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abstract: Matrix projection models occupy a central role in pop-
ulation and conservation biology. Matrix models divide a population
into discrete classes, even if the structuring trait exhibits continuous
variation (e.g., body size). The integral projection model (IPM)
avoids discrete classes and potential artifacts from arbitrary class
divisions, facilitates parsimonious modeling based on smooth rela-
tionships between individual state and demographic performance,
and can be implemented with standard matrix software. Here, we
extend the IPM to species with complex demographic attributes,
including dormant and active life stages, cross-classification by several
attributes (e.g., size, age, and condition), and changes between dis-
crete and continuous structure over the life cycle. We present a gen-
eral model encompassing these cases, numerical methods, and the-
oretical results, including stable population growth and sensitivity/
elasticity analysis for density-independent models, local stability
analysis in density-dependent models, and optimal/evolutionarily
stable strategy life-history analysis. Our presentation centers on an
IPM for the thistle Onopordum illyricum based on a 6-year field study.
Flowering and death probabilities are size and age dependent, and
individuals also vary in a latent attribute affecting survival, but a
predictively accurate IPM is completely parameterized by fitting a
few regression equations. The online edition of the American Nat-
uralist includes a zip archive of R scripts illustrating our suggested
methods.
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Matrix projection models are probably the most com-
monly used approach for modeling structured biological
populations (Caswell 2001) and play a central role in pop-
ulation and conservation biology (e.g., Morris and Doak
2002). The popularity of matrix models is easy to under-
stand. They are conceptually the simplest way to represent
population structure, can be parameterized directly from
observational data on the fate and reproductive output of
individuals, and yield a great deal of useful information.
The dominant eigenvalue l of the projection matrix gives
the population’s projected long-term growth rate; the
dominant right and left eigenvectors are, respectively, the
stable stage distribution w and relative reproductive value
v ; and the eigenvectors determine the effect on l of
changes in individual matrix entries, which are often the
key quantities for management applications. These and
other metrics can be used as response variables to sum-
marize population responses to changes in environmental
conditions (Caswell 2001, chap. 10). Density dependence,
stochasticity, and spatial structure can all be incorporated,
and there is a growing body of theory for these situations
(e.g., Tuljapurkar 1990; Cushing 1998; Caswell 2001; Tul-
japurkar et al. 2003; Doak et al. 2005).

A matrix model divides the population into a set of
classes or “stages,” even when individuals are classified
using a continuously varying trait such as body size. In-
deed, the majority of empirical case studies reviewed by
Caswell (2001) use size-based classifications rather than
an actual discrete stage of the life cycle. In such cases, the
definition of stages is to some degree arbitrary, giving rise
to some potential problems, including the following: first,
treating a range of heterogeneous individuals as a discrete
stage inevitably creates some degree of error. Increasing
the number of stages to minimize this problem leads to
higher sampling error because fewer data are available on
each stage. “Optimal” stage boundaries (Vandermeer 1978;
Moloney 1986) minimize but cannot eliminate the re-
sulting errors in population projection and can be difficult
to implement (Pfister and Stevens 2003). Optimal bound-
aries for population projection may be poor for other
purposes (Easterling et al. 2000). Second, the sensitivities
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and elasticities are very sensitive to stage duration (Enright
et al. 1995), affecting comparisons both within and be-
tween species. Easterling et al. (2000) proposed that these
issues could be avoided by using a continuous individual-
level state variable x. The population vector is replaced by
a distribution function , where is the num-n(x, t) n(x, t)dx
ber of individuals with their state variable in the range

. The projection matrix A is replaced by a pro-[x, x � dx]
jection kernel , where P repre-K(y, x) p P(y, x) � F(y, x)
sents survival and growth from state x to state y and F
represents the production of state y offspring by state x
parents. The population dynamics are then

U

n(y, t � 1) p K(y, x)n(x, t)dx, (1)�
L

where is the range of possible states. This is the[L, U]
continuous analogue of the matrix model n (t � 1) pi

, where aij is the th entry in the projection� a n (t) (i, j)ij jj

matrix A. Under similar assumptions to matrix models,
the integral projection model (IPM) predicts a population
growth rate l with associated eigenvectors and state-
dependent sensitivity and elasticity functions (Easterling
1998). An IPM is implemented on the computer as a ma-
trix iteration, but this is just a technique for computing
integrals and not a discretization of the life cycle.

Several empirical studies have illustrated how a kernel
can be estimated from the same data as a matrix model
(Easterling et al. 2000; Rees and Rose 2002; Childs et al.
2003, 2004; Rose et al. 2005). The functions making up
the kernel can often be estimated by regression; for ex-
ample, size-dependent survival and fecundity can be fitted
by generalized linear or additive models and growth by
parametric or nonparametric regression (Metcalf et al.
2003). Consequently, the appropriate model complexity
for the available data can be identified using well-
established statistical criteria and software rather than the
typically ad hoc process of choosing the number of size
classes and their boundaries.

The currently available general theory for IPMs (Eas-
terling 1998; Easterling et al. 2000) applies only to models
where individuals are characterized by one continuous
quantity, but for many species, demographic rates are af-
fected by multiple attributes. These might be observed
attributes such as age and size (Rees et al. 1999; Rose et
al. 2002) or age and sex (Coulson et al. 2001) or unob-
served variables that reflect individual quality. For ex-
ample, the probability of survival in the thistle Onopordum
illyricum depends on size, age, and an unobserved measure
of individual quality (Rees et al. 1999). In the kittiwake
Rissa tridactyla, survival was age dependent, and individ-

uals with high survival probability were also more likely
to breed, presumably because of between-individual var-
iation in quality (Cam et al. 2002). Failure to account for
such latent between-individual differences can lead to sys-
tematic overestimation of population variability and ex-
tinction risk (Fox and Kendall 2002; Kendall and Fox 2002,
2003), underestimation of the uncertainty in population
forecasts (Clark 2003), very large biases in estimates of
demographic rates (Clark et al. 2003, 2004), and incorrect
predictions of population responses to demographic per-
turbations (Benton et al. 2004).

When several variables are needed to predict demo-
graphic performance, estimating a matrix model becomes
difficult because many between-class transitions have to
be estimated (Law 1983; Caswell 2001). For example, “the
construction of models using both size and age … may
be impractical because of the large numbers of categories
required” (Caswell 1988, p. 94). Consequently, matrix
models with classification have rarely beensize # age
used, despite numerous studies documenting size- and
age-dependent demography (Werner 1975; Gross 1981;
Klinkhamer et al. 1987; van Groenendael and Slim 1988;
McGraw 1989; Lei 1999; Rees et al. 1999; Rose et al. 2002).
In contrast, a size- and age-dependent IPM for Carlina
vulgaris required only one extra parameter to describe the
effect of age on flowering probability (Childs et al. 2003).

In addition, many species have complex life cycles where
individuals should be classified by different attributes at
different points in the life cycle. For example, many plant
populations have long-lived seed banks, so an additional
discrete-state variable is required to keep track of seed
numbers.

