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ABSTRACT

A system of differential equations for the control of tumor cells growth in a cycle
nonspecific chemotherapy is presented. Drug resistance and toxicity conveyed
through the level of normal cells are taken into account in a class of optimal control
problems. Alternative treatments for the exponential tumor growth are set forth for
cases where optimal treatments are not available.

1. INTRODUCTION

In cancer chemotherapy one aims to control the number of tumor
cells in patients, and, for reasons of health safety, some sort of optimal
use of the involved drugs would be desirable. However, among the
several aspects that make difficult to obtain a satisfactory answer to this
problem are the lack of detailed knowledge about the kill rates of the
drugs, drug resistance, cell growth models, and appropriate criteria for
measuring toxicity.

The modeling of the origin and treatment of tumors containing drug
resistant cells can be addressed by means of probabilistic models (see
[1,2,8-10]) where the parameters possess biological interpretation and
their values can be estimated. Therefore, these models can have their
predictions tested against clinical data, providing quantitative informa-
tion for chemotherapeutic protocols.

From another modeling standpoint, in this work (as well as in [3-5])
deterministic models are utilized to describe the evolution and treat-
ment of tumor containing drug resistant cells. Unlike their probabilistic
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counterparts some of their parameters may lack biological interpreta-
tion. However, one of the reasons for resorting to them is that they can
be seen as an average behavior of the erratic nature of tumor cells
growth, Furthermore they may serve as a guide to a qualitative compre-
hension of the phenomena involved in chemotherapeutic protocols and
growth of tumor cells, and may show the relevant aspects captured by
the model.

Specifically, the model utilized in this analysis consists of a system of
differential equations based on the work of Goldie and Coldman [7, p.
1732] which describes the dynamics of tumor cells (resistant and drug
sensitive). Adding to this system a perturbation term to account for the
effect of the drug on the tumor cells and an objective function to
be optimized, optimal control theory is applied in order to provide
chemotherapeutic protocols in qualitative terms. We point out that the
first paper to utilize engineering optimal control theory for a chemo-
therapeutic problem involving a human tumor is found in Swan and
Vincent [21], and in Swan [20] there is an extensive review of optimal
control theory in cancer chemotherapy.

Some optimal chemotherapeutic treatment were devised in [4] and [5]
and the common features of these works were drug resistance and
toxicity, where the latter was conveyed through the drug accumulation
in the patient’s body.

This work attempts to devise optimal treatments in a deterministic
setting when drug resistance is taken into account and toxicity is
modeled via a minimum level of normal cells which should not be
violated. Unlike the toxicity criterion utilized in our previous works
[4,5], this criterion in a noncumulative one.

Some authors [13,14,24] utilize normal cells as an indicator of
toxicity and their optimal treatments may include rest periods.

As opposed to that, it is shown in this work that the introduction of
drug resistance in the model leads to an optimal treatment consisting of
maximum allowable drug concentration throughout, and, moreover,
although restricted to a set of initial conditions, it is valid for a class of
general growth functions and kill rates. For the Malthusian (exponen-
tial) cell growth and a linear kill rate, it is shown that under certain
conditions, rest periods, albeit not optimal, can be incorporated into
alternative treatments.

2. OPTIMAL CHEMOTHERAPY WITH NORMAL CELLS

In order to carry out the analysis of tumor growth submitted to
chemotherapy some assumptions are made:

(1) The tumor will be viewed as a cell population undergoing homo-
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geneous growth, that is, it does not depend on the cell position within
the tumor.

(2) The tumor will consist also of drug-resistant cells whose growth
rate depends not only on the size of its own population, but on the size
of the sensitive cells as well, This latter dependence is due to a
randomly spontaneous mutation during mitosis towards drug resistance,
which will occur according to a constant probability. In this way no
sensitive cell becomes drug resistant during its life time; only their
daughter cells may acquire drug resistance by spontaneous mutation
during mitosis. A biological validation of this kind of drug resistance
was performed by “in vitro” experiments with T-cell lymphoblastic cell
line CCRF-CEM. A description of these experiments can be found in
Vendite [23]. (The importance of drug resistance in designing chemo-
therapeutic protocols is also emphasized in Skipper [16]).

