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cDipartimento di Scienze Economiche e Metodi Quantitativi, Università del Piemonte Orientale ‘‘A. Avogadro’’, Via Perrone 18, 28100 Novara, Italy

Received 30 April 2006

Available online 14 January 2007
Abstract

The increasing level of disease control by vaccination jointly with the growing standard of living and health of modern societies could

favour the spread of exemption as a ‘‘rational’’ behaviour towards vaccination. Rational exemption implies that families will tend to

relate the decision to vaccinate their children to the available information on the state of the disease. Using an SIR model with

information dependent vaccination we show that rational exemption might make elimination of the disease an unfeasible task even if

coverages as high as 100% are actually reached during epochs of high social alarm. Moreover, we show that rational exemption may also

become responsible for the onset of sustained oscillations when the decision to vaccinate also depends on the past history of the disease.

r 2007 Elsevier Inc. All rights reserved.

Keywords: SIR models with vaccination; Rational exemption; Social alarm; Global stability; Oscillations
1. Introduction

Vaccines have been a central factor in improving the
standards of living, and the standards of health (Bloom
and Cannings, 2004; Livi Bacci, 2005). Mass vaccination
has allowed increasing levels of disease control worldwide,
which has recently culminated in the elimination of
indigenous measles in Finland (Peltola et al., 1997) and
of poliomyelitis in many areas of the world (CDC, 2004).
A further positive effect of some mass vaccinations is
the reduction of the incidence of virus-related tumours
(Chang et al., 1997). For example, the anti-HBV vaccines
may be considered a preventive anti-tumour vaccine
(Lollini et al., 2006).

Nonetheless the recent experience of developed countries
shows instances of declines in vaccination coverage for
several diseases. In some cases this is a consequences of
rumours and adverse publicity against vaccines. For
e front matter r 2007 Elsevier Inc. All rights reserved.
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example, the decline in coverage of the Measles–Mumps–-
Rubella vaccine (MMR) recently observed in the UK
(EURO SURVEILLANCE, 1998; CDR, 1998, 2002, 2004)
has been explained by the role of adverse publicity about
possible links between the vaccine, autism, and Crohn’s
disease (Wright and Polack, 2005). Similar facts have been
found for Scotland (Friederichs et al., 2006). Another
example is the decline in HBV coverage due to the
‘‘Thimerosal’’ case (Luman et al., 2004). In the future
negative effects on coverage could derive from the
argument, often raised by anti-vaccination movements,
that vaccines could favour the onset of allergic diseases, a
point that is still debated by the scientific literature
(Koppen et al., 2004; Berndsen, 2004; Souza da Cunha,
2004; Schattner, 2005).
From a wider perspective, the phenomenon of coverage

upswing has been common in the history of modern
societies, often as a consequence of the tension between
public health targets and individual freedom, for example
between compulsory vaccination and conscientious or
philosophical exemption (Salmon et al., 2006). Exemption
against childhood immunization is a good example of
this phenomenon: the tension stemming from the fear of
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damages due to the vaccine is emphasized when compul-
sory vaccination diminishes parents’ autonomy as regards
the decisions on their children health. Such tension can in
many cases prove beneficial for the society as a whole, in
that it can push research toward better outcomes and
eventually lead to an improvement in the safety of vaccines,
which is a major target of public health. In the short-term
however the main consequence of coverage decline, or of
delayed vaccination, is always an increase in susceptibility
(CDR, 2004), and thus in the risk of resurgence of diseases
that were perhaps thought to be well controlled.

An increasing number of studies deal with the motiva-
tions underlying parents’ choices to vaccinate or not their
children (Maayan-Metzger et al., 2005; Wright and Polack,
2005; Wroe et al., 2005; Friederichs et al., 2006). Besides
the role played by conscientious exemption, these studies
suggest the possibility of an ‘‘inverted U’’ relationship
between education and income on one hand and propensity
to vaccinate on the other. Two main remarks thus arise:
first, the increasing well-being of modern societies could, in
prospective terms, lead to increasing difficulties in main-
taining high coverages. Second, an ultimate responsible in
coverage decline is vaccination itself, i.e. the vaccination
success in controlling diseases, which tends to encourage
forms of ‘‘rational exemption’’. The argument underlying
rational exemption is simple. Consider for example the
cases of poliomyelitis and measles control. In several
countries the increasing coverage with MMR within the
WHO Plan for global measles elimination has driven
circulation of the disease to minimal levels or even zero
incidence, i.e. a situation where the few observed cases can
be traced back to immigration. As the incidence of the
diseases continues to decline thanks to vaccination, families
become increasingly concerned with the risks associated
with vaccines (WHO, 2006). If families start perceiving that
the chance of acquiring infection for their children is lower
compared to the risk of experiencing damages from the
vaccine (this is actually so for poliomyelitis), they could
believe it rational not to vaccinate their children, particu-
larly if they perceive that the rest of the population will,
instead, vaccinate. This rationality is of course myopic
since the decision to not vaccinate should be forward
looking and taking into account also expectations of future
resurgence of infection due to declining coverage, and not
just the currently observed regime of low incidence and
high coverage. Moreover, it is an example of ‘‘free riding’’
(Stiglitz, 2000), as by the way all types of exemptions
(Salmon et al., 2006).

The widespread adoption of rational exemption would
lead to a situation where at least a part of families relate
their decision to vaccinate to the available information on
the state of the disease, vaccinating more, and promptly,
under circumstances of high social alarm due to the
disease, and little (and later) otherwise. Such a behaviour
always existed, as pointed out by Salmon et al.: ‘‘yvacci-
nation rates fell, although uptake tended to increase when
outbreaks occurred’’ (Salmon et al., 2006, p. 438).
Motivated by the above considerations, in this paper we
study the dynamic implications of information dependent
vaccination for SIR vaccine preventable childhood dis-
eases. The underlying idea is that the vaccine coverage is
the outcome of decisions, to vaccinate or not their children,
which are partly based on the publicly available informa-
tion on the state of the disease. There is a growing body of
literature on information-dependent vaccination and vac-
cination choice, and their implications for the dynamics of
SIR models for vaccine preventable diseases. Since the
seminal paper by Fine and Clarkson (1986), Brito et al.
(1991) have explored the conditions under which the free-
rider problem can actually be overcome without compul-
sory vaccination, through the use of taxes and subsidies.
Geoffard and Philipson (1997) use SIR-type models to
explore the difficulty of eradicating a disease in presence of
rational exemption, even if incentives such as subsidies are
included. Bauch and Earn (2004) develop a game
theoretical interpretation based on an SIR model of the
rational exemption phenomenon, and show that under a
purely voluntary policy, rational exemption makes eradi-
cation impossible. Reluga et al. (2006) expand Bauch and
Earn (2004) by setting the game theoretic approach within
the ‘‘viability’’ approach, and study the dynamical
consequences of rational exemption under both current
and delayed information. Bauch (2005) studies SIR-type
differential equations with information dependence and
analyze a model similar to the one in the present manu-
script. Both the latter studies show the existence of
oscillations and the impossibility of eradicating the disease
due to rational exemption. A further related study is Auld
(2003), who models the issue of vaccination choice within
the framework of an agent-based model.
The present work aims to contribute to this literature by

