d.) parameter space into distinct
regions according to the tumor’s response to the drug. Optimal regions of parameter space occur when both the tumor
radius and the perturbations to the drug-sensitive cell density are decreasing (i.e. R | and p |).
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Fig. 4. Bifurcation diagram showing that when o, > 1 the linear theory predicts that there is no longer an optimal
parameter regime for successful treatment: either the tumor radius decreases and the perturbation to the drug sensitive
cell density increases or conversely.

the normal tissue is exponential elimination, that is dy(¢) ~ C e~'. Using this information we find
that for 0 < r < Ry() = exp|(¢ ﬁ‘ L [dy(7) d7)/3]:

uo(r, 1) :g<l _f_lldN) :§ <1 _f_llcec”zt>’

s =pvexp{ ~ (1-mi— (B2 [a0 acf. )

o () (8] (52

Therefore to first-order, the system behaves identically as in the one cell type case. Perturbations
to these first-order solutions will grow until
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A C((B1/v1) — (Bo/72))
&L= o) +C(Bi/11) — C(Ba/72)

When ¢ = ¢*, perturbations begin to decay implying that the tumor will regress for a short time
before growth resumes.

5. Numerical simulations of full model

In this section, we present numerical results obtained for the full system of Egs. (23)—(25) and
(13) that govern vascular tumor evolution when both drug sensitive and drug resistant cell types
are present. The numerical results are obtained by mapping the moving boundary to the unit
interval and this is achieved by transforming the spatial variable to * = r/R(¢). The transformed
equations are then discretized using an implicit finite difference scheme [19]. The numerical results
presented below show how the introduction of a drug resistant cell type affects the tumor’s re-
sponse to the chemotherapeutic agent and, in particular, the time to cure. Unless otherwise noted,
the parameters not given in Table 1 have the following values: o, = 0.9, y, = 1.0, §; = 100.

5.1. Effect of resistant cell population on tumor evolution

As the results of Fig. 5 demonstrate, the effects of the drug resistant population on the tumor’s
response to a bolus injection of drug is marked. Fig. 5 shows the temporal evolution of the tumor
radius when both cell types are present at varying densities, and all other parameters are held fixed
at the baseline values listed in Table 1. It is interesting to note that the speed of recovery is vir-
tually independent of the initial density of drug sensitive and drug resistant cells. In each case the
qualitative behavior of the tumor is the same: there is a period of tumor regression during which
the drug is acting and this is followed by re-growth of the tumor. However, because tumor
reduction is significantly decreased when a resistant cell type is present, the drug is successively
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Fig. 5. Sketches showing how the evolution of the tumor radius changes when a resistant cell type is present at varying
densities. Parameters not given in Table 1 have the following values: o, = 0.9, 7, = 1.0, J§; = 100.
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less effective as the proportion of resistant cells increases. This reduction in drug efficacy may be
assessed in two ways: by measuring the minimum tumor radius R, and the time #y;, at which this
minimum is attained.

Fig. 6 shows how R, (cm) and ty,, (h) vary with initial density of drug sensitive cells, py
following a bolus injection of drug. As the proportion of drug sensitive cells increases, Ry, de-
creases and the time to attain this minimum value increases. We note also that when there are no
resistant cells present (py = 1), the simulations predict #,;,, = 17.0 h which correlates well with the
theoretical estimate of 17.4 h derived in Section 3 (see Eq. (24)).

Fig. 7 indicates how, for a typical simulation of a bolus injection of drug, the distribution of
the drug-sensitive population changes over time (here py = 0.75, go = 0.25) and suggests that
the profiles are settling to a spatially-mixed steady state for which p(r*,¢) = p(¢) V r* € (0,1).
The initial cell death at the boundary of the tumour is due to the fact that drug levels at the
boundary are equal to those of the normal tissue.