In this article, we generalize the IPM to accommodate
species with complex demography, including complex life
cycles and multiple attributes affecting individual per-
formance. We begin by developing an IPM for the thistle
O. illyricum, which has size- and age-dependent demog-
raphy as well as substantial latent between-individual var-
iation in survival unrelated to size or age. We then present
a general IPM, explain how it can be implemented on a
computer, and outline stable population theory for the
density-independent model (l, sensitivity/elasticity anal-
ysis, etc.) under assumptions very similar to those for
matrix models. For density-dependent models, we give
a criterion for local stability of a steady state population.
The general theory and numerical methods are illustrated
using the Onopordum IPM. But for the most part, this
article’s “Results” are “Methods,” with detailed appli-
cations appearing elsewhere (e.g., Rees and Rose 2002;
Childs et al. 2003, 2004; Rose et al. 2005). Our goal here
is a unified development that makes IPMs a practical
alternative to deterministic matrix models for structured
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Table 1: Statistical models and parameter estimates describing the demography of Onopordum illyricum

Demographic process Model

Growth p 3.24(.12) � .056(.02)x, variance about the growth curve, j2 pȳ
42.47 exp(�.71 ), n p 808, P ! .0001ȳ

Survival probability Logit(s) p �1.42(.21) � q � 1.08(.12)x � 1.09(.32)a, n p 1,397, P ! .0001
Flowering probability Logit(pf) p �24.01(3.23) � 2.91(.43)x � .84(.31)a, n p 721, P ! .0001
Fecundity (seeds per flowering plant) fn p exp(�11.84(4.43) � 2.27(.60)x), n p 49, P ! .0001
Probability of seedling establishment pe p .025 (density-independent model) or pe ∝ 1/St (density-dependent model)
Distribution of seedling size Gaussian with mean p 1.06, variance p 3.37, truncated at 0, n p 389
Distribution of seedling quality Gaussian with mean 0 and standard deviation j s p .82(.37)

Note: The models are functions of log rosette area x, age a, and individual quality q; values in parentheses are standard errors of parameter

estimates. The predicted values are the conditional mean and variance j 2 of log size next year given current size, the survival probability s,ȳ

flowering probability pf, and fecundity fn.

populations with continuous trait variation. Subsequent
articles will consider stochastic integral models and data-
based models for species with complex life cycles.

To make the article more accessible, most technical de-
tails are in the appendixes. Appendix A covers compu-
tational methods and should be read before building an
IPM from your own data. The mathematical level is the
same as the main text, roughly that of Caswell (2001).
Script files in R (R Core Development Team 2005) for the
methods described in appendix A and for our Onopordum
model are provided as a zip archive in the online edition
of the American Naturalist. Appendixes B and C in the
online edition of the American Naturalist are mathematical
derivations, written for theoreticians.

Modeling Complex Demography
in Onopordum illyricum

To motivate the general framework, we develop in this
section an IPM for the thistle O. illyricum derived from a
6-year field study. The field study and data analysis sum-
marized below, including model selection, are described
in detail by Rees et al. (1999). This example illustrates how
statistical analysis of demographic data translates directly
into an integral model that involves far fewer fitted pa-
rameters than a conventional matrix model. In later sec-
tions, we use the model to demonstrate the mechanics of
working with an integral model, with emphases on ex-
ploring the effects of latent heterogeneity in ways that
would be difficult in a matrix model and on using the
model for analyses of life-history evolution.

Field Study

Onopordum illyricum is a monocarpic perennial (repro-
duction is fatal) across its entire current range (Pettit et
al. 1996). Reproduction occurs only by seed; these form
a seed bank (up to 190 seeds m�2), with a typical half-life

of 2–3 years (Allan and Holst 1996). There were two study
sites, but to simplify presentation, we focus on one, Plaine
du Crau, an area of sheep-grazed semiarid steppe. Statis-
tical analyses used data from both sites, with site effects
fitted when significant.

Sampling ran from August 1987 to August 1992, which
included the complete lifetime of the 1987 seedling co-
hort. Each plant’s location and diameters (the longest
and its perpendicular) were recorded in August, Novem-
ber, March, and May. We used the log-transformed max-
imum of the November, March, and May rosette areas
as our measure of plant size. Additional visits were made
each summer to collect all capitula on flowering plants
within study quadrats. All apparently viable seeds were
counted and then scattered randomly in their quadrat of
origin.

Data Analysis

Results of the data analysis are summarized in table 1.
Seedling size was well described by a normal distribution
truncated at 0 (fig. 1a). Annual changes in plant size were
size dependent ( ) but not age dependent (P ! .0001 P 1

) and were fitted by a linear model with size-dependent.08
variance ( ; see table 1; fig. 1b).P ! .0001

Survival probability was modeled as a mixed logistic
regression with size and age as independent variables and
a Gaussian distribution of individual intercepts. The main
effects of size, age, and site were all highly significant
( ), and there was significant between-individualP ! .0001
heterogeneity ( ). Survival probability increases withP ! .02
plant size and decreases with age (fig. 1c). The standard
deviation of the intercept distribution js quantifies the
between-individual variability. This variability may reflect
differences in the local competitive environment, abiotic
conditions, genetic differences, or other properties that
remain constant over an individual’s life.

Flowering probability was modeled by standard logistic
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Figure 1: Demographic functions for Onopordum. a, Distribution of recruit sizes; the curve is the fitted truncated normal distribution. b, Growth
relationship for plant size in successive years. c, Contour plot showing the dependence of survival on plant size and age. d, Fecundity (viable seed
production) in relation to log-transformed rosette area.

regression because there was no evidence of between-
individual variation ( ). Flowering probability in-P 1 .1
creased with plant size ( ) and age ( ), butP ! .0001 P ! .008
site effects were not significant ( ). Seed productionP 1 .1
is strongly size dependent ( ) and highly variableP ! .0002
(fig. 1d).

Because of the seed bank, the probability of seedling
establishment cannot be estimated by the ratio between
recruitment and seed production. We therefore set the
probability of seedling establishment in the density-
independent IPM to match the observed rate of population
increase ( ). We chose not to1/4l p (155/140) p 1.026

model the seed bank because estimates of seed germination
and death are not available; however, if estimates were
available, it would be straightforward to add an additional
discrete-state variable representing the number of seeds in
the seed bank.

Intraspecific competition with neighbors had very little
influence on growth and survival. In contrast, despite seed
production being highly variable (0–2,750 per quadrat),
the number of recruits was remarkably constant and in-
dependent of seed production the previous year ( ).P 1 .2
Our density-dependent model therefore assumes that pop-
ulation growth is limited by microsite availability.



414 The American Naturalist

Integral Model for Onopordum

The fate of Onopordum plants is influenced by their size
x, age a, and quality q (measured by survival intercept).
Size is continuous whereas age and quality are discrete in
our model. We treat quality as discrete for technical rea-
sons (the conditional probability distribution for q(t �

given is singular with respect to Lebesgue measure)1) q(t)
that reflect our biological assumption that quality is con-
stant. A dynamic quality variable is treated like size or any
other dynamic continuous trait (for an example, see app.
A).

To deal with multiple traits affecting demography, we
generalize the basic model (1) as follows. First, there is a
set of functions that gives the distribution of sizen (x, t)a, k

for individuals of age a ( –7) and quality class ka p 0
( –Q). Second, there is a set of survival-growth andk p 1
fecundity kernel components that specifies the fate and
fecundity of individuals of each possible age # quality

combination.(a, k)
Survival takes individuals from population component

to . The survival-growth kernel for(a, k) (a � 1, k) (a, k)
individuals is derived from the probability of survival and
the size distribution of survivors. In the notation of table
1,

P (y, x) p s(x, a, q )[1 � p (x, a)]g(y, x). (2)a, k k f

That is, to reach size y from size x, the individual must
survive, not flower, and make the size transition.x r y
Flowering probability is a factor in equation (2) because
flowering is fatal. Formulas for the probabilities of survival
and flowering are given in table 1, and the growth kernel

is given by the conditional size distribution fromg(y, x)
table 1, where y is approximately normal, with mean

and variance .2¯ ¯y p 3.24 � 0.56x j p 42.74 exp (�0.71y)y

Births go from each component to all components(a, k)
. Seedling size and quality are assigned independently(0, j)

(and independent of parent age, size, and quality) ac-
cording to the distributions given in table 1. The fecundity
kernels are therefore , whereF (y, x) p a J (y)S(x, a, k)a, k, j j 0

aj is the fraction of seedlings in quality class j, J0 is the
probability density of seedling size, and is theS(x, a, k)
number of seedlings in year per parent of age a,t � 1
size x, and quality class k in year t. Our model breaks
down seedling production into survival of the parent,
flowering of the parent, seed production, and probabil-
ity of establishment as a seedling. So, in terms of the
demographic models in table 1, we have S(x, a, k) p

.p f (x)p (x, a)s(x, a, q )e n f k

Having specified the survival-growth and fecundity ker-
nels, the model is now complete. Note that the kernel of
the integral model is implied directly by the statistical anal-

ysis of the data. The model expresses the population-level
consequences of individual demography without any ad-
ditional assumptions or approximations.

Why Not Use a Matrix Model?