(a) incorporating information dependence not only on
current disease levels but also on the history of disease in
the population, (b) including the possibility of catch-up
vaccination as a strategy for those who decided to not
vaccinate during epochs of low perceived risk, (c) providing
more general mathematical result: for instance all our
stability results on the model with vaccination dependent
on current information are shown to hold globally.
More specifically, we consider some SIR models in which

the vaccination coverage of newborn is the sum of two
components: a steady one, given by the fraction of parents
who, while taking the decision to immunize their children
are not affected by the state of information on the disease,
and an ‘‘information-dependent’’ one, which is taken to be
an increasing function of the perceived risk (or the social
alarm) due to the disease, as summarized by some
information variable depending on the current and past
state of the disease. We feel that our assumptions on
coverage capture well the idea of rational exemption.
Our results are as follows. First, if the information

function only summarizes the current state of the disease,
then unless the steady component is above the elimination
threshold, a unique endemic state will exist and is globally
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asymptotically stable (GAS). This result continues to hold
even when we allow in the model delayed catch-up
vaccination of older individuals as a ‘‘recuperation
strategy’’ for families that did not vaccinate their children
during epochs of low perceived risk. Second, if the
information function also summarizes the past history of
the disease according to an exponentially fading memory
then we can also observe the emergence of stable
oscillations through Hopf bifurcation of the endemic state,
i.e. delayed state-dependent vaccination can be a source of
steady oscillations for common childhood diseases. Ana-
lysis of selected subcases and numerical simulations gives
insight on the conditions under which stable oscillations
are more likely, and on the amplitude of the inter-epidemic
period that would result as a consequence of the interaction
between the factors traditionally included in SIR models,
average age at infection, vaccination, and demographics,
on the one hand, and those due to social behaviour by
individuals on the other hand. Numerical simulations also
suggest that the involved limit cycles are globally stable.

The paper is organized as follows. In Section 2 we
introduce a general model encompassing the various
special models considered. Section 3 reports some results
on equilibria and local stability of the general model.
Sections 4 and 5 report, respectively, the stability analysis
of the undelayed and of the delayed case. Examples,
numerical results, and a discussion of the implications of
information dependent vaccination for the period of
oscillations, are reported in Sections 6 and 7. Concluding
remarks follow.

2. A family of models for information-related vaccinating

behaviour

We consider the following family of SIR models for a
nonfatal disease in a constant homogeneously mixing
population, with state-dependent vaccination coverage:

X 0 ¼ mNð1� pðMÞÞ � mX � bðtÞ
XY

N
,

Y 0 ¼ bðtÞ
XY

N
� ðmþ nÞY ,

Z0 ¼ nY � mZ,

V 0 ¼ mNpðMÞ � mV , ð1Þ

where X, Y, Z, V are functions of time, respectively
denoting the number of susceptibles, infectious (and
infectives), immune and vaccinated individuals at time t.
Moreover, m40 denotes the birth and death rate, which are
assumed identical, n40 the rate of recovery from infection,
bðtÞ40 the transmission rate, which is assumed to be
constant or bounded and periodically varying with mini-
mal period y usually equal to 1 year (Anderson and May,
1991), and N ¼ X þ Y þ Z þ V is the total population,
constant over time. Thus, it is useful to introduce the
epidemiological fractions, i.e. the variables

S ¼ X=N; I ¼ Y=N ; R ¼ Z=N; U ¼ V=N. (2)
The main novelty of (1) is the function p which denotes,
assuming a 100% effective vaccine, the actual vaccination
coverage at birth, which is assumed to be a function of the
information variable M. We consider two distinct possibi-
lities: (a) M only summarizes information about the
current state of the disease, i.e. M only depends on current
values of state variables, and (b) M also summarizes
information about past values of state variables.
As regards case (a), one could take any empirically

observed quantities published in usual statistics of in-
fectious diseases, for instance:
�
 M ¼ abXY=N, i.e. M is the currently reported absolute
incidence where a40 is the reporting rate. Alternatively,
as public data report standardized rather than absolute
incidence of diseases, one could take M ¼ abXY=N2 ¼

abSI ;

�
 M ¼ kI ðk40Þ, i.e. M is a linear function of the current
prevalence of the disease, representing for instance the
current standardized incidence of serious cases of the
disease;

�
 M ¼ abI=ðmþ abIÞ, i.e. M is a nonlinear increasing
function of standardized incidence which can be taken
as a measure of the perceived risk of infection (Reluga
et al., 2006).

Generalizing the examples above, we shall assume that M

is given by a function g of the fractions S, I. The function g

is assumed to be continuous, increasing in the I variable,
whereas we do not state hypotheses on the behaviour in
dependence on S. For example, g can be independent of S

(as in the case gðS; IÞ ¼ kI), or increasing with S (as in the
case gðS; IÞ ¼ abSI). Furthermore, it is natural to assume
gðS; 0Þ ¼ 0 for all S.
Case (b) in which M also depends on past values of state

variables appears more realistic for many endemic disease
where information comes after rather long routine
procedures (such as laboratory confirmations, reporting
delay in the transmission of information to public health
and statistics authorities, etc) and when awareness of these
phenomena to the general population takes time. In this
case the information function M would be given by the
delayed values of a function g of S and I with the same
properties as in the unlagged case.
As known from the literature there are several routes to

model time delays. The formulation adopted in this paper is

MðtÞ ¼

Z t

�1

gðSðtÞ; IðtÞÞKðt� tÞ dt, (3)

where K is the delaying kernel (MacDonald, 1989). In the
stability analysis of Section 5, as a compromise between
realism and tractability, we will only consider Erlangian
kernels defined by the probability density function

Erln;aðxÞ ¼
an

ðn� 1Þ!
xn�1e�ax x; a 2 Rþ; n 2 Nþ (4)

for which the mean delay is given by T ¼ n=a and the
standard deviation by S ¼

ffiffiffi
n
p

=a. Of special relevance in
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the Erlangian family is the first element Erl1;a called
exponentially fading memory because it pays a declining
weight to the past. On the other hand the second element
Erl2;a defines the simpler ‘‘humped’’ Erlangian memory.

We have preferred infinitely supported distributed delays,
as the Erlangian ones, to fixed lags, i.e. to kernels having the
Dirac’s form KðtÞ ¼ dðt� tpÞ, which lead to delay differ-
ential equations, because of their greater realism (Lloyd,
2001). First, fixed delays embed the idea that the past is
reminded in terms of ‘‘events’’ rather than its whole history.
Second, at the population level they require that individuals
are homogeneous in their patterns of delay.

Finally, integro-differential systems with Erlangian
delays are reducible to ordinary differential equations,
thereby making their analysis simpler compared to other
types of distributed delays (MacDonald, 1989). Note
that (3) also embeds the unlagged case (a) discussed
previously when

KðtÞ ¼ dðtÞ. (5)

This allows us to consider (3) as a general representation
for both cases (a) and (b).

Remark 1. Note that by assumptions on b and g it follows
that M is bounded, taking all the values of an interval
I ¼ ½0;MsupÞ, where Msup ¼ supt MðtÞ.