Fig. 8 shows how the average cell density in the tumor ( ff ® p(r,t)r* dr) changes with time as we
vary (a) the initial cell densities, (b) the drug’s effect on the sensitive cell type, (¢) the vascular
permeability, I and (d) the drug’s blood clearance rate. In Fig. 8(b)—(d) the initial cell density is
held fixed at py = 0.75. Again we have simulated a bolus injection of the chemotherapeutic agent.
From these figures we observe that threefold changes in the drug’s effect on the sensitive cell type
can have remarkable effects on the cell density, whereas 1000-fold changes in the vascular per-
meability have only a limited effect. Such predictions provide useful information for the design of
new therapies by helping to identify those physical parameters which have the largest impact on
the tumor’s development.

5.2. Effect of vascular distribution on chemotherapeutic response of tumor with resistant cell
population

In order to investigate the effect of a spatially dependent blood-tissue transfer function when a
drug resistant population of cells inhabits the tumor we take, as before
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Fig. 6. Diagrams showing how (a) the time at which the minimum tumor radius #,;, (h) and (b) the corresponding value
of the minimum tumor radius R,,;,, (cm) vary with the initial density of the drug sensitive cells py. Whilst ¢, increases
with py the corresponding value of R, decreases. Parameters not given in Table 1 have the following values: o, = 0.9,
y; = 1.0, 6; = 100.
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Fig. 7. Sequence of plots showing how the spatial distribution of the drug sensitive cells within the tumor changes over
time. As ¢ increases the population tends to a spatially-uniform profile. Parameters not given in Table 1 have the
following values: o, = 0.9, y;, = 1.0, 6; = 100.
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Fig. 8. Temporal changes in the average drug sensitive cell density within the tumor as we vary (a) the initial cell
densities, (b) the drug’s effect on the sensitive cell type, (c) the vascular permeability, I', and (d) the drug’s initial blood
clearance rate. In Fig. 8(b)—(d) the initial cell density is held fixed at py = 0.75. Parameter values: see Table 1 and text.
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Fig. 9. Sequence of diagrams comparing the tumor’s response to (a) bolus injection and (b) continuous infusion in the
presence and absence of a resistant cell type. Parameters not given in Table 1 have the following values: o, = 0.9,
y; = 1.0, §; = 100.

I, Ry<r<R,

F(r):FH(r—RV):{O 0<r<Ry

in Eq. (17). With Ry = 0.32 in Eq. (1), po = 0.75 and all other parameters unchanged, we find that
the tumor’s response is optimal when only the periphery is vascularized. Since the resulting profile
for R(¢) is almost identical to that presented in Fig. 2, when there are no resistant cells present, the
results are not presented here.

5.3. Effect of resistant cell type on time to cure

The addition of a resistant cell type can markedly alter the time to cure when either a bolus
injection or a continuous infusion of a single chemotherapeutic agent is administered on a weekly
basis. Fig. 9 shows how the addition of a small fraction of resistant cells can affect the tumor’s
response to therapy: when a bolus is applied to a tumor containing only drug sensitive cells it is
effectively eliminated after approximately 22 weeks (see Fig. 1). By contrast when 20% of the
cancer cells are resistant, it takes about 28 weeks to cure the cancer. Fig. 1 shows that continuous
infusion results in a cure at approximately 25 weeks when only drug sensitive cells are present.
However when a small population of drug resistant cells also inhabits the tumor, Fig. 9 shows that
the time to cure can increase by over two months.

6. Discussion

In this paper we have developed a mathematical model that describes the response of a spheri-
cally-symmetric vascular tumor, which contains two types of cells, to chemotherapeutic treatment.
The model is formulated as a system of partial differential equations that describe the evolution of
the drug and cell populations within the tumor. The tumor radius is tracked by introducing a ve-
locity field to describe cell motion generated by the balance between cell proliferation and death.
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Using a combination of numerical and analytical techniques we were able to use the model to in-
vestigate the tumor’s response to various chemotherapeutic strategies (e.g. continuous infusion and
bolus injection) and to contrast the behavior of tumors containing semi drug resistant populations.