(3) The kill rate of the drug (number of cells killed/unit drug
concentration) will be considered as a function of the size of the
sensitive cells population. As for the normal cells the kill rate will also
be a function of their own population size.

The following system is a model for the behavior of tumoral and
normal cells submitted to chemotherapy when the assumptions men-
tioned above are taken into account:

T =)+ af(y)(y—x),
= =¥ (y)—u(t)g(y — x), (2.1)
T =nfi(n) —u(n)gy(n),

x(0) = x,, ¥(0) =y, n(0) = n,.

Here, t > 0 represents the elapsed time; y(t) =R stands for the total
number of tumor cells at time ¢, while x(¢) € R stands for the number
of drug-resistant cells within the tumor and n(¢) is the number of
normal cells. Clearly, any initial condition (x,, y,) is such that x, < y,;
f(y) and f(n) are the specific growth rates for the tumor and normal
cells, respectively; 0 < a <1 is the fraction per unit of time of the drug
sensitive cells that mutates into drug resistant cells; 0 < u(t) <u,, is the
drug concentration at the tumor site (assumed to be limited, i.e.,
u,<+®); g and g, give the kill rate of the drug per unit of drug
cancentration as function of the drug-sensitive cells or as a function of
the normal cells. As in [5] f, f,, g, and g, are taken to be C!-functions
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and we will be interested in solving the following free end-time optimal
control problem associated with (2.1):

Find a time 0<t}" <+ and a BV[O,t}l< Junction u*: [0,t}‘]—>R
(here BVI[0, t}“] indicates the class of bounded variation functions de-
fined in [0,f ), 0 < u*(¢) < u,, almost everywhere in [0, t7 ], that will be
the optimal drug concentration in the sense that

J(w* (). 1)
= minimum {J,(u,t;), u € BV[0,t;],t,>0;0<u(t) <u, ae.}
(2.2)

subject to (2.1) and n(¢) > B where the functional J, is defined by

To(u,t:)=y(t;). (2.3)

The functional is the number of tumor cells at the end of the
treatment, while B represents the lowest admissible level of normal
cells, indicating a possible measure of toxicity.

As to the functions f,f; and g,g, that appear in (2.1), we will
consider the following natural assumptions:

f.fi»&, & are C'-functions.
Moreover, g(0) = £,(0) =0, g(s),£:(s) >0and  (24)
g'(s),81(s)>0when s>0

and
there exist y,, > 0 and n,, >0
such that f(y,) = fi(n,) =0, and (2.5)
f(y),fi(n)>0for0<y<y,and0<n<n,

or

f(),fi(n)>0fory>0,n>0,f,f, and g, g, are globally Lipschitz.
(2.6)

In (2.4) the two first expressions indicate that the drug effect is
strictly related to the existence of sensitive (normal) cells and the third
one states that the drug effect increases as the level of sensitive
(normal) cells increases.

In (2.5) it is stated that the tumor (normal cells) exhibits a density
dependent growth, where y,(n,,) is the maximum attainable level of
tumor (normal) cells.
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In (2.6) it is assumed that there is no maximum attainable level of
tumor (normal) cells and that the relative increment of kill rate per unit
concentration is bounded.

The behavior of system (2.1) without drug injection for all #(u(t) =
0Vt > 0) corresponds to the dynamics obtained in [7, p. 1732] describing
the evolution of resistant cells in relation to the number of tumoral
cells.

Now we define an open set ) in R? as

B Q={x,y)eR:0<x,0<y,x<y}
if assumptions (2.4) and (2.6) hold.