The coverage function p is defined as

pðMÞ ¼ p0 þ p1ðMÞ 0op0o1; M 2 I (6)

i.e. it is the sum of two components, a fixed one or
‘‘baseline’’ p0, meaning that a fraction of the population is
resilient to rumours and continues to vaccinate their
children whatever be the state of publicly available
information M, and a variable one p1ðMÞ. We assume
that p1ðMÞ essentially mirrors the reaction of families to the
social alarm caused by the disease, according to the idea of
rational exemption.1 Thus, we assume that p1 is an
increasing function of M. In real situations we expect that
p1 is often S-shaped, very slowly increasing for low levels of
M, and thereafter quickly increasing but saturating to some
level psat

1 ¼ p1ðM
supÞ less or equal than 1� p0. If inequality

psat
1 o1� p0 holds then a positive fraction of individuals is

never reached by vaccination, a fact well documented by
the public health practice, due to the presence of anti-
vaccinating movements and the cost to reach the more
elusive population groups. As a consequence, we formally
assume that
�

1

Ind

imm

this

ðS;
0pp1ðMÞp1� p0 for all M 2 I;

�
 p1ð0Þ ¼ 0;

�
 p1 is continuous and differentiable, except, in some
cases, at a finite number of points, and increasing.
The idea of rational exemption, or free riding, fits well in the scheme.

eed the behaviour of the free rider is to vaccinate less when the fraction

une RþU increases, i.e. qp1=qðRþUÞo0. Since RþU ¼ 1� S � I

implies that p1 remains an increasing function of both its arguments

IÞ.
Thus, if we take M to be the currently observed incidence
of the disease, our formulation amounts to saying that
when the disease incidence is high, families tend to react by
increasing the vaccination coverage of their children.
Conversely, when incidence declines to low levels, families
react by vaccinating less.
Combining (1) and (3), our general model is given by the

following nonlinear integro-differential system:

S0 ¼ mð1� p0 � p1ðMÞÞ � mS � bðtÞSI ;

I 0 ¼ IðbðtÞS � ðmþ nÞÞ;

M ¼
R t

�1
gðSðtÞ; IðtÞÞKðt� tÞ dt;

ð7Þ

where we have discarded variables R and U because their
dynamics follow trivially from the dynamics of S, I and M.
If (5) holds, then M ¼ gðS; IÞ, and (7) reduces to the

unlagged two-dimensional system:

S0 ¼ mð1� p0 � p1ðgðS; IÞÞÞ � mS � bðtÞSI ;

I 0 ¼ IðbðtÞS � ðmþ nÞÞ:
ð8Þ

If instead M obeys (4) then, depending on the order of
Erlangian kernel, we obtain a family of models. In what
follows we will investigate analytically the first Erlangian
element Erl1;a which leads to the three-dimensional system:

S0 ¼ mð1� p0 � p1ðMÞÞ � mS � bðtÞSI ;

I 0 ¼ IðbS � ðmþ vÞÞ;

M 0 ¼ aðgðS; IÞ �MÞ:

ð9Þ

Generalizations for higher order Erlangian kernels easily
follow.

3. Properties of the general model

Let us consider initially the unlagged model (8) with
constant transmission rate. This model differs from the
standard text-book SIR model with vaccination at birth
(Capasso, 1993) by the appearance of the state-dependent
component of coverage p1ðMÞ. Obviously if the maximal
coverage p0 þ psat

1 is below the critical coverage (or elimina-
tion threshold) pc ¼ 1� 1=R0; where R0 ¼ b=ðmþ nÞ is the
corresponding basic reproduction number, we cannot expect
outcomes different from the standard one, i.e. the disease will
persist. Similarly, if the baseline coverage p0 exceeds the
elimination threshold then state dependent vaccination can
only accelerate elimination. Thus, the case of interest is when
the elimination threshold lies in between the baseline and the
maximal coverage. Two basic questions arise. First, can
strong information-dependent vaccination allow elimination
of the disease even though the baseline policy p0 would not?
Think to situations where social alarm pushes people to
vaccinate for a while much in excess of the elimination
threshold, for instance to temporary vaccinate 98% of
newborn, when the elimination threshold is, say, 75%.
Second, can state-dependent vaccination affect the stability
of the endemic state?
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Passing to more complex formulations as (9), since the
inclusion of the delay only affects the stability of the
system but not its equilibria, the main questions obviously
become: in what manner the stability of the endemic state
is affected when people react to past rather than
current values of observed epidemiological variables? Can
the delay trigger more complex behaviour, e.g. stable
oscillations?

We start our analysis by noting that model (7) always
admits the disease-free equilibrium:

DFE ¼ ð1� p0; 0; 0Þ. (10)

The stability properties of DFE are analyzed in the
following proposition (proof in the Appendix A.1).

Proposition 2. Both in case of y-periodic or constant b, a

sufficient condition for the GAS of the disease-free state

DFE (10) is

1� p0

mþ n
1

y

Z y

0

bðuÞ dup1. (11)

Remark 3. Notice that if b is constant condition (11)
becomes the usual one

ð1� p0ÞR0p1. (12)

When condition (12) does not hold it is possible to show
that there is a unique endemic equilibrium.

Proposition 4. If b is constant and

ð1� p0ÞR041 (13)

there exists a unique endemic equilibrium EE ¼ ðSe; Ie;MeÞ

for (7).

Proof. Observe preliminarly that if (7) admits an endemic
equilibrium ðSe; Ie;MeÞ, then from (3) it must be

Me ¼ gðSe; IeÞ

Z þ1
0

KðtÞ dt ¼ gðSe; IeÞ (14)

and therefore p1ðMeÞ ¼ p1ðgðSe; IeÞÞ. Setting I 0 ¼ 0 and
disregarding the solution I ¼ 0, we obtain

Se ¼
mþ n
b
¼

1

R0
. (15)

Defining

bp1ðIÞ ¼ p1ðgðR
�1
0 ; IÞÞ (16)

it follows that there exists a unique solution Ie of the
equation S0 ¼ 0:

1�
1

R0
�

mþ n
m

I ¼ p0 þ bp1ðIÞ. (17)

Indeed the function defined by f 2ðIÞ ¼ p0 þ bp1ðIÞ by
assumption is strictly increasing, whereas the linear function

f 1ðIÞ ¼ 1�
1

R0
�

mþ n
m

I

is strictly decreasing. Hence condition (13) is equivalent to
state that

f 1ð0Þ ¼ 1�
1

R0
4p0 ¼ f 2ð0Þ

and by

f 1ð1Þ ¼ �
1

R0
�

n
m
o0op0 þ bp1ð1Þ ¼ f 2ð1Þ

the conclusion follows. Notice that Ie will always be
epidemiologically meaningful (i.e. 0oIeo1). &

Remark 5. Eq. (17) implies

I1E oIeoIo
E , (18)

where

I1E :¼
mR0ð1� R�10 � ðp0 þ psat

1 ÞÞ

b
(19)

and

Io
E :¼

mR0ð1� p0 � R�10 Þ

b
. (20)

Note that I1E is equal to the infectious fraction obtainable
in the SIR model with constant vaccination rate at birth
equal to p0 þ psat

1 , whereas Io
E is equal to the infectious

fraction in the SIR model with constant vaccination when
only the baseline vaccination rate p0 is considered.