When the tumor consisted of one cell type, drug sensitive it was possible to derive an analytical
estimate of the minimum tumor radius attained after a bolus injection of the drug. It was also
possible to estimate the time at which tumor re-growth would resume. By assuming further that
there was a critical radius necessary to constitute a spheroid we were able to derive a formula for
the largest such tumor that could be eradicated by a bolus injection.

The emergence of drug resistance in a previously drug-sensitive tumor is thought to be one of
the major barriers to effective chemotherapeutic treatment [20]. Biochemical or phenotypic re-
sistance may arise in cells via spontaneous mutation [21] or be acquired as a result of exposure to
the drug [22]. Notable differences in the tumor’s response to therapy were observed when a sec-
ond, drug resistant cell population was incorporated into the model. Although the speed of re-
sumed tumor growth was virtually independent of the initial resistant cell density; the minimum
radius achieved is significantly increased and the time of resumed growth is decreased as ¢, in-
creases. We also found that a tumor with a well-vascularized periphery and large avascular center
responds best to treatment in the presence and absence of a drug resistant cell type.

Using our mathematical model we were also able to show that the drug administration strategy
can have a significant impact on the time to cure (where cure is possible). For example, numerical
simulations of the model equations showed that bolus injection and continuous infusion of the
drug resulted in similar times to cure of a tumor containing only one type of drug sensitive cells.
This implies that continuous infusion may be the preferred treatment due to lower toxicity in the
circulating blood. By contrast, when the tumor contains a drug resistant population, continuous
infusion significantly increases the time to cure, making bolus injection the preferred strategy.
This result indicates clearly the need to tailor treatment strategies to specific tumors.

The modeling framework that we have developed and our preliminary findings lead naturally to
several possibilities for extended studies. A couple of these modifications are discussed below.

6.1. More sophisticated chemotherapeutic approaches

The model studied in this paper considers the response of tumors to traditional chemotherapy.
It would be interesting to compare and contrast these results with a model that has been extended
to include other chemotherapeutic approaches. For example, direct drug targeting where the drug
is bound to an antibody and this conjugate must bind to cells in order to initiate cell death. There
are also very promising two-step approaches to chemotherapy in which an antibody—-enzyme
conjugate followed by a prodrug is administered. The antibody conjugate binds to tumor cells and
the enzyme converts the prodrug to an active cytotoxic agent [23,24]. A mathematical investi-
gation into the effectiveness of these three treatment strategies in homogeneous or multi-cell type
tumors could provide insight into the conditions for which one strategy is better than another.

6.2. Inclusion of complex cellular and vascular dynamics

In the present model the drug concentration evolves independently of the tumor cell popula-
tions and coupling between the two cell populations is weak, being mediated only by the cell
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velocity u. It would be useful to investigate the effects of competition between cell types by
coupling p and ¢ via their proliferation rates (F, = F,(p,q) and F, = F;(p, q) in Egs. (2) and (3)).
The equation for drug concentration in the tumor could also be modified to describe its degra-
dation by the tumor cells. In addition, since most chemotherapeutic agents are designed to act on
metabolically active or rapidly dividing cells, it may be necessary to introduce cell-cycle specific
terms into the model framework as in [25].

Experimental studies suggest that two different mechanisms contribute to cell loss within a
tumor: apoptosis which is the programmed death of a cell and necrosis which is the micro-en-
vironment induced death of a cell. An investigation of these two distinct cell loss mechanisms
appears in [26]. There is no mention in the present model of necrotic cell death, hypoxia, rate of
progression through the cell cycle or cell cycle arrest. Including these phenomena could have
significant effects on the results presented here.

Angiogenesis, the formation of new blood vessels, appears to be one of the crucial steps in a
tumor’s transition from small and harmless to large and malignant [27,28]. The work of Judah
Folkman and his coworkers [27,29] has sparked considerable interest in anti-angiogenic treat-
ments which aim to prevent metastases and rapid tumor growth by manipulating the tumor
vasculature. Where traditional cancer treatment attempts to remove or eradicate the tumor from
the body, anti-angiogenic therapy attempts to shrink tumors and prevent them from growing by
limiting their blood supply. Anti-angiogenic drugs stop new vessels from forming and breaks up
the existing vascular network that feeds the tumor. Anti-angiogenic drugs have been approved for
use on humans and many more are now in pre-clinical trials. In addition, several potential in-
hibitors such as angiostatin and endostatin are being studied in research laboratories, as well as by
pharmaceutical and biotechnology companies. Whilst in the present paper the effect that the drug
has on the tumor vasculature has been neglected, the dynamics of vascular shunting, collapse, and
re-growth are also interesting directions for future work.