(i) Q={(x,y)eR*:0<x,0<y<y,,x<y)
if assumptions (2.4) and (2.5) hold.

Before proceeding to the analysis of the optimal control problem, we
enunciate a lemma that can be proved in exactly the same way as in
Lemma 2 in [4]. (It is enough to observe that the first two equations
(2.1) are the same as the ones in [4].) This lemma relates the trajectories
of system (2.1) with the open set (.

LEMMA 1

Consider u(t) > 0 a function of bounded variation. The corresponding
solution (x(t), y(1),n(¢)) of (2.1) with initial conditions (x,, y,,n,) satisfy-
ing (x9,y0) €Q is such that its projection on the x,y-plane, that is
(x(2), y(t)), never touches the boundary of () in finite time.

This lemma implies in particular that 0 < x(¢) < y(t) for all finite time t.

Before beginning the analysis some comments are in order. A rela-
tionship among u,, and the functions f,, g,, and » must be required so
that the present problem should not fall exactly in the same frame as
that tackled in [4]. In fact, if dn /dt = nf (n)— u,,g,(n) > 0 with n(0) > B,
then n(t) > B for any treatment such that 0 <u(¢) <u,,. In this case,
the condition n(¢) > B is always satisfied and the problem is reduced to
the one studied in [4]. To rule out this possibility we will require, in this
analysis, that

nfi(n) —u,,g(n) <0 (2.7)

for all n.

The meaning of the above condition will be made clear in the
example in Section 3.

Now we proceed to the study of the optimal control problem formed
by (2.1) and (2.2). In clinical terms, the main result of this section states
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that if an optimal treatment exists, it should consist of maximum
allpwable drug concentration (u,,) at the tumor site throughout and the
treatment should be discontinued as soon as the tumor level (y) attains
its lowest level (i.e., dy /dt(¢;) =0, t;-final time) under the condition
that the level of normal cells should be higher than B all along the
treatment, and it could be equal to B only at the final time ¢;. And
conversely, if the level of normal cells attains 8 under the maximum
allowable drug concentration, the treatment should be immediately
discontinued, with the final value of the tumor level determined by this
instant, which may not correspond to its lowest level. In this case this
treatment is not optimal. We return to this point in Section 3 in order
to provide alternative strategies which yield better results than this one.

As for the mathematical analysis, we will follow the procedure of
Sage [15] for bounded control and state variables.

Let z and w be slack variables such that

2t =(u,, —u)u
and
wl=n-p

and the augmented functional
T=y(t) + [T5()+ MHF )+ f (1) = %)~ 4]

+ X[ (9) —u(r)g(y = %)) = y] + A [(nfi(m) — u() g1(n)) — 7]
+ (D) [(u = W) = 2°] + py () [n(e) = B —w?]} .
where A, A,, Ay, py, p, are adjoint variables (throughout this work the
symbol “-” over a variable will denote the time derivative of that
variable, “-” and “d /dt” will be used interchangeably).

Applying the Euler-Lagrange equations to the augmented func-
tional,

— A= M F()(1= @)= Au(r) B =X)

= A= M (P)+ af () (y = x) + af(y))
0 )+ ) = u(t) (=)
— Ay = A (fi(m) + nfi(n) — u(1)gi(n)) + pa(2)
M) =05 A(t)=1; As(t;) = 0 (transversality conditions),
—/\zg(y—x)—A3g1(n)+p1(t)(um—2u)=0 (2.9)
pi(1)z() =0 (2.10)
p(t)w(t)=0 (2.11)

(2.8)
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and the optimal final time ¢} is given by
dy
(1) =0

LEMMA 2

If there is an optimal strategy u*(t) on [0,tf], then u*(t)=u,, in a
neighborhood to the left of t;.