For illustration, we have chosen a species with several
features that the basic IPM cannot accommodate, but the
model is still defined by a small number of conventional
regression models with a total of 17 fitted parameters. In
contrast, a conventional matrix model would have an
enormous number of parameters (matrix entries) to es-
timate. At a bare minimum, we might use four size classes
and a maximum age of 4. Then, with Q quality classes,
there would be 4Q matrices of size for survival and4 # 4
growth transitions and fecundity parameters for ages 2–4
(total fecundity and the offspring distri-size # quality
bution). The total parameter count is . For ac-65Q � 14
curate solution of the integral model, we have used 40
quality classes, which would entail more than 2,500 pa-
rameters for a matrix model, but even with three quality
classes, the matrix model would have more than 200 pa-
rameters. Moreover, if individual quality is dynamic, the
number of parameters in a matrix model would be vastly
higher (proportional to Q2), while an IPM would typically
require only a few extra parameters to describe quality
dynamics, as in the model described in ap-size # quality
pendix A.

This enormous difference in parameter count occurs
whenever individual performance is affected by multiple
state variables. Even with our large data set (1,402 obser-
vations on 1,144 individuals), we could not hope to es-
timate accurately all 192 survival entries in a projection
matrix with three quality classes. For the integral model,
we have a generalized linear mixed model with four fitted
parameters and the option of fitting a nonlinear model if
it were needed (e.g., Wood 2004, 2005). The relative ease
and parsimony of model parameterization for IPMs is one
of the main points of this empirical application. Contin-
uous regression models can be used to parameterize matrix
models (Morris and Doak 2002), followed by some way
of averaging across a stage class, for example, to estimate
the average fecundity of medium-size individuals. But if
the actual response function is smooth, then division into
stage classes necessarily distorts the functional relation-
ship—indeed, any supposed average fecundity of medium-
size individuals is not well defined because the average
depends on the within-stage size distribution, which varies
over time. By retaining a continuous-trait variable, the
individual-level description in terms of smoothly varying
effects of continuous-trait variation is translated exactly
into the implied population-level dynamics.
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General Integral Model

We now describe a general integral model that can ac-
commodate species such as Onopordum with complex de-
mography, including species with complex life cycles and
multiple traits (discrete or continuous) affecting demo-
graphic performance. We then describe the model’s general
properties and how it can be implemented on a computer,
returning to Onopordum to illustrate practical application
of the model.

The space of individual states X can include a set of
discrete points and a set of continuousD p {x , … , x }1 D

domains . Each continuousC p {Q , Q , … , Q }D�1 D�2 D�C

domain is either a closed interval or a closed rectangle in
d-dimensional space. Each set in D or C will be called a
component and denoted as Qj, , .j p 1, 2, … N p D � C
For example, Q1 and Q2 might represent different genders
or a pair of discrete morphs in a species with phenotypic
plasticity, within which individuals are classified by size or
weight. The state of the population is described by a func-
tion that gives the distribution of individualn(x, t) ≥ 0
states x at time t; note that this function also consists of
the following components: discrete values ,n p n(x )j j

and continuous functions ,j p 1, 2, … , D n (x) j pj

.D � 1, 2, … , N
To describe transitions within and among components,

there is a set of kernel components , ,K (y, x) 1 ≤ i, j ≤ Nij

with whenever individuals in Qj contribute to nextK ( 0ij

year’s population in Qi. In terms of kernel components,
the general deterministic model is

N

n (y, t � 1) p K (y, x)n (x, t)dx. (3)�i � ij j
jp1

Qj

There are four possible types of kernel components:
discrete-to-discrete ( ): , a numberi, j ≤ D K (y, x) p kij ij

(e.g., the number of two-leaf seedlings next year per one-
leaf seedlings this year); discrete-to-continuous ( ,j ≤ D

): (e.g., the size distribution of re-i 1 D K (y, x) p k (y)ij ij

cruits produced by seeds that germinate); continuous-
to-discrete ( , ): , the state-j 1 D i ≤ D K (y, x) p k (x)ij ij

dependent contribution to discrete component i (e.g.,
the number of resting eggs produced by Daphnia of age
j and size x); and continuous-to-continuous ( ):i, j 1 D

is a genuinely bivariate function giving the con-K (y, x)ij

tribution of state x individuals in component j to state y
individuals in component i.

Kernel components can be separated into survival-
growth and fecundity contributions, . We as-K p P � Fij ij ij

sume that all Pij and Fij are continuous functions so that
the kernel is continuous. The model as just described is
density independent; the density-dependent model is the

same except that K can depend on the population state,
, or on some measure N of total populationK p K(y, x, n)

density, .K p K(y, x, N)
In our Onopordum model, the domains are all intervals

representing the range of possible sizes, one for each
class combination. All kernel componentsage # quality

are therefore of the continuous-to-continuous type. To
incorporate the seed bank (as in M. Rees, D. Z. Childs, J.
C. Metcalf, K. E. Rose, A. Sheppard, and P. J. Grubb,
unpublished manuscript), we would add a discrete com-
ponent for the number of seeds, a series of continuous-
to-discrete fecundity kernels for seed production by each

combination, a series of discrete-toage # quality
-continuous kernels for emergence of seeds into each qual-
ity category at age 0, and a discrete-to-discrete kernel (a
number) for seeds remaining in dormancy and surviving.

Our only restrictive assumption is that continuous do-
mains are bounded. For simplicity, we have assumed rect-
angular domains, but the theory applies so long as each
continuous domain is a bounded and closed subset of
Euclidean space. Unbounded domains, however, lead to
technical complications (see app. C) that we believe should
be avoided. An integral model with bounded domains is
a natural generalization of matrix models and shares many
of their properties (the domain of a matrix model, a finite
set of points, is always bounded in the sense used here,
though it can sometimes represent an unbounded set of
individual states, e.g., a single matrix stage class or IPM
domain for individuals of age A or higher). An integral
model with unbounded domains can behave very differ-
ently, for example, allowing a population to spread forever
in “trait space” without ever reaching a stable distribution
(see app. B).

There are two ways to make a bounded integral model.
First, the modeler can specify a finite range of possible
values for all individual attributes. For example, each var-
iable can be truncated at several standard deviations be-
yond the range of observed values, with the kernel set to
0 outside those limits. Suitable limits can also be set by
expanding the range until further increases have no impact
on model predictions. Individuals far beyond the range of
the data are a fiction that results from using an unbounded
statistical distribution to model a finite data set. This is
harmless for short-term prediction but can lead to un-
realistic long-term behavior. Second, unbounded attrib-
utes can be transformed onto a bounded domain using,
say, the logistic transformation . Whetherx xx r e /(1 � e )
this produces a model satisfying our assumptions depends
on how the kernel is defined outside the range of the data
(see app. C). Either way, bounded components result when
the model is not allowed to produce individuals very dif-
ferent from those actually observed. The first approach is
much simpler and is therefore recommended.



416 The American Naturalist

Implementing a General Integral Model

Evaluating Integrals

Equation (3) shows that each iteration of an IPM consists
of one or more integrals that must be evaluated numer-
ically. We recommend doing this using a simple method
called the midpoint rule. To explain the midpoint rule,
consider the basic model (1). We define mesh points xi by
dividing the interval evenly into m size classes and[L, U]
setting xi at the midpoint of the ith class:

x p L � (i � 0.5)h,i

i p 1, 2, … , m, (4)

where . The midpoint rule approximationh p (U � L)/m
to equation (1) is then

m

( )n(x , t � 1) p h K(x , x )n x , t . (5)�j j i i
ip1

This is a matrix multiplication

( ) ( )n t � 1 p Kn t , (6)

where K is the matrix whose th entry is and(i, j) hK(x , x )i j

is the vector whose ith entry is . The same idean(t) n(x , t)i

can be used to approximate higher-dimensional integrals
for models with multiple state variables by defining mesh
points for each variable. The result is again a matrix it-
eration for the population distribution at the mesh points.

The accuracy of the midpoint rule depends on the num-
ber of mesh points m. Determining m is a trade-off be-
tween accuracy and computational cost, and in practice
one should explore a range of mesh sizes to ensure that
the population growth rate and other quantities of interest
are calculated accurately. In appendix A, we suggest meth-
ods for implementing integral models when individuals
are cross-classified by age and size or by size and quality.

