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Abstract. We consider a procedure for cancer therapy which consists of injecting replica-
tion-competent viruses into the tumor. The viruses infect tumor cells, replicate inside them,
and eventually cause their death. As infected cells die, the viruses inside them are released
and then proceed to infect adjacent tumor cells. This process is modelled as a free boundary
problem for a nonlinear system of hyperbolic-parabolic differential equations, where the
free boundary is the surface of the tumor. The unknowns are the densities of uninfected
cells, infected cells, necrotic cells and free virus particles, and the velocity of cells within
the tumor as well as the free boundary » = R(¢). The purpose of this paper is to establish a
rigorous mathematical analysis of the model, and to explore the reduction of the tumor size
that can be achieved by this therapy.

1. Introduction

A variety of PDE models for tumor growth have been developed in the last three
decades. These models are based on mass conservation laws and on reaction-dif-
fusion processes within the tumor. A concentration ¢ of nutrients (such as oxygen
or glucose) satisfies a diffusion equation of the form

dc 2
eogzv c— Ac (x>0 (1.1)

where € is a small positive coefficient given by the quotient

_ Tdiffusion

€0
Tgrowth

where Tiffusion 1S the diffusion time scale and Tgpowih 1S the tumor-doubling
time scale; typically €9 = 1 minute/1 day. These models make the following gen-
eral assumptions:
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The cells within the tumor are in one of three phases: proliferating, quiescent,
or necrotic. Living cells die as a result of cell-loss mechanism (apoptosis) and
quiescent cells may die also as a result of starvation (necrosis). All living cells
undergo mitosis, but proliferating cells undergo mitosis at abnormally large rate.
Cells change from quiescent phase to proliferating phase, or vice versa, at rates
which depend on the nutrient concentration. Finally, all cells have the same size
and density, and the tumor is uniformly packed with cells.

From the above assumptions it is natural to expect that the proliferating cells
will be formed mostly near the surface of the tumor, where the nutrient concentra-
tion is the largest, and that the dead cells will reside mostly at the inner core of the
tumor where the nutrient concentration is the smallest (one speaks of the “necrotic
core”). Dead cells are removed from the tumor by large migratory macrophages
through a process of phagocytosis. Thus, even though the tumor may grow, the dead
core may not necessarily increase.

A unique aspect of cancer modeling arises from the fact that the size and shape of
the tumor are changing over time: malignant tumors usually grow in time, whereas
non-malignant tumors become stationary (dormant) or may even disappear over a
period of time. The tumor’s surface is a free boundary. Free boundary problems are
particularly challenging because one has to solve a system of PDEs in a region that
is not prescribed in advance. Some physical conditions are usually imposed at the
free boundary, and one then seeks to determine simultaneously the unknown free
boundary and the solution of differential equations within the domain enclosed by
the free boundary.

There are basically two kinds of PDE models:

(I) The different populations of cells are continuously present everywhere in the
tumor, at all times;
(I) The different populations of cells are separated by interfaces, which them-
selves are free boundaries. A special case of both (I) and (II) is the following:
(III) There are only proliferating cells in the tumor.

We shall refer to models of type (I) as mixed models, and to models of type
(I1) as segregated models; models such as in (II) will be called proliferation-only
models.

Although mixed models are more realistic, segregated models may represent a
good approximation; this is especially true in vitro experiments where multicellular
tumors have a nearly spherical shape and the dead core is nearly a concentric ball.
If the tumor is spherically symmetric then the (outer) free boundary is a function
r = R(1).

The first proliferation-only model was developed by Greenspan [22,23]. Sub-
sequent work mostly in the radially-symmetric case was carried out by Adams [1],
Britton and Chaplain [5], Byrne [6] and Byrne and Chaplain [7-9]. The last two au-
thors studied numerically the radially-symmetric segregated model with dead core,
and the proliferation-only model in the presence of inhibitors. Rigorous mathe-
matical analysis of these models was carried out by Friedman and Reitich [19]
and Cui and Friedman [11,12]. Articles [6,9] also discuss the possibility of nearby
spherical configurations of tumors. Friedman and Reitich [20,21] and Fontelos and
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Friedman [17] proved the existence of branches of non-radially symmetric dormant
tumors bifurcating from radially symmetric solutions, and Bazaliy and Friedman
[3] proved asymptotic stability of radially symmetric stationary solutions, under
non-radially symmetric initial conditions, for some range of parameters.

Mixed models were introduced by Sheratt and Chaplain [31], Ward and King
[33] and Pettet, Please, Tindall and McElwain [29]; see also the references given
in these papers. Rigorous mathematical analysis establishing global existence and
asymptotic behavior of solutions were recently established by Cui and Friedman
[15] [16] and by Chen, Cui and Friedman [10] for the radially-symmetric case. In
the non-radially symmetric case, only local existence is known; see Bazaliy and
Friedman [2] and Chen and Friedman [11].

The present paper deals with a model of cancer therapy. Unlike the model of
Byrne and Chaplain [7] which introduces a generic inhibitor, the present paper con-
siders a specific therapy which has been undergoing clinical trials in recent years,
namely, injection of virus particles into the tumor.

One of the obstacles in developing efficient gene therapy to cancer is in the
delivery process. The macromolecules used as gene delivery carriers are too large
to be transported into, and diffuse within, the tumor (see Swabb [32] and Jain [25]).
A recent approach aimed at bypassing this problem involves the use of virus. The
virus is engineered to be replication-competent and to selectively bind to receptors
on the tumor cell surface (but not to the surface of normal healthy cells). The virus
particles then proceed to proliferate exponentially within the tumor cell, eventually
causing death (lysis). Thereupon the newly reproduced virus particles are released
and then proceed to infect adjacent cancer cells. This process continues until all the
cancer cells are destroyed. Replication-competent virus is currently used in clinical
trials; see Bischoff [4], Coffey [12], Heise [24], Rodriguez [30], Yoon [35]. These
trials were conducted over a period of at least 30 days and they report on tumor
growth reduction by at least 50% at the end of the trials. For example, [35] reports
on the efficacy of virus CN706 in treatment of prostate tumor in mice: There was a
slight increase in tumor volume for the first two weeks, followed by rapid decrease,
and after 42 days from the initial injection, 5 of the 10 mice were visually free of
tumor.

A mathematical model which describes the evolution of tumors under viral
injection was recently developed by Wu, Byrne, Kirn and Wein [34]. They used
simplified versions of their model in order to compute and compare the evolution
of the tumor under different initial conditions. In this paper we present a somewhat
different model. For the sake of clarity we shall first describe our model (in Sec-
tion 2), and then (in Section 3) explain the differences between our model and the
WKBW model of [34]; we shall also explain in Section 3 the relation of our model
to the mixed models mentioned above.

The basic question we would like to pursue is what is the most efficient proce-
dure to administer the viral therapy. The present paper sets up the stage for dealing
with this question. First, we give a rigorous mathematical proof that the model has
a unique solution for all time (Theorem 2.1, which is proved in Section 11). Next
we show (in Section 4) that one can always reduce the size of tumor to an arbi-
trarily small size by injecting a sufficiently large dose of viral density. Of course
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one would like to use small doses if possible. So, in Sections 6-10 we give two
examples whereby a tumor of arbitrarily large size can be made to shrink to zero
with just a modest density of virus particles. These examples suggest that better
therapy can sometimes be achieved by small doses of the drug. Another area for
improvement of the therapy process may be achieved by scheduling repeated in-
jections in an optimal fashion. In the concluding section of this paper we list a few
open problems along these lines of inquiry.

2. The Model
We introduce the physical variables

X = density of uninfected tumor cells,
y = density of infected tumor cells,

7 = density of necrotic cells,

v = density of free virus, i.e.,

virus in the extracellular tissue
and
u = the velocity field within the tumor.