Proof. By equation (2.9), p,(t;) # 0 since Ay(¢/)=0 and A,(¢;)=1.
Therefore at ¢; the optimal control is u,, or 0. The case u(¢;)=0 is
ruled out since we seek to minimize y(¢;). Moreover, by the condition
(2.7) this result indicates that the level of normal cells must be strictly
above B just before the end of the treatment. |

Next we prove the following lemma.
LEMMA 3

If there exists an optimal strategy u*(t) for all t €|0, t¥], then the
corresponding n*(t) is such that n*(¢£)> B for all t €[0,£}). Thus n*(t)
could be equal to B only at the final time t}. Moreover, u*(t)=u,, for
t <o, tf ]

Proof. Suppose by contradiction that n*(¢) is equal to 8 at certain
times. Consider ¢ as the smallest time in the interval [0, t}“] such that for
te (i,t}‘ ,n(¢) > B except on sets of measure zero.

We observe that 0 < <t} because it is known that in a neighbor-
hood of ¢f the optimal strategy should be u,, and, therefore, n*(¢)
should be strictly decreasing (hypothesis (2.7)) in this region. Since
n*(t;) > B we should have n(¢)> B for ¢ in a small neighborhood to
the left of ¢f. In [£,2}] we can apply the version of the Pontryagin’s
minimum principle for problems with state variables constraints (see
Lee and Markus [12, p. 336]). However, as in [?, tf] the restrictions
(n > B) are active (n= B) only on sets of measure zero, we can resort
to the usual Pontryagin’s minimum principle in order to check whether
the proposed strategy is optimal in [7, £} ].

The state equations are the same as (2.1) and the Hamiltonian [11] is
given by

H=M(xf(y)+ af(y)(y — %))+ (3 (y) —u(t)g(y — x))
+ A3(nf1(n) - u(t)gl(”))-

The Hamiltonian yields the same costate equations for A, and A, as
in (2.8). The transversality conditions A, A,, A, remain the same. In
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{¢,¢fIn(t)> B and equal to B only on sets of measure zero. Conse-
quently w(t)#0 and p,(r)=0 in this interval (except on sets of
measure zero) ((2.10) and (2.11)). This implies that for ¢ €[z, ¢f]

%)\ii=)‘3(“(08'1(’")—fl(’l)—nf{(n)), A(er)=0.

Integrating backwards this equation in [Z,£}] yields Ay(#)=0 in this
same interval.

Therefore, in [2,¢} ] the present problems reduces exactly to that one
tackled in [4] with the functional J = y(¢,). In this way, we can apply the
results that concern A, and A, in [4] for t €[z, tf ]. The following
lemmas also hold true here:

LEMMA 4
M) =0 forall t €[t,¢f ).

LEMMA S
M)>0 forall t €[t,tf ).

The proofs can be found in [4, p. 220-21].

Proceeding accordingly, Theorem 1 stated in [4], which guarantees
that the sole optimal strategy is u(t)=u,, is also valid here for all
telttf]

If t=0, we have u(t)=u, for all t[0,t}] Thus n(t) is strictly
decreasing and since n(t;)> B, we conclude that n(t)> B for all te
[0,t¥), which is a contradiction with the assumption that n*(t) was equal
to B at certain times.

If t > 0, we observe that by its own definition and the continuity of

n*(t),n*(t) = B in an interval (t,t] where t < t. But this is a contradiction
because it was prev1ously shown that n(t)> B for t <t <tf(n(t) is
strictly decreasing in this interval) and on the other hand n(t) = 8 for
t €[t,1). Thus lim, ,;_n(t)= B and lim, _; n(t) > B and n(t) could not
be continuous. This proves the stated lemma. [ ]

Hence, if there exists an optimal treatment, the drug concentration
at the tumor site should be maintained at its maximum allowable level
throughout the treatment. This result holds true for growth functions
and kill rates considered at the beginning of this section, including
different kill rates for tumor and normal cells.