Remark 6. In the piece-wise linear case p1ðMÞ ¼

minfcM; 1� p0g if

gðS; IÞ ¼ I � jðSÞ

Eq. (17) is analytically solvable and:

Ie ¼
mþ n

mþ nþ cmjR�10

�
m

mþ n
�
ð1� p0ÞR0 � 1

R0

¼
mþ n

mþ nþ cmjR�10

� Io
E . ð21Þ

Remark 7. It is well known that, in case of instability of the
disease-free equilibrium, if the contact rate bðtÞ is periodic,
then the behaviour of a nonlinear epidemic model may be
very complex. For example, at the best of our knowledge,
there is no analytical demonstration of the strong
persistence of the classical no-vaccination SIR model with
periodic bðtÞ. As far as the persistence, we performed
intensive numerical simulations, and in all cases we
obtained that the system is strongly persistent. Epidemio-
logically, this means that the disease remains endemic
since, roughly speaking, there are no long-term ‘‘oscilla-
tion-induced’’ eradications.

4. Stability analysis of the endemic equilibrium in the

unlagged case

We now focus on the stability of the endemic state EE ¼

ðSe; IeÞ in the no delay case (8) under the assumption of a
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constant transmission rate b. We assume that p1 is
differentiable. The following general result holds (proof
postponed to the Appendix A.2):

Proposition 8. Let b be constant, and ð1� p0ÞR041. Then

the unique endemic state EE of system (8):
1.
 if

�p01ðMeÞ
qg

qS
ðSe; IeÞo1þ

bIe

m
(22)

is LAS;

2.
 if, in particular,

qg

qS
X0 (23)

is GAS in the positively invariant set:

O�� ¼ fðS; IÞ j SX0; I40; S þ Ip1; Sp1� p0g. (24)

In the undelayed system limit cycles may be possible
when the function g is decreasing with respect to the
proportion of susceptible subjects, as the following
proposition illustrates (proof in the Appendix A.3).

Proposition 9. If b is constant, ð1� p0ÞR041, and

�p01ðMeÞ
qg

qS
ðSe; IeÞ41þ

bIe

m
(25)

then system (8) has at least one LAS limit cycle in O��.

4.1. A noteworthy extension: adding vaccination of

susceptibles at ages different from birth

Previous results are quite general. Indeed they hold for
the following more general model which also allows,
compared to the basic model (8), ‘‘catch-up’’ vaccination
of older individuals:

S0 ¼ mð1� p0 � p1ðMÞÞ � ðq0 þ q1ðMÞÞS � mS � bSI ,

I 0 ¼ IðbS � ðmþ nÞÞ. ð26Þ

The quantities q0 and q1ðMÞ, respectively, denote the
steady and information dependent components of the rate
of vaccination of susceptibles at ages different from birth,
in particular q1ðMÞ fulfills the same assumptions as p1ðMÞ.
This is a more robust formulation of our state-dependent
vaccination problem because it allows to families that
decided to not vaccinate their children during epochs of
low social alarm the further possibility to ‘‘run to
vaccinate’’ them at a later age during a subsequent period
of high social alarm. It is possible to check that if the basic
program ðp0; q0Þ is insufficient to eliminate the disease, then
also the ‘‘expanded’’ programme ðp0 þ p1; q0 þ q1Þ will be
incapable to achieve elimination. Proceeding as in the
previous sections, we may, when the function g is
increasing in the susceptible fraction, demonstrate these
two propositions (we omit the easy proofs) extending
Propositions 2 and 8:
Proposition 10. A sufficient condition for the GAS of the

disease-free state DFE of system (26) is

mð1� p0Þ

mþ q0

1

mþ n
1

y

Z y

0

bðuÞ dup1. (27)

Proposition 11. If b is constant and

mð1� p0Þ

mþ q0

R041 (28)

then model (26) admits a unique endemic equilibrium and it is

GAS in the set:

G ¼ fðS; IÞjSX0; I40; 0pS þ Ip1g.

We are now ready to get back to the two main questions
we have raised on the potential role of state-dependent
vaccination. Our main result of this section shows that: (a)
if the baseline vaccination coverage is below the critical
elimination threshold, then elimination is definitely an
unfeasible task, even if during epochs of social alarm due to
the disease coverage in the newborn could temporary
achieve levels close to 100%! (b) things do not change when
also state-dependent catch-up of older individuals is
allowed; (c) the existence of state-dependent vaccination
coverage can change the stability character of the EE, when
g is decreasing in the susceptible fraction, from point
stability to locally stable oscillations.
5. Onset of stable oscillations under exponentially fading

memories

In this section we prove that when the actual coverage
also depends on past information then stable oscillations
may appear even under the simplest pattern of delay, i.e.
the exponentially fading memory Erl1;a. To make compu-
tations simpler we assume gðS; IÞ ¼ kI in (3), obtaining
from (9), under the assumption of constant b, the following
three-dimensional system:

S0 ¼ mð1� p0 � p1ðMÞÞ � mS � bSI ;

I 0 ¼ IðbS � ðmþ vÞÞ;

M 0 ¼ aðkI �MÞ:

ð29Þ

As we have seen in Proposition 4, under condition
ð1� p0ÞR041, system (29) has the unique endemic
equilibrium EE ¼ ðSe; Ie;MeÞ.
The local stability of EE depends on the delay parameter

a defined in (4) as it is shown in the following proposition.

Proposition 12. If and only if

ðbIe þ mÞ2 � bIemkp01ðMeÞ þ 2ðbIe þ mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bIeðnþ mÞ

p
o0

(30)

there exist two values a1, a2 with 0oa1oa2 for the

parameter a such that EE is unstable for a 2 ða1; a2Þ,
whereas it is LAS for ae½a1; a2�. At the points a1 and a2

Hopf bifurcations occur.
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Proof. The stability analysis at EE leads to the following
characteristic equation:

l3 þ b2l
2
þ b1lþ b0 ¼ 0, (31)

with coefficients

b2 ¼ bIe þ mþ a40,

b1 ¼ bIeðmþ nþ aÞ þ am40,

b0 ¼ abIeðkmp01ðMeÞ þ ðmþ nÞÞ40. ð32Þ

The positivity of bj, by Descartes theorem, rules out the
possibility of real positive eigenvalues, so that stability
losses can only occur via Hopf bifurcations. Since a affects
only the stability of EE and not its location and delay
parameters are most often destabilizing (MacDonald,
1989), we use a as bifurcation parameter.

From Routh–Hurwitz theorem EE will be LAS if and
only if b2b1 � b040 equivalently written as

f ðaÞ ¼ B2a
2 þ B1aþ B040; a 2 Rþ, (33)

where

B2 ¼ bIe þ m, (34)

B1 ¼ ðbIe þ mÞ2 � bIemkp01ðMeÞ, (35)

B0 ¼ bIeðbIe þ mÞðnþ mÞ. (36)

The coefficients B2;B0 are positive, whereas B1 has variable
sign. Thus, if B1X0 EE is always LAS independently on
the delay. On the other hand, if B1o0 instability is
possible. Note that since f ð0Þ40, f ð1Þ40 the endemic
equilibrium is however always LAS for both large or
small values of the delay parameter a, i.e. for large mean
delays ðT ¼ 1=a!þ1Þ and for small mean delays
ðT ¼ 1=a! 0Þ.