The velocity field is a result of the spatio-temporal variation due to the proliferation
of uninfected cells and the removal of necrotic cells. We assume that the problem is
radially symmetric, so that all the unknown functions depend only on (r, t) where
r is the distance from the center of the tumor. As in [29], by mass conservation law
for the different phases of the cells,

Df _ 3)2(1’, t) 10 2 ~ _aa A A
= r_z_r(r u(r, DR, z)) — AR 1) — BE( DD 1), (2.1)
Dy 95y 105 N )
= 2 4 = (Pu 03 ) = B 0E0.0) — 69D, 22)

Dn  9n(r 1) 1

— d (2 . _ea .
o=t ﬁg(r u(r, DA z)) =89 1) — ph(r, 1) (23)

in the tumor region {r < R(¢)}. In (2.1), A is the proliferation rate of the uninfected
cancer cells and g is the infection rate of the uninfected cells; in (2.2), § is the death
rate of the infected cells; in (2.3), u is the removal rate of the necrotic cells. We have
assumed here that infected cells do not proliferate and that all the cells are subjected
to the velocity field, but do not undergo diffusion. On the other hand, since the free
virus particles are very small relative to the cells, we shall assume that they undergo
diffusion within the tumor tissue; see also [28] for a similar assumption. We shall
also neglect the effect of the velocity field on the virus. If we denote the diffusion
coefficient by «, then, by combining the mass conservation law with the effect of
diffusion, we get

=0; (2.4)

ov(r, t) . . 1 98/ ,00(r1) 00(0, 1)
= N&y(r, t) — ot ——( ),
ot Y1) —yolr )+Kr2 or " or or
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here y is the removal (or clearance) rate of virus (1/y is the mean lifetime of free
virus) and N4 is the virus release rate (N is the burst size of virus at the death of a
cell); the last equation in (2.4) is a consequence of the radial symmetry. We finally
assume that all cells have the same size and density, and that they are uniformly
distributed in the tumor, so that

X+ 9y +7n = const. = 0. (2.5)

Since the rates of proliferation and removal of uninfected and necrotic cells are A
and u, respectively, the conservation law for the total mass can be expressed in the
form
00/, A A
——(r ur, t)) = AR(r 1) — pA( D). (2.6)
r2 or
The boundary conditions, at the moving boundary, are

iﬁ(R(t), 1) =0, 2.7
ar
dR(t)

prae u(R(),1). (2.8)

Equation (2.7) means that virus particles do not cross the boundary, for ¢ > 0,
and (1.8) is the equation of continuity: the velocity of the free surface is the same
as the velocity u at the surface.

We note that Equation (2.3) is a consequence of Equations (2.1), (2.2), (2.5) and
(2.6), so that in the sequel we may drop this equation and replace 7 by § — x — y
in (2.6).

We also note that since the velocity field is radially symmetric,

u(0,1) =0. (2.9)
The diffusion coefficient « in (2.4) is given by

_ Tdiffusion .
Tiouble
Tyouble 1s the time scale of tumor growth, that is, the time it takes the tumor volume
to grow by a factor of 2 or shink by a factor of %, and Tyifrusion 18 the time scale
for diffusion of the free virus particles. Tyouple depends on how aggressive the spe-
cific tumor is. From the experiments conducted, for example, in [4] and [30] one
can (very roughly) deduce that « is proportional to R%(t) (or R**(t), for some
0 < ¢ < 1). T4ifusion depends not only on the physical properties of cells and
virus but also on their biological affinities (e.g., how fast a free virus adsorbs to the
surface of an uninfected cell). We shall make the assumption that

K= K0R2(t), Ko positive constant. (2.10)

Since Tyouble 1S of order of magnitute of several weeks whereas Tgiffusion 1S Of the
order of minutes, xg is small; this fact, however, is not used in this paper. The as-
sumption in (2.10) that « is a constant will slightly simplify our analysis; however
all the results of the paper can easily be extended to the case where « is a function
of R(1).
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We introduce the variables

D

N

)

and the quantity

_ BN®
o

Po

The parameter py is called the basic reproductive ratio in the epidemic modeling.
It represents the mean number of virus particles released by one virus.
In terms of the new variables, the system (2.1)—(2.10) takes the following form:

ax(r,t)
at

ay(r, 1)
Jat

av(r, t)
ot

in {r < R(t)

19/,
= Ax(r,t) — poyx(r, t)v(r,t) — ) 3 (r u(r, t)x(r, t)),

P
19/,
= poyx(r. V(1) = 8y (r 1) = — = (rPu(r 0y 1)),

28_11) av(0, 1)

Sy 1) — yu(r 1) + ko RE() a(r
= o Yuin 0 r2 or or ar

19/,
r_28_r<r u(r, t)) =Ax(r,t) — [l —x(r,t) — y(r, )]

,t > 0},

0
PR =0, >0,
or

dR(1)
dt

=u(R@®),t), t=>0,

u@,1) =0, r>0

with initial conditions

R(0) is prescribed,

x(r, 0) = xo(r), y(r, 0) = yo(r), v(r, 0) = vo(r)
where xo(7), yo(r), vo(r) are nonnegative functions
with xo(r) + yo(r) < 1, for 0 < r < R(0).

@2.11)

(2.12)

=0,
2.13)

(2.14)

(2.15)

(2.16)

2.17)

(2.18)

It will be convenient to transform the region {0 < r < R(¢)} into the fixed
region {0 < p < 1} by

Setting

,
p=pt)= m

X(p, 1) =x(r,0), y(p,1)=y(r1),
v(p, 1) =v(r 1), ulp,t) =ulr1),
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the differential equations (2.11)—(2.14) combined with (2.17) take the following
formin {0 < p < 1,7 > 0}:

ax [ @ ﬁ(p,t)]ai

a LR T RO Jop
= AX(p,1) — poyX(p,)v(p,1)
[+ G EG. 1) + 10, D]E (. D), (2.19)

B[ pR0, He.n12

ot " LTPRe) T TR0 Jop
= poyX(p,Hv(p, 1) —38y(p,1)
—[ =+ O+ Wi, 1)+ uie, 0], 1), (2.20)
9D R(t) 97 55(0. 1) — 750, 1) + 1 9 ( 2313) 3’7(0 5
—_—— ) — - = s — YU s K)o —& — -— ) ~ Y, =V,
ot PRpyop WD TYYR 2 9 \P ) o
(2.21)
_ R(t) [* , N -
ilp, 1) = sl s?[ =+ 4+ wxs, 1) + uy(s, 1)]ds. (2.22)
The boundary and initial conditions (2.15)—(2.18) become
-
Pan=o, (2.23)
ap
7(0,1) =0, (2.24)
R(t) = i(1,1), R(0)is given, (2.25)

X(p,0) =%o(p), ¥(p,0) = Jo(p), v(p,0) =vp(p) for0<p <1 (2.26)
and
Xo(p) = 0,¥0(p) =0, Xo(p)+ Yo(p) < 1. (2.27)

‘We shall also assume that
.
F0(p), o(p) and To(p) belong to C1[0, 1], and %(1) —0. (2.28)
0

We now state a result on global existence and uniqueness of solutions for the
system (2.19)—(2.28).

Theorem 2.1. The system (2.19)—(2.28) has a unique solution (x(p, t), y(p, t),
v(p, 1), u(p, 1), R(t)) with %, 3X/dp,y, 0y /0p, v, d0/dp and i, dit/dp in
C[0<p<1,0<t<o0], R(t)inC'0, 00), and

R(0)e ' < R(t) < R(0)e!

for some B > 0.
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In Sections 6-10 we shall prove other existence theorems (Theorems 9.1 and
10.1) which assert both global existence and uniqueness as well as convergence of
R(t)tozeroast — oo under some special initial conditions. Since the proof of The-
orem 2.1 can be obtained by slightly modifying a part of the proof of Theorem 9.1,
in order to avoid repetition we shall defer the proof of Theorem 2.1 to Section 11.