However there may be initial levels of tumor and normal cells for
which the application of u,, till the tumor level attains its minimum
(i.e., dy /dt =0) may violate the constraint n(z) > B. In such cases an
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optimal treatment as defined above is not possible, thus calling for
alternative improving strategies. ;

For instance, should one apply maximum drug concentration until
the normal cells attain its lowest allowable level and then discontinue
the treatment or is there any treatment after attaining B with the
application of u,,, which will yield better results? This question will be
addressed in the next section for the case of exponential growth.

3. ALTERNATIVE TREATMENTS IN THE
MAILTHUSIAN CASE

In the sequel, we proceed to the search of alternative treatments
when tumor and normal cells obey a Malthusian (exponential) growth
and the kill rate is linearly proportional to the level of sensitive cells.

This model assumes that the specific growth rate of the tumor and
normal cells is constant (f(-)=r). Its importance is centered on the
introduction of the concept of doubling time and, although it does not
have a strong physiological basis, it starts with a reasonable assumption
[22] (this model is used for modeling cell growth in [6]). The system
corresponding to (2.1) has the following form:

%=rx+ar(y—x),

L =y~ Fu()(y - ), (3.1)

‘2—’; =rn—Fu(t)n,

x(0) = xo; ¥(0) = yo; n(0) = n,,

where the tumor and normal cells have specific growth rates r and r,,
respectively. As the drug may act differently on each kind of cell,
different constants of proportionality— F and F,—for tumor and nor-
mal cells, respectively, were assigned to the kill rates. Moreover, in this
analysis condition (2.7) reduces to r; — Fyu,, <0, thus guarantecing that
the problem does not fall in the same frame of [4]. This will be assumed
throughout this section.

We start by spotting on the space x,y,n the initial conditions
(x9, y9, 1) for which u*(¢t)=u,, for all t |0, t;] is really an optimal
strategy. The remaining initial conditions in the positive orthant will be
the subject of the present analysis. '

Since the system (3.1) possesses explicit solutions for u(#)* =u,,, we
can calculate the span of time Az, needed to reach n= g for n(0) =n,
when u*(¢) = u,, is applied for all ¢.
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From the equation of dn /dt in (3.1)

__ 1 o
A" Fa, "B

(3.2)
where At, is the time needed to attain n= B8 when n(0)=n, and
u(t)=u,, is applied for all . Since an optimal strategy must end at
y(tf)= 0 with u*(tf)=u,, the span of time Ar, needed to reach
y(t*) 0 with u*(1)=u,, for all ¢ €[0,¢f] can be calculated from the
equation of dy /dt in (3. 1) yielding

. 1 (r— ar—Fum)umF(yU_xﬂ)
Aty = G Pty " F (e —%0) — molar T Fu,y - )

We must require that Az, <At, in order that u*(t) =u,, does not
violate n > B. Therefore, the above inequality involving At and At,
gives

(Fyu,, —r)/Car + Fu,)

(r—ar—Fu,)u,F(y,—x,) . (34)

mm(yﬂ—xO)_’yO(ar+Fum)

ng >

The equality in (3.4) determines a helix in the space x,y,n (as
depicted in Figire 1).

Any initial condition (x,, y,,n,) on the helix or between it and the
plane n,x (see point A in Figure 1 for an example) has an bptimal
solution u*(¢)=u,, for all ¢ €0, tf]

It is worthwhlle to remark that in clinical terms the same treatment
may have different results. For instance, the inner points have the
treatment finished at a higher level of normal cells (.e., #*(¢f)> 8)
than that of the points on the helix, which have the treatment discotitifi-
ued at n*(¢f) = B.

Accordmg to the results of the prev1ous section, initial canditions
between the helix and the plane 7,y (see point B in Figre 1) cannot
have an optimal solution. Therefore, we seek treatments that, albeit not
optimal, may decrease the tumor level with respect to the conspicuous
treatment u(¢)=u,, for all ¢. For instance, we could try to put forward
some cases for whlch it woiild be possible to administer drug after the
normal cells minimum level has been attained without violating n(z) > B.
A few cases are depicted in the Figure 1 (trajectories (1) anid (2)).