Thus, stability continues to prevail if the discriminant

D ¼ B2
1 � 4bIeðnþ mÞðbIe þ mÞ2 (37)

is negative or null, whereas if D40 there are two positive
distinct solutions a1 and a2 for the equation f ðaÞ ¼ 0, i.e.
two meaningful bifurcating values of the delay parameter
a.

By simple algebra we can write D as

D ¼ B1 � 2ðbIe þ mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bIeðnþ mÞ

p� �
� B1 þ 2ðbIe þ mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bIeðnþ mÞ

p� �
. ð38Þ

Since we are supposing B1o0, then D40 if and only if (30)
holds.

It is finally trivial to demonstrate that a1 and a2 fulfill the
test for nonzero speed (Guckenheimer and Holmes, 1983).
Indeed as far as a1 and a2 are distinct roots of f ðaÞ ¼ 0 then

dðb2b1 � b0Þ

da

� �
a¼ai

¼
df ðaÞ

da

� �
a¼ai

a0; i ¼ 1; 2: &

Intuition would suggest that the onset of oscillations
critically depends on the interaction between the informa-
tion delay a ¼ T�1, and the shape of the extra-vaccination
coverage p1, particularly its slope p01 evaluated at the
endemic equilibrium. This intuition is not easy to be proved
analytically from condition (30). We therefore move now to
simulation in order to complete and illustrate our findings.
6. Examples and numerical simulations

In this section we report some numerical simulation of
system (29) under three noteworthy functional forms of the
function p1. We focus on the relation between patterns of
information delay and the reactivity of information-
dependent vaccination in determining the onset of oscilla-
tions. Subsequently we shall discuss in greater detail the
implications for the period of inter-epidemic oscillations.
Most our computations will be based on the following

benchmark parameter constellation roughly mimicking
measles: m ¼ ð1=LÞdays�1 where L ¼ 75� 365 days is the
life expectancy at birth, n ¼ ð1=DÞdays�1 where D ¼ 7
days is the average duration of infection, R0 ¼ 10 ðb �
1:43 days�1Þ. In a standard SIR model without information
dependent coverage these values would imply a susceptible
fraction at equilibrium Se ¼ 0:1, and critical coverage
pc ¼ 0:90. In addition we take a baseline coverage
p0 ¼ 0:75, which for p1 ¼ 0 implies an infective fraction
at equilibrium equal to 3:83� 10�5. Finally, just to fix the
ideas we set k ¼ 1. This amounts to say that all cases of the
disease are considered to be ‘‘serious cases’’.

Example (Piece-wise linear varying vaccination coverage).
Let it be

p1ðMÞ ¼ minfcM ; 1� p0g; M 2 I,

where c is a positive constant, representing the propor-
tional change in the extra-vaccination coverage p1 for an
infinitesimal change or proportional change in delayed
disease incidence M. This case has some pedagogic interest
and moreover is a local approximation to more general
coverage functions. The condition for instability (30) may
be written as CðcÞo0 where

CðcÞ ¼
H1

H2 þ mck
þ m

� �2

�
mckH1

H2 þ mck

þ 2
H1

H2 þ mck
þ m

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

H2 þ mck

s
ð39Þ

and

H1 ¼ mðmþ nÞðR0ð1� p0Þ � 1Þ40,

H2 ¼ mþ n40.

Note that

Cð0Þ ¼
H1

H2
þ m

� �2

þ 2
H1

H2
þ m

� � ffiffiffiffiffiffiffi
H1

p
40, (40)

Cð1Þ ¼ m2 �H1. (41)

Thus, since the function C is strictly decreasing in c, if
Cð1Þo0, there exists a unique threshold c� such that if
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c4c� the instability condition is fulfilled. We note that the
condition Cð1Þo0 holds for R0ð1� p0Þ large enough. This
means that oscillations are more likely to occur for
infectious diseases with a large reproduction number, or
under moderate control circumstances. Moreover, a longer
period of infectiousness is, other things being equal, a
further factor favouring oscillations.

Fig. 1 reports the shape of the function f for distinct values
of c. For low values of c (say c ¼ 200), f is always positive,
but as c increases its graph shifts downward and intersections
with the axis occur, thereby leading to bifurcations.
Oscillations thus require quite large c values, since we need
a high reactivity of p1 at the scale of Me ¼ kIe.

Example (Michaelis–Menten type coverage). Let us con-
sider a more realistic case, namely the Michaelis–Menten
function (Murray, 1989)

p1ðMÞ ¼
CM

DM þ 1
; C;D 2 Rþ; M 2 I. (42)

This function is concave and saturating with C ¼ p01ð0Þ
(thus p1ðMÞpCM). It is convenient to reparametrize it as

p1ðMÞ ¼ ð1� p0 � eÞ
DM

DM þ 1
, (43)

where we have set C=D ¼ 1� p0 � e, e 2 Rþ. This para-
metrization would imply a ‘‘roof’’ in the overall coverage
given by p0 þ ð1� p0 � eÞ ¼ 1� e if we could let M go to
þ1. Though M is bounded, by choosing D sufficiently
large, p1 will reach values sufficiently close to its asymptote
even for rather small values of M, which is satisfactory for
practical purposes. Here we take e ¼ 0:01 potentially
implying a roof coverage of 99% under circumstances of
high perceived risk. Keeping constant the roof coverage the
reactivity of p1 is tuned by D.
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Fig. 1. The piece-wise linear case: shape of f ðaÞ, for different values of c,

from c ¼ 100 (higher curve) to c ¼ 500 (lower curve).
Numerical computations show how the onset of oscilla-
tions is governed by the interaction between a and D. This
is illustrated in Fig. 2 reporting the f ðaÞ function governing
the stability of the endemic state for different values of D

(under the benchmark parametric set). For small values of
D, f ðaÞ is always positive and the endemic state is always
locally stable. As D further increases, f ðaÞ intersects the
horizontal axis, thus leading to instability. For instance for
D ¼ 1500 the system, which is stable for large values of a, is
destabilized for affi 0:005 days�1 corresponding to an
average delay T ffi 200 days. Further decreasing a, i.e.
further increasing the mean delay T, leads to limit cycles
whose amplitude is increasing up to a maximum and then
decreasing until affi 0:0015 days�1, corresponding to T ffi

660 days, where oscillations disappear and the stability of
the endemic state is restored. The shape of the bifurcation
locus ða;DÞ, given by the union of the solutions a1; a2 of the
equation f ðaÞ ¼ 0, as functions of D, is illustrated in Fig. 3
for the benchmark parameter set, against two different
cases, respectively, with R0 ¼ 8 and 6 (other parameters as
the benchmark set). The corresponding mean bifurcating
delays, i.e. the quantities TiðDÞ ¼ 1=aiðDÞ, i ¼ 1; 2 are
reported in Fig. 4. Fig. 5 depicts the bifurcation locus as
function of D for different values of the recovery rate n ¼
1=D (D ¼ benchmark ¼ 7 days against D ¼ 21 and 35
days) which confirms the result found in the linear case:
other things being equal an increase in the duration of the
infectious period D favours the onset of oscillations.