We conclude this section with the following theorem:

Theorem 2.2. For any solution of (2.19)—(2.28) there holds:

xX(p, 1) =0, y(p,1) =0, x(p,1)+y(p,1) =1 (2.29)
Proof. Introducing the characteristic curves & (pg, t) by
¢ R@® _ilp,1)

T __’OR(t) + RO &§(po, 0) = po,

we can write (2.19) in the form
d . -
for some function A(¢). Hence
F(E(p0. 1), 1) = Fo(po)el A4 = 0

so that x(p, t) > 0. Similarly, from (2.20) we deduce that y(p, t) > 0, and from
(2.3) we deduce that 1 —x — y > 0.

3. Comparison with the WKBW model and other models

Asmentioned in Section 1, the model introduced in Section 2 is based on the WKBW
model [34]. However, there are several differences between the two models. The
most important difference is that in the WKBW model there does not appear a
diffusion term for virus density. Thus, instead of (2.4) it is assumed that

a0 . . 00(0,1)
— = N§y — y0, =0 3.1
a1 Yoy or 1)
and that, at the same time, (2.7) holds. Notice that from (3.1) we get (cf. (2.22))
D R@t) a0 . 8
_ — — =) , 1) — ,1). 32
o P RO o y(p,t) —yu(p,1) (3.2)

A second difference between the two models is in the infection term: Here we take
it, for simplicity, to be N8y where N is the burst size of the virus at the time of
death of a cell, whereas in the WKBW model the infection term is more refined
as it involves the viral density integrated over the surface of cells (see (4) of [34]).
The surface integral can be approximated by a diffusion term (see (34) of [34])

9%y 29y

ar? roor
Howeyver, this diffusion mechanism is not the same as the diffusion term for v in
2.4).
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The WKBW model is, mathematically, not a well posed problem. Indeed, sup-
pose the initial conditions are such that R(0) < 0.Ifasolution exists, then R(¢) < 0
for some time interval. By (3.2) the forward characteristic curves for (3.2) which
initiate at any point (pg, 0) with pg < 1, 1 — po small, will then intersect the line
o = 1, say at (1, t1). The value of the function v at (1, ¢;) will thus depend on the
initial value v (g, 0). On the other hand, from (2.7) we see that

av(l, 1)
ot

=551, 1) — y(1, ).

Since the functions x(1, ¢), y(1, ¢) satisfy similar ODES, v(1, t;) (and x(1, #1),
y(1, t1)) are determined only by their initial values at p = 1. Thus v(1, #;) does
not depend on the initial value vg(pg, 0), which is inconsistent with our previous
conclusion. This argument can be extended to the model where N§3y is replaced by
the surface integral of (4) in [34].

Suppose next that the initial conditions are such that R(0) > 0. If a solution
exists, then R(z) > O for a small time interval. This implies that the v-character-
istic curves initiating at p = 1, ¢t = g (fp small) and the v-characteristic curves
initiating at (po, 0) for pp near 1 may intersect at some point (o1, #1) (0o < p1 < 1,
t1 > tg). At this point the solution in general will be discontinuous. There are of
course exceptional cases where the two sets of v-characteristics will not intersect;
for example, when

X(p,0) =1,y(p,0) =0,0(p,0) =0

M/3 and the v-char-

(In this case there exists a global solution with R(¢) = R(0)e
acteristics are given by dp/ds = —Ap/3).

The above considerations show that without a diffusion term for v the system
does not have a mathematical solution, in general. In [34] the authors studied nu-
merically an ODE system which is an approximation of their complete model when
no spatial variations are assumed. They compared the efficacy of core injection,

whereby, at t = 0,

x=0—-p0o,y=po,v=0if 0 <r < R(0) — wo,

. (3.3)
x=0,y=0,v=0if R —wp <r <R(0),
with rim injection, whereby, at t = 0,
x=0,y=0,v=0if 0 <r < 1p,
Y (3.4)

x=0=p)o,y=po,v=0if rg <r < R(0).

As stated in Section 1, our first aim in this paper is to establish the existence of
a unique global solution for the model (2.19)—(2.28). Our second aim is to use
the model for initial exploration of the question of optimal efficacy of the viral
treatment.

The model (2.19)—(2.28) is mathematically somewhat similar to the mixed
models considered in [29] [16] [10]. One difference is that instead of diffusion of
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nutrients as in (1.1), we here have diffusion of virus particles. Other differences oc-
cur in the coupling terms of the PDEs and in the free boundary conditions. Because
of these differences, the corresponding proofs of existence for the time-dependent
models are substantially different. More importantly, the results on the asymptotic
behavior for the present model are completely different from results obtained in
[16] [10].

We conclude this section by recalling, from [34], estimates on the size of
parameters that appear in the system (2.19)—(2.22).

The parameter X is typically small; for example, from experiments of inject-
ing adenovirus ONYX-015 into mouse tumors it can be computed that (see [34])
A =3 x 1073h~!. The parameters & and y are one order of magnitude larger than
A(e.g., 8~ %h_l). The parameter y is more difficult to estimate, but it is at least
one order of magnitude larger than & and y; for definiteness it was taken tobe 12!
Finally, in order to facilitate their numerical studies Wu et al [34] took pg = 2.5
but, as they noted, the actual value of py may be as large as 11.

We recall that the clinical trials reported in [4], [12], [24], [30], [35] were
conducted over a period of 30—42 days, that is, 720-1008 hours. Since the rate
parameters in (2.11)—(2.13) do not exceed 14!, one needs to study the behavior
of solutions not only for short or intermediate times, but also for large times.

4. The effect of large doses
Suppose that at the start of the treatment all the cells are uninfected, so that
Xo(p) =1, Jo(p) =0. 4.1
We inject
vo(p) = A (A positive constant) 4.2)

and consider its short term effect on the growth of the tumor.
From (2.19), (2.20) we find that
0x

—_— == A+ O(),
o1 poyA+ O(1)

0 _ oy A+ 00
S = oy ,

so that, by (2.25), (2.22),
1
R(t) = R(t)/ s2[A — Apoy At + O(1)1ds
0
or,
R(t) = R(0)e¥ B(1) 4.3)
where

A 2 3
B@) = exp[—gpoyAt + 0()] 4.4)
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is the factor by which tumor growth is reduced. Similarly, if initially
Xo(p) = const. = x., Yo(p) = const. = y,,
then
R(1) = Ro(1)Bx (1) (4.5)

where Ry (?) is the radius of the untreated tumor and

Bun(t) = exP[-%PoVAxclz + 0] 4.6)

is the reduction factor due to the drug.
We can also quite easily derive estimates on the tumor growth at intermediate
times. Taking again, for simplicity, the case (4.1) and setting
7=+ WX+ uy

we have z(p,0) = A + p and

Dz

Dt
Since y > 0, we deduce from (2.21), (2.23), (4.2) and the parabolic comparison
principle (cf. [18, Chapter 2]) that

= —Apoy X0 + (A + WAX — 8y — (—p0 + 2)z.

7> Ae V!

Given atime r = T, let A be so large that

Ae " Taypo > (0 + p)s. 4.7
‘We then deduce that
D2 tu—s)
=2 - _
Dr pox
Hence

2(p, 1) < (A + p)eTH=dr
and, if § > A + u,

1
R(t) < R(t)/ [ = w4 O+ e~ Ot ds
0

or

R(t 1 A

logL <—(—ut+i), 0<t<T.

