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ABSTRACT 

A system of differential equations for the control of tumor cells growth in a cycle 
nonspecific chemotherapy is presented. Drug resistance and toxicity conveyed 
through the level of normal cells are taken into account in a class of optimal control 
problems. Alternative treatments for the exponential tumor growth are set forth for 
cases where optimal treatments are not available. 

1. I N T R O D U C T I O N  

In cancer chemotherapy one aims to control the number  of  tumor 
cells in patients, and, for reasons of health safety, some sort of  optimal 
use of  the involved drugs would be desirable. However,  among the 
several aspects that make difficult to obtain a satisfactory answer to this 
problem are the lack of detailed knowledge about the kill rates of  the 
drugs, drug resistance, cell growth models, and appropriate criteria for 
measuring toxicity. 

The modeling of the origin and treatment  of tumors containing drug 
resistant cells can be addressed b y m e a n s  of probabilistic models (see 
[1,2,8-10]) where the parameters  possess biological interpretation and 
their values can be estimated. Therefore,  these models can have their 
predictions tested against clinical data, providing quantitative informa- 
tion for chemotherapeut ic  protocols. 

From another  modeling standpoint, in this work (as well as in [3-5]) 
deterministic models are utilized to describe the evolution and treat- 
ment  of tumor containing drug resistant cells. Unlike their probabilistic 
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counterparts some of their parameters may lack biological interpreta- 
tion. However, one of the reasons for resorting to them is that they can 
be seen as an average behavior of the erratic nature of tumor cells 
growth. Furthermore they may serve as a guide to a qualitative compre- 
hension of the phenomena involved in chemotherapeutic protocols and 
growth of tumor cells, and may show the relevant aspects captured by 
the model. 

Specifically, the model utilized in this analysis consists of a system of 
differential equations based on the work of Goldie and Coldman [7, p. 
1732] which describes the dynamics of tumor cells (resistant and drug 
sensitive). Adding to this system a perturbation term to account for the 
effect of the drug on the tumor cells and an objective function to 
be optimized, optimal control theory is applied in order to provide 
chemotherapeutic protocols in qualitative terms. We point out that the 
first paper to utilize engineering optimal control theory for a chemo- 
therapeutic problem involving a human tumor is found in Swan and 
Vincent [21], and in Swan [20] there is an extensive review of optimal 
control theory in cancer chemotherapy. 

Some optimal chemotherapeutic treatment were devised in [4] and [5] 
and the common features of these works were drug resistance and 
toxicity, where the latter was conveyed through the drug accumulation 
in the patient's body. 

This work attempts to devise optimal treatments in a deterministic 
setting when drug resistance is taken into account and toxicity is 
modeled via a minimum level of normal cells which should not be 
violated. Unlike the toxicity criterion utilized in our previous works 
[4, 5], this criterion in a noncumulative one. 

Some authors [13,14,24] utilize normal cells as an indicator of 
toxicity and their optimal treatments may include rest periods. 

As opposed to that, it is shown in this work that the introduction of 
drug resistance in the model leads to an optimal treatment consisting of 
maximum allowable drug concentration throughout, and, moreover, 
although restricted to a set of initial conditions, it is valid for a class of 
general growth functions and kill rates. For the Malthusian (exponen- 
tial) cell growth and a linear kill rate, it is shown that under certain 
conditions, rest periods, albeit not optimal, can be incorporated into 
alternative treatments. 

2. OPTIMAL CHEMOTHERAPY WITH NORMAL CELLS 

In order to carry out the analysis of tumor growth submitted to 
chemotherapy some assumptions are made: 

(1) The tumor will be viewed as a cell population undergoing homo- 
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geneous growth, that is, it does not depend on the cell position within 
the tumor. 

(2) The tumor will consist also of drug-resistant cells whose growth 
rate depends not only on the size of its own population, but err the size 
of the sensitive cells as well. This latter dependence is due to a 
randomly spontaneous mutation during mitosis towards drug resistance, 
which will occur according to a constant probability. In this way no 
sensitive cell becomes drug resistant during its life time; only their 
daughter cells may acquire drug resistance by spontaneous mutation 
during mitosis. A biological validation of this kind of drug resistance 
was performed by "in vitro" experiments with T-cell lymphoblastic cell 
line CCRF-CEM. A description of these experiments can be found in 
Vendite [23]. (The importance of drug resistance in designing chemo- 
therapeutic protocols is also emphasized in Skipper [16]). 