Computing l, w, and v

The usual procedure for a matrix model is to compute
the complete set of eigenvalues and eigenvectors and then
find the dominant pair. For the large matrices representing
a complex integral model, it is much more efficient to
compute only the dominant pair by iterating the model.
Let denote the population state in generation t—eithern(t)
one vector or the set of vectors for each component of X.
Choose any nonzero initial distribution , andn(0) p n 0

let , where is the sum of all entries inu p n / kn k kxk0 0 0

the vector. The iteration for the population growth rate lt

and population structure is thenu(t) p n(t)/ kn(t)k

Ku(t)
u(t � 1) p ,

Ku(t)k k

l p Ku(t) , (7)k kt

where K is the matrix used to iterate the model numerically
(e.g., eq. [6]). Iterating equation (7) until it converges gives
l and a state vector u whose entries are proportional to
the stable state distribution function (Isaacson andw(x)
Keller 1966).

The dominant left eigenvector v, representing state-
dependent reproductive value, is the dominant right ei-
genvalue for the transpose kernel andTK (y, x) { K(x, y)
can be obtained by iterating equation (7) with the trans-
pose kernel. Some suggestions for implementing transpose
iteration are in appendix A.

Stable Population Growth: Assumptions
and Their Meaning

General Theory

Stable population growth refers to properties centered on
the existence of a unique stable population distribution
and asymptotic growth rate, to which a density-indepen-
dent population converges from any initial composition:

n(x, t)
lim p Cw(x). (8)

tlt r�

Here, l and w are the dominant eigenvalue and eigen-
vector for the kernel, respectively, and C is a constant
depending on the initial population. Thus, l is the long-
term population growth rate, and w is the stable state
distribution, with and . In this section, wel 1 0 w(x) ≥ 0
describe two conditions that imply stable population
growth for our general integral model, and in “Stable Pop-
ulation Growth: Results” we state the conclusions. Proofs
and additional discussion of our assumptions are in ap-
pendixes B and C.

For matrix models, equation (8) is guaranteed to occur
if the projection matrix A is power positive: all entries of
Am are positive for some (Caswell [2001, sec. 4.5]m 1 0
calls such a matrix “primitive”). Note that power positivity
is possible only if postreproductive stages are removed
from the model. The analogous condition implying stable
population growth in our general IPM is that for some

,m 1 0

(m)K (y, x) 1 0 (9)

for all in X, where and K (m) is the m-step-(1)x, y K p K
ahead projection kernel defined by the Chapman-
Kolmogorov formula:
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(t�1) (t)K (y, x) p K(y, z)K (z, x)dz. (10)�
X

Equation (10) is the continuous equivalent of matrix mul-
tiplication, so K (m) is analogous to the mth power of a
projection matrix. We therefore refer to property (9) as
power positivity of the kernel. In a matrix model, all com-
ponents of X are discrete points, so property (9) is exactly
equivalent to the projection matrix being power positive.

A second condition that also guarantees stable popu-
lation growth in our model is mixing at birth, meaning
that the relative frequency of offspring states is similar for
all parents. This condition is likely to hold in many species.
For example, although many plant species have great plas-
ticity in the number of seeds produced, there is much less
plasticity in seed size or quality. In addition, maternal
environment effects are often small compared with the
effect of the environment in which a seedling grows (Wein-
er et al. 1997), which means that the distribution of off-
spring size will be similar for all parents, provided the
population is censused sometime after recruitment.

Technically, suppose that for a parent with state x, the
fecundity kernel satisfies ,A(x)J (y) ≤ F(y, x) ≤ B(x)J (y)0 0

where and J0 is a probability distribution. Then,A, B 1 0
if there is a finite maximum age for reproduction, we can
construct a Leslie matrix L from the mean age-specific
survival and fecundity of a cohort of newborns with state
distribution . In appendix B, we show that if thereJ (y)0

is mixing at birth and L is power positive, then some iterate
of the kernel has a property called u-boundedness (Kras-
nosel’skij et al. 1989), which implies stable population
growth (app. C). This continues to hold without a finite
maximum age if senescence is not too slow—specifically,
if the survivors from a cohort of newborns are eventually
outnumbered by descendants of the same cohort at all
states in X (we call this uniform senescence; see app. B
for the formal definition).

What about My Model?

An IPM with stable population growth behaves very much
like a power-positive matrix model. If it behaves differ-
ently, the cause is probably biological rather than math-
ematical, such as inclusion of postreproductive individuals
or semelparous reproduction at a fixed age. The model’s
behavior will then be totally different from equation (8),
so it is easy to check computationally whether your IPM
has stable growth. If the model is implemented as a single
large matrix (as we suggest in app. A for populations struc-
tured by size and additional continuous traits), the check
is to verify that in some high power of the matrix (e.g.,
representing 100 times the average life span), the columns

are all multiples of one another, indicating convergence
to that population structure from any initial distribution.
High matrix powers can be computed efficiently using

, , and so forth. If the model4 2 2 8 4 4A p A # A A p A # A
is implemented via separate matrices for each kernel com-
ponent (as we suggest in app. A for populations with age
structure), the same check can be done indirectly by com-
puting the population state after many generations from
many different initial conditions.

Stable Population Growth: Results

Under the assumptions described in “Stable Population
Growth: Assumptions and Their Meaning,” the long-term
behavior of the integral model is identical to that of a
power-positive matrix model. These results are derived in
appendix C, which is based on work by Easterling (1998)
and the theory of positive linear operators (Krasnosel’skij
et al. 1989).

First, for any nonzero initial population , then(x, 0)
long-term dynamics are given by equation (8). Corre-
sponding to l, there is also a left eigenvector v that gives
the state dependence of relative reproductive value, that
is, the relative contribution to long-term population
growth as a function of individual state. The convergence
in equation (8) is asymptotically exponential, with the
error decreasing in proportion to once initialt(Fl F /l)2

transients have died out, where is the maximum mag-Fl F2
nitude of nondominant eigenvalues.

Second, following the development for matrix models
(Cushing 1998, chap. 1; Caswell 2001, sec. 5.3.4), we can
calculate the net reproductive rate R0, which is the long-
term generation-to-generation population growth rate.
That is, if g0 is the total current population (generation
0), g1 is their total number of offspring counted at birth
(generation 1), g2 is the total number of offspring of gen-
eration 1 individuals, and so on, then

gklim p G, (11)
kRkr� 0

with the value of G depending on the initial population
distribution (see app. B). As in matrix models, R0 and l

are related: and have the same sign, and R0l � 1 R � 10

is also important for analysis of evolutionarily stable strat-
egies (ESS) in density-dependent models. We use it below
to identify ESS flowering strategies in the Onopordum
model.

Sensitivity analysis is also nearly identical to the matrix
case, under the appropriate definitions. The question is,
How much does l change when we perturb forK(y , x )0 0

some ? With continuous-state variables, it is notx , y � X0 0

meaningful to perturb K at a single point. Instead, we
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consider a small perturbation near , replacing(y , x )0 0

with , where fr is an ap-K(y, x) K(y, x) � �f (y, xFy , x )r 0 0

proximate d function—a smooth nonnegative function
that is 0 if the distance from to is larger than(y , x ) (y, x)0 0

r and such that . Letf (y, xFy , x )dydx p 1∫X#X r 0 0

denote the resulting dominant eigenvalue. Thel(�Fy , x )0 0

sensitivity function is then

l(�Fy , x ) � l0 0s(y , x ) p lim . (12)0 0
��, r r0

This satisfies the familiar sensitivity formula

v(y)w(x)
s(y, x) p , (13)

v, wG H

where is the inner product .Av, wS Av, wS p v(x)w(x)dx∫X

The elasticity function is

K(y , x )s(y , x )0 0 0 0e(y , x ) p . (14)0 0
l

The elasticity function integrates to 1, so can bee(y , x )0 0

interpreted as the proportional contribution of K(y , x )0 0

to population growth, just like elasticities for a matrix
model.