R(0) 3 S—A—pu

We conclude that if 7' is such that
A+
uT = 2B (s> a+ (4.8)
§—A—pu

then R(T) < R(0). Thus we can ensure that the tumor radius will have decreased
by the time ¢+ = T, T as in (4.8), provided the dosage A is as large as in (4.7).
However, in some special cases we can do much better: we can reduce a tumor
of any size to zero by just a modest dose of injection. This will be shown in the
following sections.
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5. Stationary solutions

The special cases alluded to at the end of the last section are derived from the
stationary solutions of (2.11)—(2.14), (2.17) with constant densities. Thus they are
determined from the equations

u)x(r) — [+ ) — A+ wx) — uy() — poyv(®)]x(r) =0,  (5.1)
u(r)y(r) — [(w—8) — (A + wWx(r) — py(M]y(r) — poyx(r)v(r) =0, (5.2)
8y(r) — yv(r) + koR*Av = 0, (5.3)

1 d
- (FPu(n) = = G x () + py (). (5.4)

Since x = y = 0 and v=const., we easily find that there are precisely four solutions
of this type, namely,

x(r) = const. = x5, y(r) = const. = ys,

5.5
v(r) = %ys = (5.5)
and ug(r) = %(—u + (A + w)xs + pys)r where
(xsa yS) = (Oa O)v (56)
(x5, ys) = (1,0), (5.7
4 :
(x5, y5) = (0,1 ——) provided § < u, (5.8)
I
and
_ A= podp+posi4us _ _ QA (pod—8—1) _
X = T od—hpes = e Vs T T gs—npes . O (5.9)

provided x, > 0, y, > 0.

In the following sections we shall prove that if the initial densities are approxi-
mately equal to (5.8), then an injection of virus of density approximately equal to
%ys will make R(¢) decrease monotonically to zero as ¢t — oo. This result is quite
remarkable since it is valid no matter how large the initial radius R(0) is.

We shall also prove a similar result for the case (5.9) provided

AA
po > 1+;+3. (5.10)

Such aresult is obviously not true in the case (5.7) (since R (0) > Ointhis case).
The case (5.6) where almost all cells are necrotic will be considered in Remark 10.2.

6. Local existence and uniqueness (hyperbolic-parabolic system)

Let (x5, ys, v5) = (0, 1 — %, %(1 — %)), where § < . We shall consider the system
(2.19)—(2.28) with (xo, yo, Vo) near (x5, vs, vs). It will be convenient to introduce
new variables:
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X()O,t) :i(p’t) _xS7 Y(Iost) = y(p’t) _)’A

Vo, 1) = 5(p. 1) — vs, Ulp, 1) = ii(p. 1). @D

Then the system (2.19)—(2.26) takes the following formin {0 < p < 1,1 > 0}:

3_X+[_ &_FU(’O’Z)]B_X

ot R() R(@) 1adp
=[O+ 1) = (pod + wWys — 2(A + wWxs | X — pxyY — poyxV (6.2)
—[+ WX + 1Y + poy V]X + xs[h 4+ 1 — (pod + ) ys — (h + )xs1, ,
Y R@t) U(p,1)19Y
W“L[_pm R() ]_
= [poyvs — o4+ wWys | X — [(6 — ) + (A + wxy +2uy,]Y  (6.3)
+poyvsV + [poy XV = O+ )XY — pu¥?]
+ysle =8 — wys — (pod — o — A)xsl,
X(p,0) = Xo(p), Y(p,0) = Yo(p), (6.4)
V. R®IV 1 20V av(0,1)
o Pm 9 0—2%(,0 —)=48Y —vyV, 9 =0, (6.5)
v
Vi(p,0) = Vo(p), 8—|p=1 =0, (6.6)
0
R(t) ? 2 /
U(p,t) = 7/ s [3us(0) + A+ wX(@s,t)+uY(s, t)]ds, (6.7)
0
U0, 1) =0, (6.8)
R(t)=U(1,1), R(0) isgiven, (6.9)

where Xo(p) = Xo(p) — x5, Yo(p) = Yo(p) — ¥s, Vo(p) = vo(p) — vs

1
%©=§m+@+mm+wd

Vo(p)

and |p=1 = 0. Note that since x; = 0, several terms on the right-hand sides
of (6.2) and (6.3) vanish (in particular, the last terms).
We choose arbitrary positive numbers o, « satisfying

O<a<y, 0<0<6
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and introduce the following space of functions U (p, t):

Er ={U(p,1) € C°([0, 11 x [0, T]); U(0,1) =0,

U, 0) = Ug(p) and R(» = 0, R 1 2,

= an > _— — <
p’ 0 p 9 R(t) 3 a’

R(t) 1 9 ot
| = —=+ —=—=—U(p, )| < M|[(Xo, Yol clo,11¢

R() ' R@) dp

where M is a positive constant to be determined later on,
P
Vot = RO [ 2
o(p) = 2 [Bu;(0) + (A + ) Xo(s) + nYo(s)lds, (6.10)

and R(¢) is given in terms of U(1, t) by
t
R(t) = R(0) + / U(l, t)dr. (6.11)
0

Here C10([0, 11x [0, T]) is the space of all functions U (p, t) which are contin-
uous together with their first p derivative dU (p, t)/0p, and the norm in this space
is defined by

oU
I Ullcro =l Ullcojo<p<t,o<i<ri+ |l %||c0[0<p<1 0<r<T]"

Since R(0) > 0, the space ET is non-empty if 7 is sufficiently small.

We shall first solve the system (6.2)—(6.9) for a small time interval 0 <t < T,
using the contraction mapping principle in the space Er. Given any U € ET we
define R(z) by (6.9) and proceed to solve, in this and in the following section, the
hyperbolic-parabolic system (6.2)—(6.6) by a fixed-point method. We, then define
a mapping

F:U(p,t) —> W(p,t)
by

W(p, 1) = % 7 s2[3u,(0) + (+ W)X (s, 1) + nY (s, 1)]ds,

W(,t) =0. ©.12)

In Section 8 we shall prove that F is a contraction if T is sufficiently small, and this
will complete the proof of local existence and uniqueness for the system (6.2)—(6.9);
global existence will be proved in Section 9.

Let us denote by £ = &£(7; p, t) the backward characteristic curve of the equa-
tions (6.2) and (6.3), such that £|;—; = p. Then, for0 <t <71,

d¢ _ <R |, UGD _
dr — —f R(©) + R — h(%—v T)»

6.13
E(t;p, 1) = p; (©13)
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and

| M <L (6.14)
0
where the constant L may depend on 7. The assumptions on U imply that there
exists aunique C I'solution to (6.13). In view of (6.8), (6.9), the characteristic curves
& =£&(t; p,t) donotexittheinterval 0 < & < 1if0 < p < 1, and the lines & =0
and £ = 1 are characteristic curves.
The above considerations imply that the hyperbolic problem (6.2)—(6.3) in {0 <
p < 1,t > 0} can be solved as a Cauchy problem (for a given V (p, t) € C([0, 1] x
[0, T'])); the solution is determined by the initial data (Xo(p), Yo(p)) for0 < p < 1.
To prove the local existence and uniqueness of the hyperbolic-parabolic system
(6.2)—(6.6) for a given U € E7, we shall need two lemmas.

Lemma 6.1. Suppose U € Et and Y, % € L*°([0, 1] x [0, T]) and assume that,
for some ¢ € (0, 1),

Y| <ee ™™, t<T, (6.15)

Y —uot
|| <ee ™, t<T, (6.16)
0

If 1l Vo(p) llcrqo, 1 < Cx€ where Cy is a constant (independently of ¢€), then there
exists a unique solution of the parabolic problem (6.5)—(6.6) (with Y replaced by
Y)in Wy (10,11 x [0, T1) (p > 1 arbitrary), and

V| < max{Ck, Jee ™™t <T, 6.17)

Yy —«o

|ﬂ| < max{C,, L}se*“’, t<T. (6.18)
ap y+o—«o
Proof. The existence and uniqueness of the solution to problem (6.5)—(6.6) (with
Y replaced by Y) follows from the standard parabolic LP-theory (cf. [26, Chapter
3]). The estimate (6.17) follows from (6.15) and the parabolic comparison principle
(cf. [18, Chapter 2]) which implies that max{Cj, %a}ee"’” majorizes £ V.
Next we prove the estimate (6.18). Differentiating (6.5), (6.6) with respect to p
and setting H(p, t) = %—Z, we get

OH 1 9 ,0H R(1) 0H R(t)  2ko Y

2 = — - _ 2D 0y 52 619
o 2, ) T PR T TRy T ) o 19
Hli—o = Vg(p), Hlp=1 =0. (6.20)
Noting that
RO L on 6.21)
_ o > .
Y~ r0 27

and using (6.16) and the parabolic comparison principle, we find that (6.18) holds.
]
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Given the V established in Lemma 6.1, we shall now solve the hyperbolic
system (6.2)—(6.4).