(3) The kill rate of the drug (number of cells killed/unit drug 
concentration) will be considered as a function of the size of the 
sensitive cells population. As for the normal cells the kill rate will also 
be a function of their own population size. 

The following system is a model for the behavior of tumoral and 
normal cells submitted to chemotherapy when the assumptions men- 
tioned above are taken into account: 

dx 
d--T = x f ( y )  + a f ( y ) ( y  - x ) ,  

-~t = Y f (Y )  - u ( t ) g ( y  - x ) ,  

dn 
-~- == nfl( n)  - u(  t )g l (  n) ,  

x(O) = Xo, y (O)  = Yo, n(O) = no. 

(2.1) 

Here, t ~ 0 represents the elapsed time; y ( t ) ~  R stands for the total 
number of tumor cells at time t, while x( t )  ~ R stands for the number 
of drug-resistant cells within the tumor and n(t)  is the number of 
normal cells. Clearly, any initial condition (Xo,y o) is such that x 0 < Y0; 
f ( y )  and f l (n )  are the specific growth rates for the tumor and normal 
cells, respectively; 0 < c~ < 1 is the fraction per unit of time of the drug 
sensitive cells that mutates into drug resistant cells; 0 < u(t)  <~ Um is the 
drug concentration at the tumor site (assumed to be limited, i.e., 
u m < +~); g and gl give the kill rate of the drug per unit of drug 
concentration as function of the drug-sensitive cells or as a function of 
the normal cells. As in [5] f ,  fl ,  g, and gl are taken to be Cl-functions 
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and we will be interested in solving the following free end-time optimal 
control problem associated with (2.1): 

Find a time 0 ~< t 7 < + oo and a BV[O, t7 ]-function u* : [0, t~ ] ~ 
(here BV[O, t~] indicates the class of bounded variation functions de- 
fined in [0,t~ ]), 0 ~< u*(t)<~ u m almost everywhere in [0,t~ ], that will be 
the optimal drug concentration in the sense that 

Jc(.*(.),tT) 
= minimum {J~(u,t f) ,  u ~ BV[O, t f] ,  tf > 0; 0 ~< u( t )  <~ urn a.e.} 

(2.2) 

subject to (2.1) and n(t)>1 18 where the functional Jc is defined by 

Jc(U,tf) = y ( t f ) .  (2.3) 

The functional is the number of tumor cells at the end of the 
treatment, while /3 represents the lowest admissible level of normal 
cells, indicating a possible measure of toxicity. 

As to the functions f ,  f l  and g, gl that appear in (2.1), we will 
consider the following natural assumptions: 

f ,  f l ,  g, gl are cl-functions. 
Moreover, g(O) = gl(O) = O, g ( s ) , g l ( s  ) > 0 and 
g ' ( s ) , g ] ( s )  > 0 when s > 0 

(2.4) 

and 

there exist Ym > 0 and n m > 0 
such that f (Y,n) = f l (n , , )  = O, and 
f ( y ) , f l ( n )  > 0 for 0 ~< y < Ym and 0 ~< n < n m 

(2.5) 

o r  

f ( y ) , f l( n ) > 0 for y >j O, n >10,f, f l and g , g l are globally Lipschitz. 
(2.6) 

In (2.4) the two first expressions indicate that the drug effect is 
strictly related to the existence of sensitive (normal) cells and the third 
one states that the drug effect increases as the level of sensitive 
(normal) cells increases. 

In (2.5) it is stated that the tumor (normal cells) exhibits a density 
dependent growth, where y,,(n m) is the maximum attainable level of 
tumor (normal) cells. 
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In (2.6) it is assumed that there is no maximum attainable level of 
tumor (normal) cells and that the relative increment of kill rate per unit 
concentration is bounded. 

The behavior of system (2.1) without drug injection for all t (u( t )= 
0Vt >_- 0) corresponds to the dynamics obtained in [7, p. 1732] describing 
the evolution of resistant cells in relation to the number of tumoral 
cells. 

Now we define an open set lq in ~2 as 

(i) O = { ( x , y ) ~ R 2 : 0 < x , 0 < y , x < y }  
if assumptions (2.4) and (2.6) hold. 

(ii) l ) = { ( x , y ) ~ R z : 0 < x , 0 < y < y m , x < y  } 
if assumptions (2.4) and (2.5) hold. 