The strategy of maximum drug concentration could be employed till
the normal cells attain the level n= . Thereafter, a strategy with



TOXICITY AND DRUG RESISTANCE 221
Y4

FiG. 1. Helix in the space x, y,n.

concentration u, = r; /F;, which maintains the normal cells at level B
(because 7 =0 in this case), could be applied if we guaranteed that it
would reduce further the tumor level. This will be so whenever the
trdjectory of system (3.1) with initial conditions above the helix and with
u(t) = u,, hits the plane n= g to the left of the isocline ry — Fu (y — x)
=0 (1e y=0 for u=u,) itself on the plane n= B since y <0 for
u(t) = u, in this region. In other words, the initial tumor levels for which
it is p0551b1e to apply such strategy are determined by the backward
integration from the isocline ry — Fu(y—x)=0 (y=0 for u(t)=
r, / F,) with u(¢) = u,, which forms a certain region in the x, y, n-space.
Any other initial condition outside this region will hit the plane n= 8
to the right of the isocline y =0 (for u, =r, /F,) on the plane n=
and no treatment with u =u_ would reduce the tumor further (see
trajectory (3) in Figure 1).

The question that now arises concerns rest periods since it is a
common clinical evidence in chemotherapeutic protocols. In the set of
alternative treatments we proceed to check whether there are condi-
tions under which rest periods could improve the patient’s health.
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A possible way of carrying out this analysis consists of choosing an
initial condition of the type (x,,y,,8) and after letting the system
evolve with u = 0 (rest period) till an arbitrary (x,, y,, r,) with n, > 8,
apply u,, again till the normal cells attain B, that is, (x,, y,, 8). Then, it
is to be checked if there was any improvement in the tumor level, i.e., if
¥, <y,. Therefore, in the sequel we seek conditions for this improve-
ment in terms of n,. To wit, we try to evaluate how long a rest period
should last so that the normal cells be able to recover without, however,
letting the tumor become too large for further improvement of the
treatment. To achieve this we need expressions that relate the various
populations to the interval of rest periods, namely A;, and to the
interval of application of u,,, namely A,.

In the exponential case, when u(¢) = u,, for all ¢ the equation for the
tumor dynamics is as follows

2 = Fu,(y—x). (3.5)

The sensitive cells z =y — x are governed by the following equation
when u(t) =u,, for all ¢

%=(r—Fum— ar)z, (3.6)

which has an explicit solution

2(t) =y(t) — x(t) = z(ty)exp[(1 — @) r — Fu,, | (t — t5). (3.7)
Substituting (3.7) into (3.5), yields

D 1y - Funz(tp)expl(1- a)r = Fu,)(t=t5). (3.8

The solution of (3.8) is given by
u,F
y(t) =exp[r(t—1)]| y(to) + ar+ Fa, [¥(to) = x(t0)]

X [exp[ —(ar + Fu,)(t —t,)] —1]|. (3.9)
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The rest period A, is given by

1 n
A= ElnFl (3.10)

while A,, the application of «,, till B is reached has the following
expression:

1 n,

A2=Wln'§'. (311)

During the rest period the tumor evolves, namely, from y, to y,
according to

1= yoe™ (3-12)

and during A,, it evolves, namely, from y, to y, according to (3.9).