In the next lemma U (p, t) is any function in E7, Yis any function as in Lemma
6.1, and V is the solution (with || Vo c1pg 1} < C«e€) established in Lemma 6.1.

Lemma 6.2. Let (x5, ys, v5) = (0, 1 — % %(1 — %)) where § < u and assume that

uwh +38)

> Si—3) (6.22)

Po

If 1l (Xo(p), Yo(e) |l o1 f0.17) is sufficiently small, then, provided T is small enough,
there exists a unique solution ()A((t), IA/(I)) of (6.2)—(6.4) such that

(X(0), Y (1)) = (X ((t; po, 0), 1), Y (E(; po, 0), 1))

af(t a?t
5(),%()

are in C([0, T]), and

and

X Y
<_a (&(t; 00, 0), 1), —(E(1; po,O),t)>
P ap

X))+ 1Y (0)] < Moe ™ || (Xo, YO llcpo.1)» (6.23)

dX 9y ot
%(l) + %(l) < Mie ™ || (Xo, Yo)llc1 0.1 (6.24)

where &€ = &(t; po, 0) is the forward characteristic curve of the equations (6.2)
and (6.3) initiating at the point (pg,0) (0 < pg < 1), and My, M| are positive
constants which depend on C, but are independent of T.

Proof. Along the characteristic curve, the system (6.2)—(6.4) takes the following
form:

ozi_ﬁt( _ [(k + 1) - (p05A+ w)(1 R %A)]X (6.25)
[+ WX + u¥ + poyV]X,

>

= (pos =2 =W - DX = (u-8Y

. R oy (6.26)
+[poy XV — (L + )XY — u¥?],

X(0) = Xo(po), Y (0) = Yo(po). (6.27)
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Introducing the vector notation

z=(x, 7),

Ao [(GFm st =g) 0
T\ s =) = —9)

F@2) = (= 0+wR2—uX?, —O+wX? —pu?)’,

Aol A onT
g(t,Z)=(—poyVOX, poyV®X)",
the system (6.25)—(6.27) can be rewritten as follows:

9Z — AZ + f(Z) +g(t, 2),

Zlico = 2(0) (6:28)

where f(Z), g(t, Z) satisfy:
f(Z)=0(z%, (6.29)
lg(t, Z)| < Cee™™|Z| (by (6.18)), (6.30)

Local existence and uniqueness of a solution to the system (6.28) follows from
standard ODE theory. We next proceed to establish some estimates on the solution.
The system (6.28) may be regarded as a perturbation of the linear system

42 _ A7
t b

(6.31)
Z|i—o = Z(0).

Let ®(¢) denote a fundamental solution of (6.31) with ®(0) = I. Then, by the
variation of constants formula,

Z@) = &()d1(0)Z(0)
t
+ [ o)~ ! Z(s)) + g(s, Z(s))d
/0 P f(Z(s) + g(s, Z(s))]ds (6.32)

t

= ©(I)Z(0)+/O Ot —s)[f(Z(s)) + g(s, Z(s))]ds.

From the assumptions i > & and (6.22), it follows that the two characteristic roots
A1, A2 of the matrix A are negative. Therefore there exist positive constants C and
n such that

| @) |< Ce™™, t=>0. (6.33)
Hence
I ZW = ClIZO | e™
+C / eI f (2 || (6.34)
Y1l g5, Z(s) ds.



408 A. Friedman, Y. Tao

and, by (6.29), (6.30),
t
I Z(®) 1< Co |l Z(0) || e + C / e Z(s) )% ds (6.35)
0

if 0 <o < nand| Z(0) || is smaller than the ¢ in (6.30) (or in (6.15)—(6.16)).
Setting

H@) =] Z@) || ¢, (6.36)
(6.35) can be written as
t
H(@t) < Co || Z(0) || +C; f e~ H?(s)ds, (6.37)
0
and, by comparison,
1
H(t) < - = ) (6.38)
aorzoy ~ o (L—e™)

Therefore, if || Z(0) || is so small that
1 2C
_— > —1, (6.39)
Coll ZO) |l o

then
| Z(t) 1=2Co | Z(O) || e, (6.40)

so that the estimate (6.23) holds.
Differentiating the system (6.2)—(6.4) with respect to p, and using (6.18), (6.23)
and the inequality

R(@) | Uplp,0)

— <M | Z o 6.41
| R(O) RO | <M || Zo(p)llcpo,17€ (6.41)
which holds for any given U € E, we can proceed to establish the estimate (6.24)
in the same way as in the derivation of (6.23). |

7. Local existence and uniqueness — continued
(hyperbolic-parabolic system)

For any given U € ET, we shall use a fixed-point method to prove the local exis-
tence and uniqueness of the solution of the hyperbolic-parabolic system (6.2)—(6.6).
To this end, we introduce the function space

aY
St ={Y (@), 1) : Y(EQ),1), %(E(t), 1) € C[0,T],

there exists a positive constant C independent of
(Xo, Yp) and T such that

oY
1Y (), ), Ig(é(t), Nl = C I Xo(p), Yolp)llc1o,1pe” '}
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where £(¢) is any forward characteristic curve initiating at + = 0 of the hyperbolic
system (6.2)—(6.3), and the norm

Y
I Ylis, =1 YE@, Dlcpo,r+ |l %(f(t),t)”C[O,T]’ Y € St.

Theorem 7.1. Let (xg, ys, vs) = (0, l—é, %(1—%)) where § < p and assume that
(6.22) holds. If || Xo(p), Yo(p), Vo(p) o1 po.17) i sufficiently small and T is small

enough, then forany U (p, t) in ET there exists a unique solution ()2' ), ?(l), \7(t))
of (6.2)—(6.6) such that

(X0, 70, 7(0) = (XE0.0, Y €D, 0, VED,D)

g(l) g(f) ﬁ(f)
ap T op " dp

are in C([0, T]), and

and

(—(S(t) 0, (S(t) t) (S(t) t))

IX(t)I + IY(t)I + IV(I)I < Coe™" || (Xo, Yo)llcpo,115

_ (7.1)
12X O+ 1BE @O+ 152 0] < Cre® || (Xo. Yo)lle1 o1

where & = £(t) is the forward characteristic curve of the equations (6.2) and (6.3)
initiating at t = 0 and Cy, C1, «a are positive constants independent of T .

Remark 7.1. The appearance of e~*' on the right-hand side of (7.1) (as well as in
Theorem 8.1) seems strange, since T is small. We intend however to prove that this
factor remains unchanged as we extend the solution to all ¢, and this will be used
to prove that R(¢) — 0 exponentially fast as t — oo.

Proof. Givena Y in St, let V be the solution of (6.5)—(6.6) with ¥ replaced by ¥
and let (X, Y) be the solution of (6.2)—(6.4) with this V. Define the mapping

H:Y — Y (Y €Sp).