Before proceeding to the analysis of the optimal control problem, we 
enunciate a lemma that can be proved in exactly the same way as in 
Lemma 2 in [4]. (It is enough to observe that the first two equations 
(2.1) are the same as the ones in [4].) This lemma relates the trajectories 
of system (2.1) with the open set f~. 

LEMMA 1 

Consider u(t) >1 0 a function o f  bounded variation. The corresponding 
solution (x(t),  y(t), n(t)) of  (2.1) with initial conditions (xo, Yo, no) satisfy- 
ing ( x o , Y o ) ~ l )  is such that its projection on the x,y-plane, that is 
(x(t), y(t)), never touches the boundary of  1) in finite time. 

This lemma implies in particular that 0 < x( t ) < y( t ) for all finite time t. 

Before beginning the analysis some comments are in order. A rela- 
tionship among u m and the functions fa, gl, and n must be required so 
that the present problem should not fall exactly in the same frame as 
that tackled in [4]. In fact, if d n / d t  = n f l ( n ) -  Umgl(n) > 0with n(0) >~/3, 
then n(t)>1/3 for any treatment such that 0 ~< u(t)<<, um. In this case, 
the condition n(t)>1 fl is always satisfied and the problem is reduced to 
the one studied in [4]. To rule out this possibility we will require, in this 
analysis, that 

nfl(n ) - umgl(n ) < 0 (2.7) 

for all n. 
The meaning of the above condition will be made clear in the 

example in Section 3. 
Now we proceed to the study of the optimal control problem formed 

by (2.1) and (2.2). In clinical terms, the main result of this section states 
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that if an optimal treatment exists, it should consist of maximum 
allowable drug concentration (u m) at the tu~or  site throughout and the 
treatment should be discontinued as soon as the tumor level (y) attains 
its lowest level (i.e., d y / d t ( t y ) =  0, tffinal time) under the condition 
that the level of normal cells should be higher than /3 all along the 
treatment, and it could be equal to /3 only at the final time ty. And 
conversely, if the level of normal cells attains /3 under the maximum 
allowable drug concentration, the treatment should be immediately 
discontinued, with the final value of the tumor level determined by this 
instant, which may not correspond to its lowest level. In this case this 
treatment is not optimal. We return to this point in Section 3 in order 
to provide alternative strategies which yield better results than this one. 

As for the mathematical analysis, we will follow the procedure of 
Sage [15] for bounded control and state variables. 

Let z and w be slack variables such that 

Z2----(Um --U)U 
and 

w 2 = n - -  /3 

and the augmented functional 

] = Y(to) + ftls{)~(tf)+ }L 1 [ (x f (y )  + a f ( y ) ( y  - x)  - 2] 

+ A2[(y f (y  ) - u ( t ) g ( y  - x ) )  - Y] + A3[(nfl(n) - u ( t ) g l ( n ) )  - h] 
+ p l ( t ) [ ( U m - U ) U -  z 2] + p 2 ( t ) [ n ( t ) - / 3 - w 2 ] } d t ,  

where A 1, A 2, A3,pl,p2 are adjoint variables (throughout this work the 
symbol "." over a variable will denote the time derivative of that 
variable, "." and " d / d t "  will be used interchangeably). 

Applying the Euler-Lagrange equations to the augmented func- 
tional, 

- -  ~1 = A l f ( y ) ( 1 - a  ) - A2U(/)  Og(Y x 
X )  

- ~2 = Ax(xf'(Y) + a f ' ( y ) ( y  - x)  + a f ( y ) )  
dg 

+ A 2 ( y f , ( y ) + f ( y ) _ u ( t ) _ ~ _ f i ( y _ x ) )  (2.8) 

- -  / ~ 3  = A3(f,(m) + nf~(n) - u ( t )g ' , (n ) )  + p2(t) 

)tl(tf) = 0; A2(tf) = 1; A3(tf) = 0 (transversality conditions), 

- A z g ( y - x ) - A 3 g l ( n ) + p a ( t ) ( U m - 2 u ) = O  (2.9) 
p l ( t ) z ( t )  = 0 (2.10) 

p 2 ( t ) w ( t )  = 0  (2.11) 
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LEMMA 2 

I f  there is an optimal strategy u*(t) on [0,t~'], then U * ( t ) = u  m in a 
neighborhood to the left o f  tf. 