There are two approaches to computing the sensitivity
and elasticity functions: first, once w and v have been
computed, equation (13) gives s at all mesh points and,
second, directly use the definition, equation (12), by per-
turbing K and recomputing l by iteration. This will be
slower and less accurate than equation (13) but may be
preferable if the model structure makes it hard to compute
v. In appendix A, we suggest numerical methods for com-
puting sensitivities efficiently by perturbation.

Stability Analysis for Density-Dependent Models

In this section, we state a criterion for local stability of
equilibria in models with a density-dependent kernel,
which is derived in appendix B. For simplicity (following
Caswell 2001, chap. 16), we assume that the density-
dependent kernel has the form , where N is aK(y, x, N)
weighted total population size,

N(t) p W(x)n(x, t)dx, (15)�
X

for some weighting function . Let denote an¯W ≥ 0 n(x)
equilibrium population distribution and a small per-z(x)
turbation. Then, starting from in year t, the pop-n̄ � z
ulation in year is , where′¯t � 1 n � z

′ 2z (y) p J(y, x, N)z(x)dx � O(z ). (16)�
X

Here is given by equation (15), with , and J is¯N n p n
the Jacobian kernel given by

J(y, x, N) p K(y, x, N) � Q(y)W(x),

�K
¯Q(y) p (y, x, N)n(x)dx, (17)�

�N
X

where J is analogous to the Jacobian matrix for density-
dependent matrix models (Caswell 2001, sec. 16.4). So
long as J is continuous, the conclusion from equation (16)
is that is locally stable if the dominant eigenvalue ofn̄(x)

is !1 in magnitude.J(y, x, N)
The stability criterion would generally be applied nu-

merically, by computing J and its dominant eigenvalue.
However, in appendix B, we prove that a class of models
with density-dependent fecundity, which includes our
density-dependent Onopordum model, has at most one
positive equilibrium, which is locally stable whenever it
exists.

Onopordum Model Results

We now apply the general theory to analyze the IPM for
Onopordum. Some additional results on evolutionary anal-
ysis—characterization of optimal and ESS life histories—
are also presented and applied.

The model has a finite maximum age, and the distri-
bution of offspring states is independent of parent state,
so the density-independent model satisfies the mixing at
birth assumption and therefore has a unique dominant
eigenvalue and associated eigenvectors. The model’s stable
distribution provides an accurate description of the bi-
modal distribution of sizes observed in the population (fig.
2a), predicts that the population will be dominated by new
recruits (fig. 2b), and shows that older individuals have
larger survival intercepts, on average, relative to new re-
cruits (fig. 2c). This shift reflects the increased survival of
individuals with larger survival intercepts. Reproductive
value increases monotonically with size, reflecting the fact
that the probability of flowering and seed production in-
creases as plants become larger (fig. 2d). Reproductive
value decreases with age (fig. 2e) because mortality in-
creases as plants grow older and increases with individual
survival intercept (fig. 2f); the age dependence of repro-
ductive value is not an artifact of the finite maximum age
imposed in the model, as it is unaffected by increasing the
maximum age.
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Figure 2: Predicted stable state distribution for (a) size ( projection model prediction; size distribution), (b)line p integral histogram p observed
age, and (c) individual survival intercept (dotted of intercepts in new recruits). Predicted relative total reproductive value as aline p distribution
function of (d) size, (e) age, and (f) individual survival intercept.

Elasticity Analysis

Using equation (14), we can compute the elasticities of l,
and these can be partitioned into contributions from the
survival-growth and reproduction components of the ker-
nel (though these are interdependent because the survival
and flowering functions contribute to both kernel com-
ponents). In this partitioning, the survival-growth com-
ponent has a larger influence than the reproduction com-
ponent (0.75 vs. 0.25, respectively).

The elasticities of the survival-growth component of the
kernel can be partitioned into contributions from plants
of different ages, sizes, and survival intercepts (fig. 3).
Younger plants make the largest contribution to l (fig. 3a)

because they represent a larger proportion of the stable
age distribution (fig. 2a). The distribution of elasticities
for the survival intercepts is shifted toward larger inter-
cepts, relative to distribution of intercepts in recruits (fig.
3b). Again, this is a consequence of individuals with larger
survival intercepts being overrepresented in the stable dis-
tribution (fig. 2b). This effect is tempered by the fact that
few individuals with larger survival are produced (fig. 2c).
The contribution of growth to l is dominated by transi-
tions into the larger size range where reproduction occurs
(fig. 3c).

For the reproduction component of the kernel, age 3
plants make the greatest contribution to l (fig. 4a). This
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Figure 3: Survival-growth elasticities for the Onopordum integral projection model partitioned according to (a) age, (b) survival intercept (dashed
vertical survival intercept in recruits), and (c) size transitions from one year to the next.line p mean

is because plants are, on average, larger as they get older
and because fecundity increases with size; however, this
effect is counteracted by older plants that make up a
smaller proportion of the stable age distribution (fig. 2b).
The survival intercept elasticities, for both adults and re-
cruits, are identical and shifted toward larger intercepts
(fig. 4b, 4d). These elasticities are identical because the
distribution of survival intercepts in recruits is indepen-
dent of adult survival intercept. The contributions of dif-
ferent size transitions to l are dominated by movement
of individuals from large sizes to recruits (fig. 4c), which
is a consequence of larger individuals having higher prob-
abilities of flowering and producing more seeds.

To model density-dependent recruitment, we assumed
that in each year, the probability of establishment was
equal to the observed average number of recruits (2.25
m�2) divided by total seed production (m�2). Iteration of
the resulting model shows smooth convergence to a stable
equilibrium density of 4.8 plants m�2, in good agreement
with the average density recorded in the field, 4.4 plants
m�2 (Rees et al. 1999). The density-dependent kernel has
the form studied analytically in appendix B (eq. [B12]),

so our analytical results confirm the numerical observation
of a unique stable equilibrium.

The Onopordum model illustrates how latent variability
between individuals can be parsimoniously modeled using
an IPM. To explore this further, we looked at the effects
of ignoring individual variability when fitting the survival
model and of varying the distribution of survival intercepts
while leaving the other parameters of the mixed model
fixed. Varying js, the standard deviation of survival inter-
cepts, results in a rapid increase in l at low levels of
variability, with the relationship reaching an asymptote at

(fig. 5a). Ignoring individual effects when fitting thej ≈ 1s

survival model results in l being slightly overestimated
(1.036 vs. 1.026). The effects of varying js on the equilib-
rium population size are relatively small except at very low
levels of variability when the population is no longer per-
sistent ( ), and in this case, the error resulting froml ! 1
ignoring individual effects when fitting the survival model
is slight (fig. 5b). In contrast, changes in mean offspring
quality have dramatic effects (fig. 5c, 5d), and a relatively
small decrease in mean quality is predicted to render the
population unviable. On the likely assumption that quality
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Figure 4: Fecundity elasticities for the Onopordum integral projection model partitioned according to (a) age, (b) recruit survival intercept, (c) size
transitions from one year to the next, and (d) adult survival intercept.

variation is largely a result of microsite variability, these
calculations address the impact of habitat modifications
that would affect individuals’ complete life histories rather
than a specific set of transitions. In particular, they suggest
a large impact of relatively small changes in the mean
quality of available microsites for seedling establishment.

Evolutionary Analysis

The field data on Onopordum were originally used to con-
struct an individual-based model in order to study the
evolution of the flowering strategy as a function of age
and size (Rees et al. 1999). At that time, no analytic frame-
work was available that could incorporate demography
depending on size, age, and individual quality. Conse-
quently, ESS flowering strategies had to be identified using
an individual-based model simulating competition among
genotypes.

With an IPM, we can instead use familiar analytic and
numerical methods for structured population models. In
a density-independent model, the optimal life history max-
imizes l and so can be found by numerically optimizing

l as a function of the model parameters. In our density-
dependent model, density dependence acts only on seed-
ling establishment. ESS life histories are therefore char-
acterized by maximization of the net reproductive rate R0

when offspring are counted before the impact of density
dependence (app. B). Because of the mixing at birth in
our model, R0 equals the average per capita lifetime seed
production of a cohort of newborns (app. B). We compute
this by starting the population as a cohort of newborns
and summing up their seed production until all in the
founding cohort have died.