Substituting (3.12) into (3.9) and after some cumbersome calculations
we get an expression relating the final tumor level y, to the initial levels
¥, and x,, given below:

92 = yoexpr(Ay + A3) (1- k(n;)exp( — ara,))
+ k(ny)xgexpr(A;+ Ay)exp(— ard,), (3.13)
where

1—exp| —(ar+ Fu,)A,]

k (ar/Fu, 71)

(3.14)

In order to have y, < y,, we must require
expr(A;+A,)(1— k(ny)exp(— ard;))
+ yk(n)expr(A, + Ay)exp(— arl;) <1, (3.15)

where y = x, /y,. Since A;, A,, and k can be written in terms of n,
(equations (3.10),(3.11),(314)), inequality (3.15) can be expressed as a
sum of functions of n,, namely, H,(n,)+ yH,(n,), where

H\(ny) =exp[r(A;+A,)](1— k(n)exp(— ard,))
n\° (”1/3)_5_(”1/3)_¢
57 iern

“\B
H,(ny) =exp[r(A; + A,)]k(n))exp(— arA;)
_ (ﬂ)"[("l/ﬂ)_g —(nl//s)“”]
B )
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and the constants 6, i, £, § are all positive and defined as follows:

1 1 ar ar+ Fu,
b= (Flum_r1+2)’ (/J_"_1+F1”m_r1’
ar
§=?, S—W-Fl (316)

Hence, we are searching for conditions that satisfy
H(n)+vyH,(n) <1. (3.17)

The rest of the analysis will be carried out for n, = 8, that is,
whether any improvement in the therapy can be achieved by means of
rest period when the normal cells level is near the lowest allowable
level.

We observe that for n;, = B,

Hy(n))+ yHy(n))|n,=p =1 (3.18)

and

dH dH 1-
e Ao b o A

For there to be any improvement, we should impose that expression
(3.19) be negative so that in the neighborhood of n,= 8 inequality
(3.17) be satisfied and consequently y, < y,.

Substituting 6,4, £,8 in (3.15) for their respective expressions in
terms of the original model, we have

1 rF,
T F >
Since 0 <y = x, /y, <1 then,
rF,
0<r1_F<1 (320)

and

F

rF1<r1F=m=rL<f. (3.21)
1

In view of (3.21) and assuming that r > r,, rest periods could improve
the therapy if the drug effects on normal and tumor cells are differenti-
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ated, that is, if F > F,. If they are similar (F = F,), the only way to
achieve improvement will be the instance where the specific growth of
the normal cells is greater than that of the tumor cells (which is not the
usual case).

The foregoing analysis provides also an approximate threshold of
normal cells for which the rest periods are ineffective. In other words,
no improvement can be gained if the level of normal cells after a rest
period goes beyond a threshold given by

n, ar/Fum —(r/ry+r/(Fiu, ~r))
(F) ( ar/Fu, +1 ) (3-22)

This can be achieved by imposing that the coefficient of y, in (3.13)
be greater than 1. Since the remainder of the right-hand side of (3.13) is
nonnegative, this implies that y, > y,.

From the inequality (3.22) we can draw some relevant features. The
prohibitive range for rest period application varies according to the
ratio ar/Fu,,—an interplay among drug resistance, tumor growth, and
killing effectiveness of the drug. As « and/or r gets smaller or Fu,,
gets bigger, the prohibitive region shrinks. Therefore rest periods may
be effective if either the rate of mutation to drug-resistant cells and /or
the tumor specific growth is low or the killing effect is high.

4. DISCUSSION

In this work we attempted to devise an optimal chemotherapeutic
treatment that should minimize the tumor cells level at the end of the
treatment while maintaining the normal cells above a prescribed level.

The optimal strategy consisted of keeping the maximum drug concen-
tration at the tumor site throughout the treatment. This result holds
true for a certain class of growth functions, kill rates, and a specified set
of initial levels of tumor and normal cells. This set is determined by the
proportion of drug-resistant cells within the tumor and the number of
normal cells in the tumor region.

Since the optimal strategy was restricted to a set of initial conditions,
we turned to search for alternative strategies. This was carried out for
the case of exponential growth with a linear kill rate.