Proof By equation (2.9), pl(tf)--/: 0 since A3(t f)  = 0 and A2(t f)  = 1. 
Therefore at tf the optimal control is U m or 0. The case u ( t f ) =  0 is 
ruled out since we seek to minimize y(tf). Moreover, by the condition 
(2.7) this result indicates that the level of normal cells must be strictly 
above/3 just before the end of the treatment. II 

Next we prove the following lemma. 

LEMMA 3 

I f  there exists an optimal strategy u*(t) for all t ~[0,tT], then the 
corresponding n*(t) is such that n * ( t ) > / 3  for all t ~[0,tT). Thus n*(t) 
could be equal to /3 only at the final time t~. Moreover, u*(t) = u m for 
t ~[0,t~].  

Proof. Suppose by contradiction that n*(t) is equal to /3 at certain 
times. Consider ~ as the smallest time in the interval [0, t7 ] such that for 
t ~ (-t, t7 ], n(t) > 13 except on sets of measure zero. 

We observe that 0 < ~ < t~ because it is known that in a neighbor- 
hood of t7 the optimal strategy should be u m and, therefore, n*(t) 
should be strictly decreasing (hypotheSis (2.7)) in this region. Since 
n*(tf) >1/3 we should have n( t )>/3  for t in a small neighborhood to 
the left of t~. In [~,t~] we can apply the version of the Pontryagin's 
minimum principle for problems with state variables constraints (see 
Lee and Markus [12, p. 336]). However, as in [},t T] the restrictions 
(n t>/3) are active (n = /3 )  only on sets Of measure zero, we can resort 
to the usual Pontryagin's minimum principle in order to check whether 
the proposed strategy is optimal in [~, t7 ], 

The state equations are the same as (2.1) and the Hamiltonian [11] is 
given by 

O = x f ( y )  + - x ) )  +  2(Yf(Y) - u ( t ) g ( y  - x ) )  

+ A 3 ( n f , ( n )  - u ( t ) g l ( n ) ) .  

The Hamiltonian yields the same costate equations for h 1 and A 2 as  

in (2.8). The transversality conditions hi, A2, A 3 remain the same. In 
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[-t,t~]n(t) >1/3 and equal to /3 only on sets of measure zero. Conse- 
quently w(t ) -~  0 and p2(t) = 0 in this interval (except on sets of 
measure zero) ((2.10) and (2.11)). This implies that for t ~ [t, t~ ] 

dh  3 
dt = A 3 ( u ( t ) g ' l ( m )  - f l ( n )  - n f ~ ( n ) ) ,  A3( t;  ) = o. 

Integrating backwards this equation in [~, t~] yields A3(t)= 0 in this 
same interval. 

Therefore,  in [t, tT] the present problems reduces exactly to that one 
tackled in [4] with the functional J = y( t f ) .  In this way, we can apply the 
results that concern A 1 and A 2 in [4] for t ~ [t,t~ ]. The following 
lemmas also hold true here: 

LEMMA 4 

Az(t) >1 0 for  all t ~ [-t, t~ ]. 

LEMMA 5 

Al(t) > 0 for  all t ~ I-t, t~ ]. 

The proofs can be found in [4, p. 220-21]. 
Proceeding accordingly, Theorem 1 stated in [4], which guarantees 

that the sole optimal strategy is u ( t )=  u m, is also valid here for all 
t ~[i,t~']. 

If ~ = 0 ,  we have u ( t ) = u  m for all t~[0,t~ '] .  Thus n(t) is strictly 
decreasing and since n(t e) >i/3, we conclude that n ( t )> /3  for all t 
[0, t~' ), which is a contradiction with the assumption that n* (t) was equal 
to /3 at certain times. 

If ~ > 0, we observe that by_ its own definition and the continuity of 
n* (t), n* (t) = /3  in an interval (i,i] where ~ < i. But this is a contradiction 
because it was previously shown that n ( t )> /3  for ~ < t < t~'(n(t) is 
strictly decreasing in this interval) and on the other hand n ( t )= /3  for 
t ~ [i,D. Thus lim t _~ ~_ n ( t )= /3  and lim t _~ ~+ n ( t )> /3  and n(t) could not 
be continuous. This proves the stated lemma. • 

Hence, if there exists an optimal treatment, the drug concentration 
at the tumor site should be maintained at its maximum allowable level 
throughout the treatment. This result holds true for growth functions 
and kill rates considered at the beginning of this section, including 
different kill rates for tumor and normal cells. 