As regards the dynamics of the model, we now consider
numerical simulations of the model in the cyclic zone for
D ¼ 5000 ðIe ¼ 2:61� 10�5Þ, implying (Fig. 3) that the first
stability loss occurs for a around 0:017 days�1, i.e. an
average delay of about two months, and that the cyclical
regime persist up to average delays in excess of 6 years,
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Fig. 2. The Michaelis–Menten case: shape of f as a function of the delay

parameter a, for different values of D, from D ¼ 500 (higher curve) to

D ¼ 3000 (lower curve).
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where the local stability of the endemic equilibrium is
restored. Simulations for an average delay T ¼ 1 year,
which in many cases appears a reasonable figure for the
information delay, are reported in Figs. 6 and 7. The initial
conditions S0, I0 and M0 were chosen by slightly
perturbing the endemic state of the basic SIR model with
constant vaccination coverage p0 ¼ 0:75: S0 ¼ 1=R0 ¼ 0:1,
I0 ¼ 0:00038, and taking M0 ¼ kI0. The convergence to
the limit cycle predicted by Proposition 12 is illustrated in
Fig. 6 which reports the phase plane dynamics in the ðS; IÞ
plane (I in log scale) until the emergence of the long-term
pattern. The values of I during cycle troughs can appear
very small but are comparable with those emerging in the
periodically forced SIR model with vaccination.
Fig. 7 reports with time span 350 years, the correspond-

ing transient (left-hand side) and long-term (right-hand
side) time paths of susceptibles (top), infectives normalized
to their equilibrium value (medium), and of the coverage
function p1 (bottom), jointly with its time average. The
period of the oscillation sharply switches over time from a
value which is initially close to the quasi-period of about 6
years predicted by the SIR model with constant baseline
vaccination at birth only ðp0 ¼ 0:75Þ, to a long-term value
close to 19 years. Moreover p1 peaks up to 17% during
epochs of high perceived risk, implying that overall
coverage can peak to levels as high as 92% i.e. significantly
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in excess of the critical coverage. Elimination does not
occur however, and this is understood by the low average
level achieved by the extra coverage over time, which is less
than 3%, implying that the overall average coverage does
not exceed 78%.

Example (Holling-type 2 S-shaped coverage). Let us finally
consider the following S-shaped function:

p1ðMÞ ¼
C2M

2

1þD2M
2
; C2;D2 2 Rþ; M 2 I (44)

which is a two-parameter Holling-type 2 curve (other
choices are possible, for instance we also explored logistic-
like functions, but the results are largely similar). We
parametrize it in a manner analogous to what done for the
Michaelis–Menten curve:

p1ðMÞ ¼ ð1� p0 � eÞ
D2M2

1þD2M2
. (45)

In this case the parameter tuning the reactivity of p1 is D2.
We still keep e ¼ 0:01. Though analytical computations
become nasty in this case the S-shaped form is probably the
one which better approximates real behaviour. Thus, we
use this case to illustrate more in depth the relation
between information-dependent vaccination and informa-
tion delays. Under the benchmark parameter constellation
values of D2 in excess of 106 are necessary to generate
oscillations. Setting, respectively, D2 and T to the bench-
mark values D2 ¼ 50� 106 and T ¼ T1 ¼ 1 year, Fig. 8
reports the time paths (until the long-term regime is
achieved) of S, I and p1. The period of oscillations steadily
increases until a long-term figure of about 19 years; in
addition the p1 function approaches, during epochs of high
social alarm, levels as high as 22% so that the overall
coverages reaches levels as high as 97%. As already
occurred in the Michaelis–Menten example, elimination
of the disease cannot occur: the average coverage (not
reported on the graph) during any inter-epidemic period,
never exceeds 3%.
In order to better illustrate the impact of the information

delays we have also investigated the sensitivity of output to
changes in the fundamental parameters, by considering
three distinct values of the average delay T, i.e. besides the
benchmark delay T1 ¼ 1 year, the values T2 ¼ 6 months,
T3 ¼ 18 months. This has been repeated for: (a) the
benchmark parameter set (B), (b) a first ‘‘alternative’’
parameter set A1, considering a larger value of R0, i.e.
R0 ¼ 15 (a more standard value for measles in developed
countries); (c) a second ‘‘alternative’’ parameter set A2
considering a faster response of vaccination to changing
epidemiological conditions, with D2 ¼ 100� 106.
Fig. 9 provides a summary plot of the time paths of the

susceptible fraction (left-hand side) and the information-
dependent component of coverage p1 (right-hand side)
for this set of cases. The main facts can be summarized
as follows:
(1)
 increasing information delays lead, coeteris paribus, to
increasing periods of the long-term oscillation. For
instance in the A1 scenario ðR0 ¼ 15Þ the period
increase from less than 12 years for an average delay
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T ¼ 6 months to about 14 years for T ¼ 12 months,
and to about 16 years for T ¼ 18 months (similar
things occur for scenarios B, A2);
(2)
 the increase in the inter-epidemic period observed in (1)
in presence of longer memories leads to larger oscilla-
tions of the susceptible fraction, consistently with the
larger susceptible replenishment due to the larger
spacing between major epidemics;
(3)
 increasing the reactivity of vaccination through in-
creasing D2 also leads to increasing periods. For
instance comparing scenarios B and A2 under T ¼ 18
months (similar for the other values) the inter-epidemic
period grows from little in excess of 20 years to more
than 30;
(4)
 increasing the reactivity of vaccination through in-
creasing D2 (compare B with A2) allows the overall
coverage p0 þ p1 to more closely approach its ‘‘roof’’.
However, as already pointed out eradication never
occurs.
Remark 13. In addition to the results reported here,
numerical simulations suggest that the closed orbit emer-
ging via Hopf bifurcation of the endemic state in
Proposition 12 is unique; moreover, the results of this
Proposition seem to hold globally: when the endemic state
is stable it appears to be GAS, and similarly when it
switches its stability with the limit cycle. Finally, the results
of this section extend straightforwardly to other choices of
the information function M, for instance when it is given
by the past reported incidence of the disease, and other
types of delaying kernels in the Erlangian family.

7. The period of oscillations

The previous simulation results suggest the possibility
that information delays in vaccination behaviour
might yield a wide range of outcomes in terms of the
period of the ensuing long-term sustained oscillation,
compared to the basic (i.e. nonperiodically forced)
SIR model. In the SIR model without vaccination only
damped oscillations occur and are generated by the inter-
play of the epidemic mechanism, i.e. exhaustion of
susceptibles, and the demographic one, i.e. regeneration
of susceptibles via new births. For short diseases occurring
early in life the quasi-period of the corresponding oscilla-
tions about the endemic state is well approximated by the
simple formula (Anderson and May, 1991) tffi 2p

ffiffiffiffiffiffiffiffiffi
AD
p

where A is the average age at which infection was
acquired, also called the pre-vaccination average age at
infection. When vaccination at birth is introduced it is
well known that if the disease is not eliminated (i.e. the
coverage is below the critical threshold 1� 1=R0) the
average age at infection increases and this consequently
raises the inter-epidemic period. For example under the
benchmark parametric set we find tffi 2:5 years, and
tVacc ffi 6:1 years.
7.1. The inter-epidemic quasi-period of the unlagged model

To clarify how information-dependent vaccination can
affect the period of oscillations, we start from our two-
dimensional undelayed model, which only has damped
oscillations, and thus is straightforwardly comparable with
the basic SIR model with vaccination. The question here is
to what extent can (current) information-dependent
vaccination interact with the mechanisms operating in the
basic SIR model (transmission, demographics, ‘‘baseline’’
vaccination) and affect the inter-epidemic quasi-period?
In our unlagged model the quasi-period of linearized
oscillations is available in closed form. Choosing gðS; IÞ ¼
kI we have

tunlagged ¼
4pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðmþ bIeÞ
2
þ 4bIeðmkp01ðkIeÞ þ mþ nÞ

q , (46)

with dumping time

dump ¼
2

mþ bIe

. (47)

It is possible to investigate the dependency of the length of
the quasi-period (46) on the parameters tuning the shape of
the information-dependent coverage p1. We focus our
analysis to the case of short diseases ðm5nÞ occurring early
in life.