Two alternative strategies were put forward: initially, maximum drug
concentration should be applied till the normal cells attained the lowest
allowable level 8, then:

(1) the drug concentration should be switched to the value r, /F,
that keeps the normal cells at a constant level and applied till the tumor
attained its minimum level (y(¢,) = 0);



226 M. COSTA ET AL.

(2) the treatment should be discontinued since there is no way to
reduce the tumor further.

Either strategy (1) or (2) will be applied, depending on the tumor
level (y(#)) at the time the normal cells attain their lowest allowable
level ( B) (that is, it depends on which side of the isocline y =0 for
u = u, the trajectory hits the plane n(t) = 8) and the switching time will
be given by the instant the normal cells attain the level 8.

In the study of the general growth functions and kill rates, it was
shown that rest periods were not part of any optimal strategy, though
they are known to be used in chemotherapeutic protocols. However, in
the context of alternative strategies for the exponential growth and
under the assumption that the specific growth rate of the tumor cells is
greater than that of the normal cells, rest periods could improve the
treatment if: (a) the normal cells level were near its minimum allowable
level and (b) the drug affected the tumor cells more effectively than the
normal cells.

On the other hand, if the normal cells evolved beyond a specified
value (determined by the parameters of the model) during a rest period,
no improvement would be obtained by applying the maximum drug
concentration again by virtue of the excessive growth of the tumor cells
during the interruption of the treatment.

After summarizing the results, some comments are in order. One
might expect that a threshold level imposed on the normal cells as a
measure of toxicity would engender optimal strategies involving alter-
nated drug concentration and rest periods (see Murray [13,14] for
uncoupled dynamical equations of tumor and normal cells growth
without drug resistance). Such strategies did not prove to be optimal in
this work.

Our view is that drug resistance plays a prevalent role in determining
the optimal treatment. The drug resistant cell population is modeled by
a strictly increasing population, whose tendency can only be decreased
(but not reversed) through the treatment. Therefore, the maximum drug
concentration emerges as the sole possible optimal treatment which
minimizes the total tumor population irrespective of the growth func-
tions and kill rates. Therefore, according to this deterministic model,
the noncumulative toxicity conveyed by a minimum allowable level of
normal cells appears to be not sufficient to override the effects of drug
resistance.

This prevalence of maximum drug concentration as an optimal treat-
ment is in part corroborated by the results obtained in probabilistic
models. Although in that context the analysis refers to discrete drug
application, the results indicate that rapid depletion of sensitive cells is
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essential and that if low dose therapies are continued over long periods
of time, they are unlikely to be successful [1].

Likewise in Harnevo and Agur [8] where the emergence of drug
resistance is treated as a dynamic process rather than a single constant,
their results provide a formal basis for the conjecture that an effective
treatment should entail a high drug concentration. Moreover, they
argue that protocols involving frequent low concentration dosing may
result in the rapid evolution of large, fully resistant, residual tumors.

Yet it is worthwhile to mention that in the course of our previous
work, alternative concentrations as optimal treatments were obtained
only for a combination of drug resistance, saturation effect and toxicity
(see [5]).

To be in accordance with clinical evidence as regards rest periods, we
suggest that a pharmacokinetic equation be adjoined to the model
presented in this work. This conjecture is based on the fact that the
drug decay rate plays an important role in the determination of optimal
treatments as seen in [3]. Another suggestion concerns an alternative
modeling of toxicity that would explicitly take into account the patient’s
recuperation from the side effects of the drug when the treatment is
discontinued. This might be accomplished, for instance, by the introduc-
tion of the body immunological system’s equations in the present
models.

However, in spite of the difficulties intrinsic to the biological inter-
pretation of the terms involved in the deterministic description of tumor
growth and drug resistance and an appropriate choice for toxicity
criterion (see [17-19]), we take the view that such models may shed light
on some of the relevant aspects of theoretical chemotherapy and tumor
cell growth in order to improve the overall qualitative understanding of
cell dynamics and chemotherapeutic protocols.
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