ESS life histories in the Onopordum model can then be
computed by numerical optimization of R0, which is far
quicker than individual-based simulation of the evolu-
tionary process. This is not just a convenience—it allows
far more intensive study of the model.

As an example, we revisit the comparison by Rees et al.
(1999) between observed and predicted ESS flowering
strategies. The flowering strategy is defined by three pa-
rameters: intercept, slope for age effect, and slope for size
effect. As in the work by Rees et al. (1999), when all three
parameters are allowed to vary, the predicted strategy is a
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Figure 5: Predicted effects of changing the distribution of offspring qual-
ity on the finite rate of increase l and equilibrium population size. a, b,
Effects of changing the standard deviation of the distribution of survival
intercepts js. Solid dots show predictions obtained by ignoring individual
effects when fitting the survival model. c, d, Effects of changing the mean
of the distribution of survival intercepts by plus or minus twice the
standard deviation of survival intercepts. The solid line shows the esti-
mated value of js, the dashed line shows js reduced by a factor of 4;
increases in js above the estimated value have no visible effect. In all
plots, the triangles are plotted at the estimated parameters of the offspring
distribution.

Figure 6: Uncertainty distributions for actual and predicted evolution-
arily stable strategy (ESS) relationship between rosette area (on log scale)
and flowering probability. The solid and dotted curves show the estimated
empirical relationship between size and flowering probability for an in-
dividual of age 3, surrounded by pointwise 2.5 and 97.5 percentiles. The
solid percentile curves are based on 1,000 bootstrap parameter vectors,
with the slope parameter for the effect of size on flowering held constant.
The dotted percentile curves are based on 5,000 draws of flowering model
parameters from the multivariate normal distribution implied by the
variance-covariance matrix of parameter estimates for the fitted model
(given in table 1) without the constraint on the slope parameter for size.
The dashed curves show the estimated ESS flowering probability, sur-
rounded by 2.5 and 97.5 pointwise percentile curves based on the 1,000
bootstrap parameter vectors. The observed mean age of flowering plants
at the study site is 2.55 years (Rees et al. 1999).

sharp threshold: all plants of a given age should flower
with probability 0 or 1, depending on whether their size
is below or above a threshold that decreases with age. The
observed size dependence of flowering is gradual, repre-
senting possibly a constraint or else a decision that depends
on plant size at some time between censuses (Rees et al.
1999). We therefore imposed gradual size dependence by
holding the size slope fixed at its estimated value and
optimizing the intercept and age slope (see Childs et al.
2003).

Rees et al. (1999) compared estimated and ESS flowering
strategies and found that plants following the ESS strategy
would flower later in life and at larger sizes (on average)
than real plants. In contrast, the ESS flowering strategy
for a stochastic model with year-to-year variation in model
parameters was very close to that observed. Rees et al.
(1999) concluded that the observed flowering strategy is
shaped by environmental variability. However, the com-
parison for the deterministic model ignored the consid-
erable uncertainty in both the empirical estimates and the

ESS. The estimated flowering parameters have substantial
standard errors (14% and 37% of the point estimate for
age and size slopes, respectively), and the predicted ESS
depends on the estimated values of all other model
parameters.

The characterization of ESSs in terms of R0 makes it
straightforward to quantify the uncertainty in the ESS. We
first bootstrapped the original data to compute 1,000 boot-
strap estimates of all model parameters (for the survival
model, we bootstrapped at the level of individual; for other
model components, there is no evidence of heterogeneity
between individuals, so we bootstrapped at the level of
observations). Then, to find the corresponding ESSs, we
computed R0 and used the Nelder-Mead simplex algorithm
to find the ESS flowering parameters for each of the boot-
strap parameter sets.

The results (fig. 6) show that there is a considerable
difference between the observed flowering strategy and the
predicted ESS, with the ESS having a lower flowering prob-
ability for all plant ages and sizes observed in the field.
The delay in flowering by the ESS results in a difference
of about 9 months in the predicted mean age of flowering
plants. This difference has relatively little effect on the
mean size of flowering plants because the actual mean size
is near the fixed point of the mean growth curve (fig. 1b).

To test whether these differences are statistically signif-
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icant, we used as test statistics the mean age at flowering
and the difference between estimated and ESS flowering
probability for an individual with the observed mean age
and size at flowering (Rees et al. 1999). The 99% bootstrap
confidence intervals (BC method) on these quantities did
not overlap 0. The difference in strategies is biologically
significant as well: in a population dominated by the ob-
served flowering strategy, the ESS would have approxi-
mately 20% higher lifetime seed production and would
increase in frequency by 4% per year (invasion l p

).1.039
These results support the interpretation by Rees et al.

(1999) that the size and age dependence of flowering in
Onopordum cannot be explained by a deterministic model
but rather has adapted in response to environmental var-
iability. ESSs under environmental variability can be pre-
dicted using stochastic integral models. Childs et al.’s
(2004) work is an example of a stochastic modelage # size
with offspring state independent of parent state; theory
for general stochastic integral models will be presented
elsewhere (S. P. Ellner and M. Rees, unpublished manu-
script). More generally, the feasibility of using bootstrap-
ping to quantify prediction uncertainty greatly facilitates
the use of IPMs for ecological forecasting.

Discussion

In this article, we have shown how IPMs can be applied
to species where individual demography is affected by mul-
tiple attributes that vary over the life cycle and can over-
come some of the practical limitations of matrix models
in such cases. Modern computing power means that the
IPM is now practical for empirical applications. As recently
as a decade ago, desktop computers would have been in-
adequate for our Onopordum model—even using just 50
mesh points for size and 20 for quality, there are 1 million
fecundity elasticities for each age at which reproduction
is possible.

The existence of a unique stable distribution and as-
ymptotic growth rate for the integral model rest on two
kernel properties: either power positivity or u-bounded-
ness. Power positivity is the analogue of assuming that a
projection matrix is primitive and can be tested compu-
tationally. The u-boundedness condition is more abstract,
but it will generally be satisfied by models with mixing at
birth. The mixing at birth condition is likely to hold so
long as the range of possible offspring states is the same
for all parents, and it can usually be checked in specific
models because it involves only properties of newborns.

Our application to Onopordum illustrates that when ex-
pected growth, survival, and birth rates are a smooth func-
tion of continuously varying traits, an integral model is a
direct translation of the statistical analysis of individual-

level demographic data. This tight connection is partic-
ularly important when individuals exhibit substantial var-
iability in multiple traits affecting vital rates, which is often
the case. Considerable sophistication is now possible in
individual-level demographic modeling because of devel-
opments during the past decade in statistical theory and
software. For example, hierarchical or mixed models (Pin-
heiro and Bates 2000; Clark 2003) can be fitted where
individual-specific parameters are drawn from a distri-
bution. Arbitrary distributions and correlation structures
for latent trait variability can be fitted via Markov chain
Monte Carlo in either Bayesian (Gelman et al. 2004) or
frequentist (de Valpine 2004) paradigms. Generalized least
squares allow models to be fitted where the error structure
is heteroscedastic or correlated, as in the growth model of
Pfister and Stevens (2002, 2003). Our Onopordum data
were fitted well by linear models, but nonlinear and non-
parametric mixed models can be used when needed (e.g.,
Wood 2004, 2005). Model-averaging approaches can be
represented in the IPM simply by weighted averaging of
the kernels implied by each demographic model under
consideration.

Elasticities are widely used in comparative studies to
partition the contributions of different demographic pro-
cesses to l at both the species and population levels (Sil-
vertown et al. 1993; Silvertown and Dodd 1996). Because
Onopordum individuals are characterized by size, age, and
survival intercept, we can partition elasticities according
to each of these attributes and so obtain a very detailed
understanding of the contributions to l from individuals
in different states. These elasticities are in some ways easier
to interpret than those of matrix models, whose values
depend on the number of stages (Enright et al. 1995). For
Onopordum, survival and growth contributed more to l

than did reproduction (75% vs. 25% of the total elasticity,
respectively), which is remarkably similar to the results
obtained by Childs et al. (2003) using an age- and size-
structured IPM for the monocarpic thistle Carlina vulgaris
(66% vs. 34%). The patterns of age specificity of both the
survival-growth and fecundity elasticities are also very sim-
ilar, with the survival-growth elasticities decreasing with
age and the fecundity elasticities having a maximum value
for intermediate ages (3 years in Onopordum and 2 in
Carlina).