From Lemma 6.2 we see that H maps St into itself provided 7" is sufficiently small.
To prove that H is a contraction, take Y1 and Y5 in S7, and set

= H?l, Y, = H?z.
We wish to prove that
I Y1 = Yallg, < C(T) || Y1 — Yalls,

where C(T) - 0as T — 0. ~
Let V; denote the solution of (6.5)—(6.6) with Y = Y; (i = 1, 2). Then
3(V|3;V2) _ p% B(Vg;VZ) _ K()A(V] _ V2)

- - (7.2)
+y (Vi = W) =48(Y) — 12),
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a(Vy =V,
Vi = WVa)(p,0) =0, %b:l =0. (7.3)

By the parabolic comparison principle (cf. [18, Chapter 2]),
k) ~ ~
|V1—V2|§; I Y1 —Yallpoe. (7.4)

Set
(20, %0, %) = (X €0, 0, 60,0, Vi, 0). (15
From (6.25)—(6.27) we get

{i_{ =AZ+ f(t,Z)+g(),

7.6
Zlio=0 (7.6)

where Z = (}A(l — )A(z, 1?1 — 1?2)7, the matrix A is the same as in Lemma 6.2, and
f(t, Z), g(t) satisty (by (7.4), and Lemmas 6.1, 6.2)

[f@, Z2) < C | (Xo(p), YO(D))||CI([0,1])€_M|Z|, (7.7)
g < C | Vi = Valpe < C || Y1 = Yol poe. (7.8)

Proceeding as in the proof of Lemma 6.2 and using (7.7) and (7.8), we derive
the inequalities

I Z@) Il = C/Ot eI f(s, Z) 1+ 1l g(s) Dds
< C1 || (Xo(p), YO(P))||CI([0,1])€_W /Ote(n_a)s I Z(s) Il ds
+Co(1 =) || Vi = Dol .
The function
H(t) =[l Z@) || ™

then satisfies

H() < Cyi || (Xo(p), Yool e jo,17) /Ot H(s)ds

+Co (" = 1) || 11 = Vol .
for 0 <t < T, and, by Gronwall’s inequality,
H() < Co(e" = 1) || Ti = Pl et IO 00 et 0,

or

|| Z([) ”S CZ(enT _ l) || ?1 _ ?ZHLooeit(nic‘I ”(XO(p)sYO(p))Hcl([0’1])) (7'9)
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for 0 <t < T.Taking || (Xo(p), YO(:O))”CI([O,I]) such that

Ci Il (Xo(p), YO(,O))HCI([OJ]) <7 (7.10)
we get
IZo) < CE =) | V1 —Vallpe, 0<t<T. (7.11)
Hence,
Y1) — L) < C" — 1) | Y1 — Vallpe, 0<t<T, (7.12)
or,

[Y1(E(1), 1) — Y2 (E(1), 1) < CET = 1) | V1 = Vallpo, O0<t<T. (7.13)

In the same way we can prove that

aY; Y, Y,  aY,
|— &), ) — —ED, D <CE" =D || — — —lz~, 0<t<T.
ap ap ap ap
(7.14)
Combining (7.13) and (7.14) we conclude that
I Y1 — Yallg, < C" =D || ¥ — Yalg,. (7.15)

This completes the proof that H is a contraction provided 7T is sufficiently small.
Hence there exists a unique local solution of (6.2)—(6.6) for any given U € Er.
Finally, the estimate (7.1) follows from Lemmas 6.1 and 6.2. |

8. Local existence and uniqueness (free boundary problem)

Theorem 8.1. Let (x;, ys, vs) = (0,1 — é, é(1 — é)) where § < | and assume
that (6.22) holds. If || Xo(p), Yo(p), V()(,o)||c1([0’]]) is sufficiently small and T is
small enough, then the free boundary problem (6.2)—(6.9) admits a unique solu-
tion (X (p, 1), Y(p,1), V(p,t), U(p,t), R®)) with R € C'[0, T], (X, Y, V,U) in
C! ([0, 1] x [0, T)], and with R(t) > O fort € [0, T]. Moreover,

IXE@), D+ 1Y (E@), D] < Moe™ || (Xo, Y0)llcpo,1)5 (8.1)

0X oY < Ce ™ || (X, Y, 8.2
I%(S(t),t)|+|%(§(t),t)l_ el (Xo, YO ller o,y (8.2)

where & = &(t) is any forward characteristic curve of the equations (6.2) and (6.3)
initiating at t = 0 and My, C are positive constants independent of T.
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Proof. Consider the mapping
F:U—->W (U €eET)

where W is defined by (6.12). We shall prove that 7 maps Er into itself provided
T is sufficiently small.
Define

t
Rw(t) = R(O)+/ W(l, v)dt (8.3)
0

By (6.12), (8.3) and Theorem 7.1 we easily see that

R(0) 8§  Rw() b

if T is sufficiently small and o (in the definition of E7) is chosen small enough.
By (6.12), (6.23), (8.3), (8.4) and direct calculations we have

_Rw® | Wy(p,1)
Ry (1) Ry (1)

(R /l 2000+ WX (s, 1) + 1Y (5. )1d
= - s s, s, s
R (1) o " o
2 14
= [ P10+ X0+ ¥ s 55)
HOA X (py D) + 1Y (0, D]
2R(0)
< Too) A0 H I 1 XG0+ 1 ¥l

< 8(A+ w)Moe™™" || (Xo(p), Yo(o)llcjo.1)-
if T is sufficiently small, where My is a constant independent of M. Taking
M =8(A 4+ nw)My (8.6)

we conclude from (8.5)—(8.6) that W € E7, so that F maps E7 into itself provided
T is sufficiently small.

To prove that F is a contraction, take U and U in Er, define R(7) by (6.11)
withU = U , and set

Then
W(p, 1) — W(p,1)
- P
=(R@t) — R(t))% / s2[3u,(0) + (h + WX (s, 1) + Y (s, 1)]ds
0

i@ (0 ) ) (8.7)
T / [0+ (X (s.1) = XG5, 1) + u(Y (5.1) = P (5.1))]ds
0

=74+ J.
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By the definition (6.11) we have

t

R(t) — R() =f U,1)— U, 1))dr
0
and therefore
|R@®) =R IS T | U—"Ullco
where || U — f]”co = Max(p,r)el0,11x[0,T] | U — U |, so that, by (6.23),
| 1|<CT || U—TUlco. (8.8)

To estimate J, we first need to estimate (X (s, t) — X (s, t)). Integrating the
equation (6.2) along the backward characteristic curve § = §(t; s, ) which passes
through a point (s, ¢), we get

X(s,t) = Xo(£(0; 5,1)) + fot aX(&(T;s,t), T)dt

folbi X(E(Ts5,0),T) + bY (T3 5,1, T) (8.9)
+b3V (E(t; 5, 1), DX (E(T; 5, 1), T)dT

where a, by, by, b3 are constants. Hence
X(s,1) — X(s,1)
= Xo(£(0;5,1)) — Xo(6(0; 5.1))

t
+a/ [X(E(s 5.0, 1) — XE(Ts 5.0, DldT
0
t
+b1f (X2 5,10, 1) — K2GE (s 5.1), D)]de
0

t
by / [X(E(T: 5, 1), DY (T 5.1, 7) (8.10)
0
—X(E(t; 5,0, )Y (E(t;5,1), T)ldT
t
+b3/ [X(E(T: 5, 1), DV (E: s, 1), 7)
0

~X(E(t; 5,0, )V (E(T; 5, 1), T)ldT
=h+bL+L+14+Is.