The piece-wise linear case: Under a piece-wise linear p1

function: p1ðMÞ ¼ minfcM ; 1� p0g, it is possible to show
(Appendix A.4), studying tunlagged as a function of c only
(other parameters being equal, but m5n), that tunlagged ðcÞ is
monotonically decreasing over the whole range of c and

tunlagged ð0Þ � tunlagged ðþ1Þ. (48)

This means that tunlagged ðcÞ is indeed almost flat in this case.
To sum up, in the piece-wise linear case we have the
surprising result that the quasi-period does not differ from
the corresponding quasi-period of the basic SIR model
with vaccination at the baseline level p0, whatever be the
magnitude of c!

The Michaelis–Menten case: Different phenomena
occur for Michaelis–Menten-type p1 functions. Some
analytical considerations are still possible. The adopted
parametrization (42) makes p1 dependent on two para-
meters, D and e, implying that the quasi-period of the
model is a function tunlagged ðD; eÞ of both such parameters.
Fig. 10 shows the relation between the quasi-period and D,
for e ¼ 0:01 as in our simulation run, other parameters
as in the benchmark set, for a very wide range of D values.
Fig. 10 confirms that tunlagged ðD; 0:01Þ is an eventually
increasing function of D (it can indeed have a through,
though not pronounced, for very small D values) ranging
from the value of about 6.1 years observed in the
underlying SIR model with only the baseline vaccination
schedule p0 ¼ 0:75 (this corresponds to D ¼ 0) up to a
maximum around 10 years for very large levels of D
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ðD ¼ 106Þ. The flat lines denote the quasi-period in the
underlying SIR models (a) without vaccination, and (b)
with baseline coverage p0 ¼ 0:75, reported for reference.
Fig. 11 shows the overall shape of tunlagged ðD; eÞ. The
dependency on e is nonmonotonic but this depends mainly
on the fact that the manner in which D; e affect p1 is not
independent, i.e. for a given D, increasing values of e
promote steeper shapes of p1, which lead to smaller
endemic infected fractions, and so on.
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Fig. 11. The unlagged model, Michaelis–Menten case. The quasi-period tunlagge

in the benchmark set.
7.2. The inter-epidemic period of the delayed model

The delayed model exhibits both damped oscillations
when the endemic state is LAS and genuine stable
oscillations in the regime induced by the Hopf bifurcations.
The inclusion of the delay has the potential to affect the
period of oscillations in both such cases, but little can be
said analytically on the dependence of the period or quasi-
period on the shape of the vaccination function p1. For
instance as regards the damped oscillations about the
endemic state, the eigenvalues can still be found in
closed form but the problem of interpretation becomes
formidable.
7.2.1. The period at the onset of the Hopf bifurcation

The true period of the (degenerate) cycle that occurs at
the appearance of the Hopf bifurcation can be found
explicitly. At a bifurcation point the system has a real
negative eigenvalue, call it A, and a purely imaginary pair

oi, where o denotes the frequency of the oscillations,
related to the period t by t ¼ 2p=o. Thus, the character-
istic polynomial at the bifurcation point can be factored as
follows: PðlÞ ¼ ðl2 þ o2Þðl� AÞ. Comparing this expres-
sion with the characteristic polynomial (31)–(32) of our
delayed model (29), we obtain o2 ¼ bIeðmþ nþ aÞ þ am
and remembering that we need to consider parameter
constellations belonging to the bifurcation locus, i.e.
for b2b1 � b0 ¼ f ðaÞ ¼ 0, the frequency of the degenerate
cycle is

oH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bIeðmþ nþ aÞ þ am

p� �
f ðaÞ¼0

(49)
d of the endemic oscillation as a joint function of D, e, other parameters as
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and the corresponding period is

tdelay_Bif ¼
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bIeðmþ nþ aÞ þ am
p !

f ðaÞ¼0

. (50)

This allows us to look at how the period of the degenerate
oscillations is influenced by the parameters tuning the
vaccination function p1.

For example, for the Michaelis–Menten case, Fig. 12
adds to the graph of the bifurcation locus of Fig. 4, the
graph of the amplitude of the period of the degenerate cycle
occurring on each point of the bifurcation locus. The
interpretation of Fig. 12 is the following: for example
for D ¼ 3000 the ‘‘small delay’’ bifurcation occurs for a
value of T around 3 months. At this point a degenerate
cycle occurs having period little in excess of 6 years. Briefly
Fig. 12 shows that the period at the onset of the bifurcation
is rather insensitive to ‘‘where the bifurcation actually
occurs’’, particularly the bifurcation occurring for small
delays (the lower branch of the bifurcation locus) causes
degenerate cycles whose period never differ significantly
from the period of the basic SIR model with baseline
vaccination.

7.2.2. The true period of the sustained oscillation

The most interesting issue is clearly what happens when
we move far away from the bifurcation locus, i.e. what is
the dependency of the period of the true sustained
oscillation on the amplitude of the average information
delay on which families base their vaccination decisions.
Our discussion on the shape of the bifurcations locus has
shown that for parameters constellations for which cycles
exist, they ‘‘live’’ in a very wide range of values of the
average delay. By repeated simulations of the model it is
possible to draw the dependency of the period of
oscillations on the length of the memory. Fig. 13 shows
for the Michaelis–Menten case, under a value of D ðD ¼

4400Þ allowing oscillation (e ¼ 0:01, other parameters as in
the benchmark parametric set) the dependency of the
period of the stable long-term oscillation on the length of
the average delay. Fig. 13 is drawn with reference only to
the window of T values for which stable oscillations exist,
which is between about two months and 7 years (outside
this window no stable oscillations but only damped
oscillations toward the steady state exist). The dependency
is humped, as it is reasonable, given the shape of the
bifurcation locus. In particular the amplitude of the period
as a function of the average delay takes values close to the
figure predicted by the SIR model with vaccination at the
baseline level p0, i.e. close to about 6.2 years, for small
delays, i.e. delays very close to the ‘‘small delay’’
bifurcation value; then it increases with the information
delay up to a peak of about 22 years (this occurs when the
average information delay is close to 3 years); finally it
starts decreasing to re-approach a value close to the period
of the SIR model for very large information delays (where
cycles disappear).