The use of matrix models in applied situations is often
hampered by limited data, and this is often cited as a
rationale for constructing a low-dimensional matrix
model. This is why Caswell (2001, sec. 3.3) and Morris
and Doak (2002, p. 192) discuss ways of choosing among
different state variables rather than incorporating multiple
state variables and why most of the models reviewed by
Caswell (2001) classify individuals by a single state vari-
able. However, an integral model will often make more
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parsimonious use of limited data. In our Onopordum
model, effects of age and individual quality required only
three additional parameters: two regression slopes for age
effects and survival intercept variance. A matrix model
with individuals cross-classified by age, size, and quality
would have an enormous number of possible transitions
and would require data on multiple individuals in each

category to estimate all entries in theage # size # quality
projection matrix. In an attempt to minimize this kind of
problem for estimating survival rates, Morris and Doak
(2002) suggest a two-stage procedure: first, do logistic re-
gression of survival against size or age, and then use the
fitted regression to estimate survival in each class. The
second step can be done by using the class midpoints or
the median observed size within each class or by averaging
over the observed size distribution within each class. In
contrast to these ad hoc procedures—which still produce
a model where survival is a discontinuous function of
size—the fitted regression model (e.g., fig. 1c) can be ex-
pressed exactly as an integral model.

It should also be noted that if one fits an entire matrix
model by regression procedures like those advocated by
Morris and Doak (2002) for survival rates, then an IPM
is obtained simply by increasing the number of size classes.
Morris and Doak (2002) suggest that characterizing
growth by regression models may be difficult. But given
the wide range of regression models that can be used to
fit trends in mean and variance, most patterns of growth
can be characterized using standard statistical packages,
and we have successfully applied this approach to several
plant species (e.g., Onopordum in this article; Oenothera
glazioviana in Rees and Rose 2002; Cirsium canescens in
Rose et al. 2005; Carlina vulgaris in Childs et al. 2003,
2004; Aconitum noveboracense in Easterling et al. 2000)
and to Soay sheep (T. Coulson, personal communication);
for many other examples, see the article by Metcalf et al.
(2003). The model (app. A), or similarsize # quality
models classifying individuals by size and energy reserves
or by aboveground and belowground sizes, illustrates how
temporal correlations in growth, either positive or nega-
tive, can be modeled using IPMs.

Recent work on model-based measures of individual
fitness (Cam et al. 2002; Link et al. 2002) uses modeling
approaches to get around the problem that observed values
of realized individual fitness are based on samples of size
1 and can be seriously biased (Link et al. 2002). Instead,
Link et al. (2002) propose estimating the distribution of
individual fitness by combining age-structured projection
matrices with mixed models for individual quality varia-
tion. The same approach can be used in integral models,
which greatly increases the range of life histories to which
these approaches can be applied. More speculatively, by
using breeding value for heritable traits as one of the state

variables, it should be possible to include quantitative trait
dynamics in an integral model. Also, as suggested by Cas-
well (2001, sec. 8.3), integral models may be useful for
describing the spatial dynamics of continuously structured
populations.
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APPENDIX A

Numerical Methods

This appendix provides more information about numer-
ical methods for implementing integral models. We have
tried to suggest methods that are relatively simple to im-
plement but efficient enough for practical use on a current
desktop computer. We describe ways to implement

and integral projection modelsage # size size # quality
(IPMs) and then discuss transpose iteration (to compute
the reproductive value ) and the calculation of sensitivitiesv
and elasticities by perturbation. We also explain how
we implemented the Onopordum model involving

variation. Anyone interested inage # size # quality
building and using IPMs should read this appendix. The
mathematical level is the same as the main text, requiring
multivariate calculus and some familiarity with matrix
models. Script files illustrating the methods in R (R Core
Development Team 2005) are provided as a zip archive in
the online edition of the American Naturalist.

IPM with Age # Size Classification

In many populations, demographic rates are influenced
by both size and age, as discussed in the main text, ne-
cessitating an easily parameterized modeling framework.
We define to be the distribution of size x for agen (x, t)a

a individuals in year t. The integral model is then
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M

( ) ( ) ( )n y, t � 1 p f y, x n x, t dx,�0 � a a
ap0

Q

( ) ( ) ( )n y, t � 1 p p y, x n x, t dx, (A1)a � a�1 a�1

Q

where , is the fecundity kernel,a p 1, 2, … , M f (y, x)a

is the survival-growth kernel representing age ap (y, x)a

individuals of size x living to age and growing toa � 1
size y, and M is the maximum age excluding postrepro-
ductive ages (Childs et al. 2003). As in age-structured ma-
trix models, if there is no a priori maximum age, an ab-
sorbing state can be used to represent individuals of ages
M or older; then, for in equation (A1), we havea p M

n (y, t � 1) pM

[p (y, x)n (x, t) � p (y, x)n (x, t)]dx.� M�1 M�1 M M

Q

This is like a Leslie matrix with an added nonzero entry
in the bottom right corner, representing survival of “old”
individuals who will still be “old” next year if they survive.

The model (A1) is a series of one-dimensional integrals.
For simplicity, suppose that the size interval for all ages
is the same, . Mesh points xi for the midpointQ p [L, U]
rule are defined as in the main text (eq. [4]). The survival-
growth transitions are then approximated as

m

( )n (x , t � 1) p h p (x , x )n x , t . (A2)�a�1 j a j i a i
ip1

This is a matrix multiplication

( ) ( )n t � 1 p P n t , (A3)a�1 a a

where Pa is the matrix whose th entry is and(i, j) hp (x , x )a i j

is the vector whose ith entry is . For an ab-n (t) n (x , t)a a i

sorbing state M, we have n (t � 1) p P n (t) �M M�1 M�1

. Similarly, the integrals for fecundity are approx-P n (t)M M

imated as

M

( ) ( )n t � 1 p F n t , (A4)�0 a a
ap0

where Fa is the matrix whose th entry is .(i, j) hf (x , x )a i j

IPM with Size # Quality Classification

Attributes representing individual quality will often change
slowly over an individual’s lifetime. This leads to positive
autocorrelation in growth or reproduction (Pfister and
Stevens 2002, 2003): individuals with rapid growth or high
fecundity now are likely to be high-quality individuals who
will continue to perform well in the future. Negative au-
tocorrelations can occur if current growth or reproduction
depletes storage reserves and limits future growth or re-
production (Ehrlen 2000). Pfister and Stevens (2002) doc-
umented within-year positive correlation in growth that
degraded the forecasting accuracy of a size-classified ma-
trix model but could be accommodated in an individual-
based simulation model (Pfister and Stevens 2003). An
IPM with size and quality variables provides an alternative
model for these situations, whose properties can be de-
termined without recourse to individual-based simu-
lations.

Let x and q denote individual size and quality, respec-
tively. These will typically be modeled as continuous var-
iables jointly distributed on some rectangle Q p

. An IPM in these variables is[L , U ] # [L , U ]1 1 2 2

U U2 1

′ ′ ′ ′n(x , q , t � 1) p K(x , q Fx, q)n(x, q, t)dxdq. (A5)��
L L2 1

To evaluate equation (A5) by midpoint rule, mesh points
for both variables are defined:

x p L � (i � 0.5)h ,i 1 1

q p L � (i � 0.5)h , (A6)i 2 2

where for . The midpoint ruleh p (U � L )m j p 1, 2j j j j

approximation to equation (A5) is

m m1 2

n(x , q , t � 1) p h h K(x , q Fx , q )n(x , q , t).��k l 1 2 k l i j i j
ip1 jp1

(A7)

In models with three continuous-state variables, equation
(A5) is replaced by a triple integral and equation (A7) is
replaced by a triple sum over all mesh point combinations
for the three variables, and so on, for higher-dimensional
models.