_ In order to estimate the /i, we first need to estimate | § — £ |=| E(r;s,1) —
&(t; s, 1) |. From (6.13) we have

dE-& _ (_gk(w + U@,r)) _ (_gﬁm + 0<§.r))

v R@ T R@ R " R
_ _R@e 5 E(RO R
UED (p(r) — 1 _ r(E '
+ i RO = RO + 75U E D) - UE, 1)

| - .
tioUE ) -UE )
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and each term on the right-hand side is bounded either by C | § — £ | or by
CIU~-Tlco.
Integrating (8.11) from 7 to ¢, we then get

HUBDEH GO
<CT || U= Ullco +C/ | &5, 0) — £ 5,1) | di,
T
so that, by Gronwall’s inequality,
|&(t55,0) —E(x; 5,0 | CT | U = Ul co. (8.12)
‘We now return to (8.10) and set

Z(t) = X(s, 1) — X(s,1) | .
() sgfgﬁ]' (s,1) (s, 1) |

By (8.12),
1<l 58l co | 605 5,0) —£(0;s,1) |
<CT | U~-"TUllco
and
t
A c/o (1 XE@ 50,0 — REE s.0.7) |
+ 1 XE@s. 0. 1) - XE(is.0,7) | )dT
t X .
5/ (Zr+1 N1 65,0~ E(xi5.0) | )dr
0 1%
t
< C/ Z(t)dt 4+ CT | U — Ul|co.
0
Similary,

t

|31 s | s | < c/ Z(1)dt +CT || U = Ul co.
0
Substituting these estimates into (8.10) we find that
- 1
Z(t) <CT || U =Ull¢co + C/ Z(r)dt
0

and, consequently,

max | X(s,1) — X(s, 1) |[< CT | U — U co.
s€[0,1]

Similarly one can prove that

| Y(s,1) = Y(s,1) |< CT | U — Ul o,
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and therefore
| JISCT | U= Ullco.
Substituting this and (8.8) into (8.7), we obtain the estimate
I W=Wlco<CT | U=0|co. (8.13)
To estimate d(W — W) /dp we note that

LA —% 7 s2[3ul(0) + (A + WX (s, 1) + uY (s, )]ds

+R(O[34,(0) + (& + WX (p, 1) + 1Y (p, 1)].
Proceeding as before, one can prove that

[ ow aWu <CT | U-U]|
ap ap co = fel'X}

and together with (8.13) we get
| W=Wleo <CT |U—=Ulleo <CT | U= Ucro.

This completes the proof that F is a contraction provided T is sufficiently small. We
conclude that there exists a unique solution to (6.2)—(6.9) for 0 < ¢ < T. Finally,
the estimates (8.1), (8.2) follow from Theorem 7.1. |

9. Global existence and convergence of R(t) to zero
Theorem 9.1. Let (x;, ys, vg) = (0,1 — %, %(1 — %)) where § < | and assume
that

wh +8)

T ©.1)

Po

If
Il Xo(p), Yo(p), Vo(p)”cl[(),]] <¢ 9.2)

where ¢ is sufficiently small, then there exists a unique global solution (X (p, t),
Y(p,t), V(p,1), U(p,t) R(t)) of (6.2)~(6.9) for all t > 0 with R € C'[0, 00),
(X,Y,V,U)inC'([0, 1] x [0, 00); furthermore (8.1) and (8.2) hold for all t > 0,
and

R() <0 forall t>0, 9.3)

RO)e™2" < R(t) < R(O)e™ 1" forall t> 0. (9.4)

Proof. We wish to continue the local solution established in Theorem 8.1 to all
t > 0. In order to do that we assume that the solution exists for all #+ < T, having
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the pr0p~erties asserted in Theorem 8.1, so that, in particular, (8.1), (8.2) hold for
allr < T.
Then, by (6.7), (6.9) and the relation u,(0) = —3§/3 we have

1
R(t) = R(1) / s2 (=8 4+ (A + W)X + uY1ds. 9.5)
0
Using (8.1) we find that
R(r) <O, 9.6)
5 _Ro) ¢ ©7)
27 R0 T4 ‘

provided ¢ in (9.2) is sufficiently small. It follows that (9.3) and (9.4) hold. Then,
by (6.7), (6.9) and (8.1),

R(@)  Uplp,1)

= R(t) R(t)

|
1
— - / L0+ WX (5, 1) + 1Y (s, D1ds
0

—% /p SO+ WX (s, 1) + puY (s, )lds 9.8)
- Jo

HO+ WX, 1) + Y (p, DI
=2[+w) I X(p, Dllco+p I Y(p, D)ol
<2+ wMoe™* || (Xo(p), Yo(p) Il cpo.1)

so that
R(t)  Uyp,1)

"0 T RO
where M = 2~()L + w)My. Note also (by (9.7)) that R(¢) remains uniformly positive
for 0 < t < T. Furthermore, by the argument used in Lemma 6.2 we can deduce

from (8.1), (8.2) and (9.9) that
X, T—no), Y. T—no), V(T —no)

remain uniformly small in the C':°[0, 1]-norm for all 5 positive. These facts allow
us to apply Theorem 8.1 with initial data at t = T — 1o (no arbitrarily small) and
thus extend the solution and the estimates (8.1), (8.2)to 0 <t < T + n for some
7i > 0. Since T is arbitrary, the solution can thus be extended to all 7 > 0 together
with the desired estimates. O

| < M || (Xo(p), Yo(oD)llcpo.npe” " fort <T, (9.9)

Remark 9.1. The proof of Theorem 9.1 was based on the fact that the eigenvalues of
the matrix A are negative. This condition implies the decay estimate (6.33) which
was needed in establishing Lemma 6.2 and Theorems 7.1, 8.1 and 9.1.

Remark 9.2. The assumptions made in Theorem 9.1 on the parameters §, A, i, po
overlap with the estimated values of these parameters, as given at the end of Section
3. The same remark applies to Theorem 10.1.
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10. The case (5.9)

Now consider the stationary solution (xs, ys) = (X4, y«) given in (5.9), with vy =
é)’s, under the condition (5.10). In this section we prove, for this case, a result
similar to Theorem 9.1.

Theorem 10.1. Let ;1 = 56, s > 0 and assume that
(s—Dpo<s (10.1)
and
A is sufficiently small. (10.2)

Then the assertion of Theorem 9.1 holds with

S
Xs = Xsy Vs = Yo Us = —Vx
14

and with §, in (9.5), replaced by the positive number —(—p + (A + ()xg + (Lys).
Proof. The proof is the same as for Theorem 9.1 provided we can establish that
all eigenvalues of the matrix A have negative real parts (10.3)

Indeed, as mentioned in Remark 9.1, the condition (10.3) enables us to establish
Lemma 6.2 and to extend the proofs of Theorems 7.1, 8.1 and 9.1. In the present
case

A ((K + 1) — (Pod + W) ys — 2(k + p)xx — X )
(PoS — A — )y« =0 =) — A+ wxe =2y )

If we take
A=0, pu=s8,s>0
then we get

A 8 <—s(1—s)po—s2 —s(1 —s)pg — 52 )

po? \s(po—)(po— 1) —=(1 = $)po® — spo — s*(po — 1)

This matrix has eigenvalues
8s 8
—— and —(pos — po — s),
Po Po

so that (10.3) is satisfied if (10.1) holds. By the continuity property of the eigen-
values, (10.3) still holds if (10.1) is satisfied and A is sufficiently small. |

Remark 10.1. If u© < § then s < 1 and thus (9.1) is satisfied for any pg > 0. If
@ > & then (9.1) is satisfied provided

0<po< a
w—



418 A. Friedman, Y. Tao

Remark 10.2. In the case (5.6) the matrix A has the form

_(A+pn O
A= ( 0 n-— 5)_
A special solution is ¥ = ¥ = ¥ = 0 with R(t) = R(0)e . Since at least one
eigenvalue is positive, the hyperbolic system (6.2)—(6.3) is linearly unstable and

we are unable to establish the nonlinear asymptotic stability as in Theorems 9.1
and 10.1.

Remark 10.3. Theorems 9.1 and 10.1 can be extended to the case ko = 0 provid-
ed we drop the boundary condition (2.15). In this case the system for (X, ¥, 0) is
hyperbolic, and the forward v-characteristics go from the free boundary into the
tumor region. The proofs exploits [27, Theorem 3.1] on row diagonally dominant
hyperbolic systems and the fact that the characteristics of the two equations (2.1)
and (2.2) coincide.