However there may be initial levels of tumor and normal cells for 
which the application of u m till the tumor level attains its minimum 
(i.e., d y / d t  = 0) may violate the constraint n( t )  >1/3. In such cases an 
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optimal treatment as defined above is not possible, thus calling for 
alternative improving strategies. 

For instance, should one apply maximum drug concentration until 
the normal cells attain its lowest allowable level and then discontinue 
the treatment or is there any treatment after attaining /3 with the 
application of urn, which will yield better results? This question will be 
addressed in the next section for the case of exponential growth. 

3. ALTERNATIVE TREATMENTS IN THE 
MALTHUSIAN CASE 

In the sequel, we proceed to the search of alternative treatments 
when tumor and normal cells obey a Malthusian (exponential) growth 
and the kill rate is linearly proportional to the level of sensitive cells. 

This model assumes that the specific growth rate of the tumor and 
normal cells is constant ( f ( . ) =  r). Its importance is centered on the 
introduction of the concept of doubling time and, although it does not 
have a strong physiological basis, it starts with a reasonable assumption 
[22] (this model is used for modeling cell growth in [6]). The system 
corresponding to (2.1) has the following form: 

dx 
~-[ = rx + a r ( y  - x ) ,  

dy 
d---{ = r y -  F u ( t ) ( y -  x), (3.1) 

dn 
d---{ = r l n  - F l U (  t ) n '  

x(O) = Xo; y(O) = Yo; n(O) = no, 

where the tumor and normal cells have specific growth rates r and rl, 
respectively. As the drug may act differently on each kind of cell, 
different constants of proport ional i ty--F and F 1-fOr tumor and nor- 
mal cells, respectively, were assigned to the kill rates. Moreover, in this 
analysis condition (2.7) reduces to r 1 - F l u  m < 0, thus guaranteeing that 
the problem does not fall in the same frame of [4]. This will be assumed 
throughout this section. 

We start by spotting on the space x , y , n  the initial conditions 
( x o , y  o, n o) for which u * ( t ) =  u m for all t ~ [0,t f] is really an optimal 
strategy. The remaining initial conditions in the positive orthant will be 
the subject of the present analysis. 

Since the system (3.1) possesses explicit solutions for u ( t ) *  = urn, we 
can calculate the span of time At n needed to reach n =/3 for n(0) = n o 
when u * ( t )  = u m is applied for all t. 
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From the equation of d n / d t  in (3.1) 

1 In no (3,2) 
Atn F l u ,  " - rl /3 , 

where At  n is the time needed to attain n =/3 when n(0)= n o and 
u( t )  = u m  is applied for all t. Since an optimal strategy must end at 
) )( t~)=0 with u * ( t ~ ) = U m ,  the span of time Aty needed to reach 
))(t~) = 0 with U * ( t ) =  Urn for all t ~ [0, t~] can be calculated from the 
equation of d y / d t  in (3.1), yielding 

1 ( r  - a r  - F U m ) U m F ( Y  0 - Xo) (3.3) 
Aty = a r  + Fu  n In r u m F ( Y  ° _ xo ) _ rYo( a r  + F u m )  " 

We mtlst require that Aty ~< At n in order that u * ( t ) =  u m does not 
violate n >//3. Therefore, the above inequality involving Aty and Atn 
gives 

- a r  - F u m ) u m F ( Y o  - Xo) " ~ (Flum-rl)/(°tr+Fum) 

no~>/3 ~--m~O-_-~o)_----~o(~rr~,h--~ ) ] (3.4) 

The equality in (3.4) determines a helix in the space x , y , n  (as 
depicted in Figtire 1). 

Any initial condition ( x o , Y o , n o )  on the helix or between it and the 
plane n, x (see point A in 17igure 1 for an example) has an Optimal 
solution u * ( t )  = u m for all t ~ [0, t~ ]. 

It is worthwhile to remark that in clinical terms the sar0e treatment 
may have different results. For instance, the inner points have the 
treatment finished at a higher level of normal cells (i.e., n*( t~)>/3)  
than that of the points on the hefix, which have the treatment discotititl- 
ued at n * ( t ~ ) =  ft. 