6.3. Non-spherical geometries

There are two natural ways in which to alter the geometry of the problem we have addressed.
The first approach corresponds to modeling the tumour as a cylinder. This approach considers
tumour cords or cuffs where the tumour grows radially outward from a central blood vessel.
Essentially, the same mathematical model could be studied, but with a different geometry and
different assumptions regarding its symmetry; for example, it would be natural to impose radial
symmetry initially.

The second approach is to consider how the radially symmetric solutions respond to asym-
metric perturbations. Due to the form of the model equations the natural choice for the per-
turbations are spherical harmonics. Any modes that are excited indicate how the tumour may
invade into its surrounding tissues. Several authors have studied how these types of perturbations
will effect the growth of multicellular spheroids [7,30-32]. To our knowledge there has not been an
investigation into how treatment would be affected by such an invading tumour. This open
question could also be an area of future study.

The modeling framework that we have developed has been able to predict the response of
vascular tumors with two distinct clonal populations to chemotherapeutic treatment. The for-
mulation of the model is general enough that more of the tumor physiology can be included and
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more sophisticated treatment strategies can be investigated. The mathematical model provides a
means for determining the most advantageous dosing strategy for tumor reduction, and suggests
future experimental directions which can lead to improved protocols for chemotherapeutic
treatment.

Appendix A. Plasma and normal tissue dynamics

The standard pharmacokinetic equations based on a two compartment model for drug con-
centrations in a central compartment (dz(¢)) consisting of the blood volume together with the
extracellular fluid of highly perfused tissues of the body and a peripheral compartment formed by
less perfused tissues (dy(¢)) following a bolus injection are

dd,
d—tB = —kiodp + kndy — k.dp,
(A.1)
dﬂ = kiody — ko1 d,
q  Fds 214y -

The parameters, kj» and k,; are rates of transfer from the blood to the tissues of the body and
from the tissues back into the blood and £, is the plasma clearance rate. A major assumption of
this classical approach to compartmental modeling [36] is that the body can be resolved into
compartments which do not necessarily correspond specific anatomic entities but to theoretical
spaces postulated to account for experimental observation. The above system can be solved via
Laplace transforms and has solutions of the form

dg(t)=Ae " +Be ™ and dy(t)=C(e = —e ). (A.2)

The values for 4, B, £, and &, are taken from a best fit to experimental blood clearance data
and are used to calculate the actual pharmacokinetic parameters as follows [36]:

= A+ B
©(4/&)+ (B/&G)’
kot — A&, + B,
21 A—|—B 9
AB — &)
klZ == P (62 61) P <A3>
(4+ B) ki
dose
n= A+B’
k12
V=12
> V1k21

The normal tissue coefficient, C, is related to these parameters as follows:

C= \/kfz + 2kiok, + 2kinkay + k2 — 2kaik, + K3, /1.

Note, that the apparent volumes of the central and peripheral compartments, ¥; and 75, are
computed in terms of the parameter of the system [36].
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The blood dynamics change slightly when we consider the tumor as a separate compartment.
Instead of (A.1) we now have

dd
d—f = —kiadp + kordy — kody — I'(dg — d(R(2), 1)),
(A.4)
ddy — kiydy — koyd
dt — R12U4B 214N -

The boundary conditions for the amount of drug in the tumor tell us that d(R(¢), ¢) = dy(¢) so that
the changes in going from (A.1)-(A.4) result in only minor changes to the compartmental transfer
coefficients. That is, the basic form of the solution is unchanged.
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