11. Proof of Theorem 2.1

In proving Theorem 2.1 there is no point in making the transformation (6.1); we
work directly with the system (2.19)—(2.28). We replace the spaces E7 and St
(introduced in Sections 6 and 7) by the following spaces:

Er = {ii(p,1) € C"°(10,11 x [0, T]); &(0, 1) = 0, i(p, 0) = do(p),

R(H)

R(t) > 0, |m|§0,

- i(l) ﬁp(ﬁ,f)| <M
®) R(1)

where R(t) is defined by (6.11) with U = u, ug(p) is defined by the right-hand
side of (6.10), 0 = %min{)», ut,and M =2 4+ 2u);
- - - ay
St ={yE@), 1) : y(E@), 1), %(E(t), 1) € C[0,T],
0<yE(@®,n =<1, and

I
|8—y(s<z),r>| < CeM)
0

where £ (¢) is any forward characteristic curve, initiating at t = 0, of the hyperbolic
system (2.19)—(2.20). Here C and 7 are positive constants to be chosen later on.
The proof of Theorem 2.1 is divided into three steps:

Step 1. Given any ii € E7 we define R(z) by (2.25) and proceed to solve the hy-
perbolic-parabolic system (2.19)—(2.21), (2.23), (2.26) by a fixed-point method. To
this end, we define the mapping

H: §—3 (€S
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where (X, y) is the solution of the hyperbolic system (2.19)—(2.20) (with the initial
condition (X (p, 0), ¥(p, 0)) as in (2.28)) in which v is the solution of the parabolic
problem (2.21), (2.23) with the initial condition v(p, 0) as in (2.28) and with y
replaced by ;
Along the characteristic curve £ = £(¢), the equation (2.19) has the form
Dx

Dr = A1§(), D)x.

We easily conclude that if X(p, 0) is non-negative for 0 < p < 1 then x(£(¢), 1)
remains non-negative, i.e.

x(&(),t) > 0. (11.1)

On the other hand, from ):z > 0 and the parabolic comparison principle we easily
get v > 0. Combining this and (11.1), we deduce from the equation (2.20) (along
the characteristic £ = £(¢)) the inequality

— = A(E®). D5
It follows that
y(E@),1) > 0. (11.2)
In a similar way we easily get n(&(¢),t) =1 —x(&(1),t) — y(E(@),t) >0, i.e,
X@E@, D) +yE@, ) <1 (11.3)
Proceeding as in the proof of Lemma 6.1 we derive estimates
5] < Cre™, (11.4)
Iz—gl < Cre' (11.5)

where Cy, Co and 7 are positive constants. Here the comparison functions used to
estimate &0 and £d7/dp are of the form Ce where 7 is any positive number
larger than ¥ + o and C depends on the L> bounds of the initial data of ¢ and
av/ap.

Using (11.1)—(11.5) and proceeding as in the proof of Lemma 6.2 we can prove
that there exist two positive constants C, 1 independent of T such that

Iz—i(é(t),t)l < Ce". (11.6)

If we use these C, 7 in the definition of the space S7 then we conclude that 7 maps
S into itself. Arguing as in the proof of Theorem 7.1 we can also show that
is a contraction provided T is sufficiently small. We conclude that there exists a
unique local solution of (2.19)—(2.21), (2.23) and (2.26) for a given u € Er and

R(t) defined by (2.25).
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Step 2. We define a mapping
Frilp,1) > w(p.1) (i€ Er)
by

i R(®)
w00 = 23 [ ok 760+ 56,0

w(0,1) =0

(11.7)

where (X(p, t), ¥(p, t)) is the solutiorl of the hyperbolic-parabolic system (2.19)—
(2.21), (2.23), (2.26) for a given & € E7 and R(¢) defined by (2.25).
Note that from (2.22), (2.25) and (11.1)-(11.3) we get

" . s
—3 RO = R(1) < FR®) (11.8)

and, similarly to (8.5), the inequality

- R(t) Wy (p, 1)
Rt R®)

holds for 0 < r < T'. From (11.9) it follows that

| <2 +2u) =M (11.9)

R(0)e™™/3 < R(1) < R(0)M/3 (11.10)
and
lefma)i{&, ﬁ}za. (11.11)
R(1) 373

We conclude that & € Ep 3
Proceeding as in the proof of Theorem 8.1, we can next prove that 7 maps E7
into itself provided T is sufficiently small, and

| @1 — Wallcro < CTe™ | ity —iizllco < CTe" | ity — diallcro  (11.12)

where w; = Fu;, u; € ET (i =1,2),ie., F is a contraction provided T is suf-
ficiently small. We conclude that there exists a unique solution (2.19)—(2.28) for
0<t<T.

Step 3. We wish to continue the local solution established in Step 2 to all t > 0. We
assume that the solution has been established for all 7 < 7', and we want to extend
it to some time 1 = T + T]. In this process we assume that (11. 8)—(11 11) and
(11.5), (11.6) hold for r < T with constants which are independent of T.We can
then proceed as in Steps 1, 2, starting from the initial time ¢ = T — 10 (1 arbitrarily
small) and establishing both the extension of the solution and extension of the same
estimates as before to 0 < t < T + 71, for some 71 > 0. We can also proceed
somewhat differently by starting with the initial time 7 = 0, but working with the
subspaces of E; oy ST +r for which the i (in E Fir) coincide the ii-component

of the solution already constructed in 0 < ¢ < T, and the 7 y (in S= . ) coincides

T+t
with the j-component of the solutionin 0 < 7 < 7.
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12. Conclusion

We have considered a mathematical model for cancer therapy based on injection
of genetically engineered virus into the tumor. The virus selectively infects tumor
cells by binding to their surface, replicating inside them, and eventually causing
lysis. Thereupon the virus particles burst out and proceed to infect adjacent cells.
The mathematical model is formulated as a moving boundary problem for a non-
linear hyperbolic-parabolic system of partial differential equaions. The unknowns
are the radius of the tumor r = R(¢), the evolving densities x (7, t), y(r, t), n(r, t)
and v(r, t) of the uninfected cells, the infected cells, the necrotic cells and the virus
particles, and the velocity field u(r, ¢). Clinical trials and the size of the rate pa-
rameters suggest that one should study the behavior of solutions not only for small
and intermediate times but also for large times.

We established the existence of a unique solution to the model, and then con-
sidered the problem of determining the effect that the injection of virus has on
reducing the growth of the tumor.

We showed that the size of the tumor can be reduced in a very short time if the
injected viral density is sufficiently large. However, because of possible adverse
side effects, it is desirable to achieve reduction of the tumor with small dosage. The
problem then arises: What is the optimal dosage? There is no unique answer to this
question since it is difficult to quantify the harm done by side effects.

We have found, however, that for two pairs of initial densities

x(r, 0) ~ const. = x5, y(r,0) ~ const. = yy

the following is true:
Given any initial radius R(0), by injecting virus particles of density

)
v(r,0) ~ const. = vy where vy = —yj,
4

the radius R(¢) will decrease monotonically and exponentially to zero as ¢ increase
to oo.

These two examples suggest that one may reduce tumors with doses of viral
densities that are not necessarily large. Thus, searching for “optimal" amounts of
doses, as well as determining “optimal” schedules of injections, are promising areas
for future research. Here we list several open problems in this direction:

(1) Given initial tumor’s radius R(0) and initial densities x = 6, y = 0 (i.e., all
living cells are uninfected, and the density of the necrotic cells is 1 — ), what
is the smallest amount of viral density Vy which will reduce the tumor size to
$R(0) by time T'?

(2) Is it preferable to administer the viral dosage Vj in two portions, one at time
t = 0 with density o Vp, and another at time r = #; with density (1 — o) Vp?
(Take, as terminal time 7 at which R(T) is to be minimized, T = n weeks,
n=3,4,5,6).

(3) In the clinical trials reported in [4] [24] [25] [30] [32] [35] equal amounts of
viral doses were injected once a week. Can one do better by using a different
schedule?
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One may try to explore these problems using control theory combined with
numerical simulations. The global existence and uniqueness theorem that we es-
tablished in this paper (Theorem 2.1) shows that our model, although based on
a number of simplifying assumptions, can be used as a rigorous tool for initial
explorations of the above problems.
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