According to the results of the previous section, initial conditiohs 
tietween the helix and the plane n, j~ (see point B in Figtire 1) cannot 
have an optimal solution. Therefore, we seek treatmerits that, albeit not 
optimal, may decrease the tumor level with respect to the Conspicu0us 
treatment u ( t )  =Um for all t. For instance, we could try to put forward 
some cases for which it would be possible to administer drug after the 
normal cells minimum level has been attained without violating n ( t )  >~ ft. 
A few cases are depicted in the Figure i (trajectories (1) arid (2)). 

The strategy of maximum drug concentration could be employed till 
the normal cells attain the level n =/3. Thereafter, a strategy with 
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FIG. 1. Helix in the space x, y, n. 
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concentration u s = r I / F 1 ,  which maintains the normal cells at level /3 
(because h = 0 in this case), could be applied if we guaranteed that it 
would reduce further the tumor  level. This will be so whenever the 
trhjectory of system (3.1) with initial conditions above the helix and with 
u(t)  =um hits the plane n = /3  to the left of  the isocline ry - Fus(y - x)  
= 0 (i.e., 1~ = 0 for u = u s) itself on the plane n = /3  since )~ < 0 for 
u(t)  = u s in this region. In other words, the initial tumor  levels for which 
it is possible to apply such strategy are determined by the backward 
integration from the isocline r y -  F G ( y -  x ) = O  0 ~ = 0 for u ( t ) =  
r 1 / F  1) with u( t )=  um which forms a certain region in the x, y, n-space. 
Any other initial condition outside this region will hit the plane n = /3  
to the right of  the isocline p = 0 (for u s = r 1 / F  1) o n  the plane n = /3  
and no t reatment  with u = u s would reduce the tumor  further (see 
trajectory (3) in Figure 1). 

The question that now arises concerns rest periods since it is a 
common clinical evidence in chemotherapeut ic  protocols. In the set of  
alternative treatments we proceed to check whether  there are condi- 
tions under  which rest periods could improve the patient 's  health. 
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A possibleway of carrying out this analysis consists of choosing an 
initial condition of the type (Xo ,Yo , / 3 )  and after letting the system 
evolve with u = 0 (rest period) till an arbitrary ( x l , y l , n  1) with n 1 >/3, 
apply um again till the normal cells attain /3, that is, (x2, Y2,/3 ). Then, it 
is to be checked if there was any improvement in the tumor level, i.e., if 
Y2 < Y0. Therefore, in the sequel we seek conditions for this improve- 
ment in terms of n 1. To wit, we try to evaluate how long a rest period 
should last so that the normal cells be able to recover without, however, 
letting the tumor become too large for further improvement of the 
treatment. To achieve this we need expressions that relate the various 
populations to the interval of rest periods, namely A1, and to the 
interval of application of u m, namely A 2. 

In the exponential case, when u ( t )  = u m for all t the equation for the 
tumor dynamics is as follows 

dy F u m (  y - x )  (3.5) --dT = ry - 

The sensitive cells z = y - x are governed by the following equation 
when u ( t )  = u m for all t 

dz 
d--7 = ( r  - F u  m - a r ) z ,  (3.6) 

which has an explicit solution 

z ( t )  = y ( t )  - x ( t )  = z(t0)exp[(1 - a ) r  - F U m ] ( t  - to ) .  (3.7) 

Substituting (3.7) into (3.5), yields 

- ~ t = r Y  - F U m Z ( t o ) e x p [ ( 1 -  a ) r - F u m l ( t - t o ) .  (3.8) 

The solution of (3.8) is given by 

y ( t )  = exp[r( t  - to) ] [y( to)  + 
UmF 

o~r + F u  m [ Y ( t o ) -  X ( to ) ]  

× [exp[ - ( a r  + F u m ) ( t  - to) ] - 1]]. (3.9) 
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The rest period A 1 is given by 

A 1 = l l n  n--L~3 (3.10) 

while A 2, the application of u m till /3 is reached has the following 
expression: 

1 lnn~ (3.11/ 
A 2 = FlUm - r 1 

During the rest period the tumor evolves, namely, from Y0 to Yl 
according to 

Yl = Yo era' (3.12) 

and during A2, it evolves, namely, from Yl to Y2 according to (3.9). 
Substituting (3.12) into (3.9) and after some cumbersome calculations 

we get an expression relating the final tumor level Y2 to the initial levels 
Y0 and x 0, given below: 

Y2 = y0exp r (Al  + A 2 ) ( 1  - -  k (n l ) ex p (  - arA1))  