As an example, Pfister and Stevens (2002, 2003) as-
sumed linear dynamics for the size and quality of each
individual i,
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x p a � bx � q � e ,i, t�1 i, t i, t i, t

q p rq � v ,i, t�1 i, t i, t

where and are independent normal random vari-e vi, t i, t

ables with mean 0 and variances and , respectively,2 2j jX Q

and a, b, and r are constants, with . The survival-FrF ! 1
growth component of the kernel is then

′ ′ ′ 2 ′ 2P(x , q Fx, q) p J(x ; a � bx � q, j )J(q ; rq, j ),X Q

where is the probability density for a normal2J(z; m, j )
distribution with mean m and variance j2. This allows
unbounded variation in size and quality, so finite limits
would be set that extend well beyond the range of observed
values. The fecundity component might have the form

′ ′ ′ ′F(x , q Fx, q) p g (x )g (q )B(x),X Q

where B is the size-dependent fecundity and gX and gQ are
the probability densities for offspring size and quality. This
assumes that offspring size and quality are independent
and independent of parental traits, which might hold when
q reflects site quality and offspring settle at random.

It is intuitive to think about the population state as a
matrix whose th entry is . However, in matrixi, j n(x , q )i j

languages, it will usually be more efficient to code the
model as a single large matrix multiplying a state vector.
This contrasts with our advice for models be-age # size
cause the block structure implied by stepwise age transi-
tions is not generally present in a model.size # quality
To create the state vector, take the state matrix and stack
its columns into a single vector: column 1 on top, column
2 underneath column 1, and so on, down to column m2

at the bottom. This gives a state vector n of length m1m2,
whose entry in location corre-h(i, j) { (j � 1)m � i1

sponds to . Let A be then(x , q ) m m # m mi j 1 2 1 2

matrix whose entry in location is(h(k, l), h(i, j))
. The midpoint rule approximation thenh h K(x ,q Fx ,q )1 2 k l i j

corresponds to . With 50 mesh pointsn(t � 1) p An(t)
each for size and quality, A has 6,250,000 entries—larger
than the usual matrix model, but a matrix-vector multi-
plication of this size takes roughly 0.03 s on a current PC
(in R, ver. 2.1.1, for Windows, using the matrix library or
Matlab 7.0.1). If quality changes slowly, then most entries
in A will be 0, and some speedup may be possible with
sparse matrix routines (e.g., roughly twofold for a

matrix with 95% 0 entries in Matlab 7.01).2,500 # 2,500

Transpose Iteration

The transpose iteration is

v(x, t � 1) p v(y, t)K(y, x)dy, (A8)�
Q

which is equivalent to forward iteration of the transpose
kernel . The reproductive value functionTK (y, x) p K(x, y)

(the dominant left eigenvalue of the kernel) can thereforev
be computed by forward iteration using KT. A useful nu-
merical check whether transpose iteration has been im-
plemented successfully is to verify that the computed dom-
inant eigenvalues from forward and transpose iteration are
identical.

If forward iteration is implemented by a single matrix
A, then equation (A8) is the same using AT. If forward
iteration is done using component matrices, let Aij be the
matrix representing kernel component Kij. The forward
iteration is , with denoting then (t � 1) p � A n (t) n (t)i ij j jj

vector of population distribution values at mesh points
for component j. The transpose iteration is then imple-
mented as

Tv (t � 1) p A v(t).�j ij i
i

For example, in an model with component ma-age # size
trices (A3) and (A4), the transpose iteration is analogous
to iterating a transposed Leslie matrix. The indexes where

are or , corresponding toTA ( 0 (i, j) p (a � 1, a) (0, a)ij

survival and fecundity, respectively, so the transpose it-
eration is the system

T T( ) ( )v t � 1 p P v t � F v (t),a a a�1 a 0

with , where M is the maximum possible age.v { 0M�1

Implementing the Onopordum Model

Because we assume that quality is constant over the life-
time in Onopordum, survival-growth transitions are block
structured: individuals in component (age a and qual-Qa, k

ity class k) either die or else move to . We thereforeQa�1, k

used component matrices for survival-growth transitions,
stacking them all into a four-dimensional array P, whose
entry in location i, j, a, k is , where the x’s arehP (x , x )a, k i j

mesh points for size. The current population state is stored
in a three-dimensional array N, where N[j, a, k] p

. The midpoint rule for survival-growth transi-n (x , t)a, k j

tions is then performed by computing for each
combination the matrix-vector productage # quality

that gives at timeP[7, 7 , a, k]N[7, a, k] N[7, a � 1, k] t �
.1

Births are less structured because offspring size and
quality are independent of parent age, size, and quality.
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We stored values of per capita total seedling production
in an array B with the same struc-p f (x )p (x , a)s(x , a, q )e n j f j j k

ture as N. The total seedling production is computed as
, where is the element-by-S(t) p h # sum(B 7 N) B 7 N

element product of B and N. The distri-size # quality
bution for seedlings is then given by , where theS(t)J

th entry in the matrix J is the fraction of seedlings(j, k)
of quality class k and size xj, calculated from the distri-
butions in table 1. This gives all the age 0 entries of N at
time , .t � 1 N[7, 0, 7] p S(t)J

For sensitivity analysis, we used transpose iteration with
component matrices to compute the reproductive value

and then applied the sensitivity formula. In all calcu-v
lations, we used 50 mesh points for size and 40 for quality,
and we imposed a maximum possible age of 7 years. The
maximum age observed in the field was 5 years, but the
study was terminated after the last individual from the
initial cohort died, and some plants might live longer.
Increasing the maximum age had virtually no effect on
model output, as very few individuals survive past age 5
in the model.

Computing Sensitivities by Perturbation

For numerical accuracy, it will be better to use centered
differences,

l(�Fy , x ) � l(��Fy , x )0 0 0 0s(y , x ) \ . (A9)0 0 2�

It is important to remember that � is the integral of the
perturbation to the kernel. For example, in an

model, the kernel components are allage # size
continuous-to-continuous: , with , ,K (y, x) x � Q y � Qij j i

and (survival) or 0 (reproduction). To evaluatei p j � 1
sensitivity at mesh point by iteration, the per-(x , x )i, l j, k

turbation function fr is taken to be 0 outside the grid cell
centered on , and inside that cell(x , x ) f (y, x) {i, l j, k r

, where the h’s are defined by equation (4). Thus,�/(h h )i j

is computed by adding tol(��Fx , x ) ��/(h h )i, l j, k i j

and reestimating l.K (x , x )ij i, l j, k

Three speedups are essential when computing sensitiv-
ities by iteration: (1) the sensitivity formula (13) implies
that for any x∗. So, for any∗ ∗s(y, x) p s(y, x )[w(x)/w(x )]
given y, once a single sensitivity is computed by∗s(y, x )
perturbation, all other can be inferred. As a result,s(y, x)
the number of sensitivities that must be computed by per-
turbation is at most the total number of mesh points for
all components of X, rather than the number of mesh
points squared. (2) If elasticities are the goal, sensitivities
do not have to be computed for mesh points where the
kernel is 0. (3) The stable distribution for the unperturbed
kernel is a good approximation to that for the perturbed

kernel. So if w is used as the initial population structure,
iteration (7) will converge quickly.

To be sure that the perturbed kernel has a dominant
eigenvalue, � should be small enough that the perturbed
kernel value is still positive. However, � cannot be too
small or the effect on l will be too small to estimate
numerically. So, for each value of y, the x∗ in (1) should
be chosen to maximize the impact on l of a 100% re-
duction in the kernel near . This is roughly equiv-∗(y, x )
alent to maximizing as a function of x, which ise(y, x)
equivalent (by the sensitivity formula) to maximizing

as a function of x.K(y, x)w(x)
Using these methods, the elasticity surface for a basic

size-structured model with size-dependent growth, sur-
vival, and fecundity was computed by perturbation in ap-
proximately 15 s using 250 grid points. Over the 62,500
resulting grid points for the sensitivity and elasticity sur-
faces, the maximum relative error in elasticity was 0.06%
relative to the elasticity surface computed from the analytic
formula (13).
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