+ k ( n l ) x o e x p r ( A  1 + AE)exp( - ~rA1), (3.13) 

where 

k = 1 - e x p [ -  ( a r  + Fum)A2]  
( ,~r/Fu, ,  + 11 (3.14) 

In order to have Y2 < Y0, we must require 

exp r(A~ + A2)(1 - k (n l ) exp (  - arA1)) 
+ 3 , k ( n x ) e x p r ( A  1 + A2)exp( -- arA1)  < 1, (3.15) 

where 3' = Xo /Yo .  Since A1, A2, and k can be written in terms of n 1 
(equations (3.10),(3.11),(314)), inequality (3.15) can be expressed as a 
sum of functions of nl, namely, Hl(n~)+  yH2(n l ) ,  where 

Hi(n1)  = exp[ r (A 1 + A2) ] (1 -- k (n l ) exp (  - a rAl )  ) 

) = 1 -  ( n l / / 3 ) - ¢ - ( n x / / 3 ) -  ~' 

H2(n l )  = exp[ r (A  1 + A2)] k(na)exp(  - arA1)  

°  nlJ , ° 
= 8 
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and the constants 0, ~O, ~, 6 are all positive and defined as follows: 

r( 1 +1) or+ 
0 = F l U  m - r 1 ' qJ = r---1 

a r  a r  

~ =  r-- 7 ,  6=F---~m+l.  

a r  + FU m 

F l U  m - r 1 ' 

(3.16) 

Hence, we are searching for conditions that satisfy 

H i ( h i )  + " / g 2 ( n l )  < 1. (3.17) 

The rest of the analysis will be carried out for n 1 =/3, that is, 
whether any improvement in the therapy can be achieved by means of 
rest period when the normal cells level is near the lowest allowable 
level. 

We observe that for n 1 =/3, 

and 

H , (n l )  + 3,H2(n,)[.,=/3 = 1 (3.18) 

d i l l ( n 1 )  d H 2 ( n l )  0 ( l - y ) [ ~ _ _ ~ ]  (3.19) 
dn I + y dn 1 In 1 =/3 = ~ + 7 

For there to be any improvement, we should impose that expression 
(3.19) be negative so that in the neighborhood of n 1 =/3  inequality 
(3.17) be satisfied and consequently Y2 < Y0. 

Substituting 0, qJ, ~:,/5 in (3.15) for their respective expressions in 
terms of the original model, we have 

rE 1 
1 -  r l  F > T .  

Since 0 < 3' = X o / Y o  < 1 then, 

and 

r E  1 
0 < r - ~  < 1 (3.20) 

r F 
rF 1 < q F  ~ m = r--~ < F-~~" (3.21) 

In view of (3.21) and assuming that r > q ,  rest periods could improve 
the therapy if the drug effects on normal and tumor cells are differenti- 
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ated, that is, if F > Fa. If they are similar (F---F1), the only way to 
achieve improvement will be the instance where the specific growth of 
the normal cells is greater than that of the tumor cells (which is not the 
usual case). 

The foregoing analysis provides also an approximate threshold of 
normal cells for which the rest periods are ineffective. In other words, 
no improvement can be gained if the level of normal cells after a rest 
period goes beyond a threshold given by 

> a r / F u  m +1 (3.22) 

This can be achieved by imposing that the coefficient of Y0 in (3.13) 
be greater than 1. Since the remainder of the right-hand side of (3.13) is 
nonnegative, this implies that Y2 > Y0. 

From the inequality (3.22) we can draw some relevant features. The 
prohibitive range for rest period application varies according to the 
ratio o t r /Fu  m - - a n  interplay among drug resistance, tumor growth, and 
killing effectiveness of the drug. As a a n d / o r  r gets smaller or Fu,,, 
gets bigger, the prohibitive region shrinks. Therefore rest periods may 
be effective if either the rate of mutation to drug-resistant cells a n d / o r  
the tumor specific growth is low or the killing effect is high. 

4. DISCUSSION 

In this work we attempted to devise an optimal chemotherapeutic 
treatment that should minimize the tumor cells level at the end of the 
treatment while maintaining the normal cells above a prescribed level. 

The optimal strategy consisted of keeping the maximum drug concen- 
tration at the tumor site throughout the treatment. This result holds 
true for a certain class of growth functions, kill rates, and a specified set 
of initial levels of tumor and normal cells. This set is determined by the 
proportion of drug-resistant cells within the tumor and the number of 
normal cells in the tumor region. 

Since the optimal strategy was restricted to a set of initial conditions, 
we turned to search for alternative strategies. This was carried out for 
the case of exponential growth with a linear kill rate. 

Two alternative strategies were put forward: initially, maximum drug 
concentration should be applied till the normal cells attained the lowest 
allowable level /3, then: 

(1) the drug concentration should be switched to the value r a /Fa 
that keeps the normal cells at a constant level and applied till the tumor 
attained its minimum level Qg(t r) = 0); 
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(2) the treatment should be discontinued since there is no way to 
reduce the tumor further. 

Either strategy (1) or (2) will be applied, depending on the tumor 
level (y(t)) at the time the normal cells attain their lowest allowable 
level (/3) (that is, it depends on which side of the isocline 3~ = 0 for 
u = u s the trajectory hits the plane n(t)=/3) and the switching time will 
be given by the instant the normal cells attain the level /3. 

In the study of the general growth functions and kill rates, it was 
shown that rest periods were not part of any optimal strategy, though 
they iare known to be used in chemotherapeutic protocols. However, in 
the context of alternative strategies for  the exponential growth and 
under the assumption that the specific growth rate of the tumor cells is 
greater than that of the normal cells, rest periods could improve the 
treatment if: (a) the normal cells level were near its minimum allowable 
level and (b) the drug affected the tumor cells more effectively than the 
normal cells. 

On the other hand, if the normal cells evolved beyond a specified 
value (determined by the parameters of the model) during a rest period, 
no improvement would be obtained by applying the maximum drug 
concentration again by virtue of the excessive growth of the tumor cells 
during the interruption of the treatment. 

After summarizing the results, some comments are in order. One 
might expect that a threshold level imposed on the normal cells as a 
measure of toxicity would engender optimal strategies involving alter- 
nated drug concentration and rest periods (see Murray [13,14] for 
uncoupled dynamical equations of tumor and normal cells growth 
without drug resistance). Such strategies did not prove to be optimal in 
this work. 

Our view is that drug resistance plays a prevalent role in determining 
the optimal treatment. The drug resistant cell population is modeled by 
a strictly increasing population, whose tendency can only be decreased 
(but not reversed) through the treatment. Therefore, the maximum drug 
concentration emerges as the sole possible optimal treatment which 
minimizes the total tumor population irrespective of the growth func- 
tions and kill rates. Therefore, according to this deterministic model, 
the noncumulative toxicity conveyed by a minimum allowable level of 
normal cells appears to be not sufficient to override the effects of drug 
resistance. 

This prevalence of maximum drug concentration as an optimal treat- 
ment is in part corroborated by the results obtained in probabilistic 
models. Although in that context the analysis refers to discrete drug 
application, the results indicate that rapid depletion of sensitive cells is 
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essential and that if low dose therapies are continued over long periods 
of time, they are unlikely to be successful [1]. 

Likewise in Harnevo and Agur [8] where the emergence of drug 
resistance is treated as a dynamic process rather than a single constant, 
their results provide a formal basis for the conjecture that an effective 
treatment should entail a high drug concentration. Moreover, they 
argue that protocols involving frequent low concentration dosing may 
result in the rapid evolution of large, fully resistant, residual tumors. 

Yet it is worthwhile to mention that in the course of our previous 
work, alternative concentrations as optimal treatments were obtained 
only for a combination of drug resistance, saturation effect and toxicity 
(see [5]). 

To be in accordance with clinical evidence as regards rest periods, we 
suggest that a pharmacokinetic equation be adjoined to the model 
presented in this work. This conjecture is based on the fact that the 
drug decay rate plays an important role in the determination of optimal 
treatments as seen in [3]. Another  suggestion concerns an alternative 
modeling of toxicity that would explicitly take into account the patient's 
recuperation from the side effects of the drug when the treatment is 
discontinued. This might be accomplished, for instance, by the introduc- 
tion of the body immunological system's equations in the present 
models. 

However, in spite of the difficulties intrinsic to the biological inter- 
pretation of the terms involved in the deterministic description of tumor 
growth and drug resistance and an appropriate choice for toxicity 
criterion (see [17-19]), we take the view that such models may shed light 
on some of the relevant aspects of theoretical chemotherapy and tumor 
cell growth in order to improve the overall qualitative understanding of 
cell dynamics and chemotherapeutic protocols. 
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