8. Discussion

This work has investigated the implications of informa-
tion-dependent vaccination for the dynamics and control
of SIR childhood vaccine preventable infectious diseases.
Here information-dependent vaccination is used to model
the phenomena of rational exemption to vaccination and
social alarm as a consequence of the spread of public
information on the disease, by assuming that a component
of the overall vaccination coverage is positively correlated
with the available information on the disease. In simple
words this means that a fraction of the families will not
vaccinate their children during epochs of low social alarm
due to the disease, thereby decreasing the total coverage.
Overall, our results have shown that if the steady

component of vaccination is below the critical elimination
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threshold there is no hope to eliminate the disease even if
during epochs of high social alarm coverage at birth could
temporary achieve levels as high as 100%, and strong
supplementary coverage of adults can be achieved by
catch-up policies. A further main consequence of informa-
tion-dependent vaccination is the onset of sustained
oscillations. Such cycles are triggered by a somewhat
violent but not instantaneous reaction by people to the
social alarm caused by the disease. In other words stable
oscillations appear when parents, in deciding on whether to
vaccinate or not their children make use of past, and not
only current, information about the disease and further-
more tend to react quite violently to epochs of social alarm
by promptly and significantly increasing the vaccination
coverage.

It is to be noticed that, as regards the cyclic regime, this
occurs in a very wide range of information delays, from few
months to several years, so that we can correctly say that
oscillations are the rule. These oscillations can generate,
depending on the form of the information-dependent
vaccination curve, a wide range of possible inter-epidemic
periods, some of which are completely realistic also from
the viewpoint of vaccination programmes. In particular
these periods range from a minimum length which is
exactly the one found in the SIR model with vaccination
and remain within order of magnitude ‘‘relevant’’ for
public health purposes provided the delay is not too long.

Additionally, the results found in the paper appear to be
robust in that they seem to extend to other choices of the
information function, and to other types of delay patterns.
Thus, we feel that the mechanisms devised in this paper
represent an important source of oscillations of vaccine
preventable diseases, up to now little stressed. Concerning
the oscillations, another point we are currently investigat-
ing is the nonlinear inter-play between these information-
related oscillations and seasonal variations in the contact
rate (d’Onofrio et al., manuscript in preparation).

We acknowledge that this is just a first step toward more
realistic formulations of the problem of the interaction of
information and vaccinating behaviour. Future work
should (a) include behaviourally founded vaccination
functions along the directions indicated for instance in
Bauch (2005), Reluga et al. (2006); (b) include more
realistic factors particularly age structure. This appears to
be the only way to properly deal with the risks of serious
side-effects from the diseases, which are age-related, and
potential long-term undesired effects of vaccination. More-
over, it is the proper manner to deal with vaccination
choices, since fully rational agents (parents) should take
into consideration the risk of side effects while forming the
decision to vaccinate or not their children. Moreover, the
inclusion of age structure would allow a more realistic
treatment of ‘‘catch-up’’ vaccination, treated here very
coarsely, as a rational strategy for those who decided to not
vaccinate their children at the proper age because the
perceived risk from the diseases was low; (c) include real
data on vaccinating behaviour.
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Appendix A

A.1. Proof of Proposition 2

Defining sðtÞ ¼ SðtÞ þ IðtÞ we obtain:

s0 ¼ mð1� p0Þ � ms� nI � mp1ðMÞpmð1� p0Þ � ms. (51)

By a comparison theorem for ODEs (Hale, 1969), it follows
that asymptotically it must be

S þ Ip1� p0 (52)

hence

I 0pIðbðtÞð1� p0 � IÞ � ðmþ nÞÞ. (53)

From (53) it descends

I 0pIðbðtÞð1� p0Þ � ðmþ nÞÞ

and if (11) strictly holds, it follows that

IðtÞ ! 0 ) SðtÞ ! 1� p0 (54)

i.e. the DFE is GAS.
If in (11) the equality holds, we may write

ð1� p0ÞbðtÞ ¼ ðmþ nÞ þ wðtÞ, (55)

where wðtÞ is a y-periodic function having null mean value,
if bðtÞ is y-periodic. The case of constant transmission rate
may be formally studied as well by considering wðtÞ ¼ 0.
Thus, we may rewrite (53) as follows:

I 0pwðtÞI � bðtÞI2 (56)

i.e. IðtÞpzðtÞ, where zðtÞ is the solution of the Riccati’s
differential equation:

z0 ¼ wðtÞz� bðtÞz2, (57)

with zð0Þ ¼ Ið0Þa0. Defining

W ðtÞ ¼

Z t

0

wðsÞ ds (58)

which is periodic by construction, it turns out that

zðtÞ ¼
expfW ðtÞg

1=Ið0Þ þ
R t

0 expfW ðuÞgbðuÞ du

p
expðWmaxÞ

1=Ið0Þ þ ðbmin expðWminÞÞt
! 0þ. ð59Þ

Thus, in turn

zðtÞ ! 0þ ) IðtÞ ! 0þ ) SðtÞ ! 1� p0. (60)
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A.2. Proof of Proposition 8

1. By Proposition 4 there exists a unique endemic
equilibrium EE ¼ ðSe; IeÞ for system (8). A linearization of
(8) near EE yields the following Jacobian matrix:

JðSe; IeÞ

¼
�mp01ðMeÞ

qg

qS
ðSe; IeÞ � m� bIe �ðbSe þ mp01ðMeÞ

qg

qI
ðSe; IeÞÞ

bIe 0

0B@
1CA,

with eigenvalues having negative real parts, since, by (22)
and the assumption p01X0,

tr JðSe; IeÞ ¼ �mp01ðMeÞ
qg

qS
� m� bIeo0, (61)

det JðSe; IeÞ ¼ bIe bSe þ mp01ðMeÞ
qg

qI
ðSe; IeÞ

� �
40. (62)

2. In O�� there are no closed orbits since, by (23) and p01X0:

div
1

I
ðS0; I 0Þ

� �
¼ �

m
I

p01ðMÞ
qM

qS
�

m
I
� bo0.

Thus, by the Poincaré–Bendixon thricotomy (Thieme,
2003) it follows that the endemic equilibrium is GAS
in O��.

A.3. Proof of Proposition 9

With reference to the Proof of Proposition 8, we have
from (61) that condition (25) guarantees the instability of
EE, and since O�� is bounded and positively invariant,
from the Poincaré–Bendixon’s thricotomy it follows the
existence of at least one LAS limit cycle.

A.4. Proof on inter-epidemic periods

The undelayed model: piece-wise linear case: In the piece-
wise linear case ðp1ðMÞ ¼ minfcM ; 1� p0gÞ formula (46)
implies

tunlagged ðcÞ

¼
4pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðmþ nÞmðð1� p0ÞR0 � 1Þ � m2 1þ
ðmþ nÞðð1� p0ÞR0 � 1Þ

ðmþ nþ ckmÞ

� �2
s .

ð63Þ

Thus, since m is ‘‘small’’ and m5n, it easily follows

tunlagged ð0Þ ¼
4pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðmþ nÞmðð1� p0ÞR0 � 1Þ �
ð1� p0Þb
1þ n=m

� �2
s

�
4pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðmþ nÞmðð1� p0ÞR0 � 1Þ � m2
p ¼ tunlagged ðþ1Þ.

Finally, to show the monotonicity of tunlagged ðcÞ, define

tunlagged ðcÞ ¼
4pffiffiffiffiffiffiffiffiffiffi
ff ðcÞ

p .
We have that

ff 0ðcÞ

¼ k
2bm3ð1� ð1� p0ÞR0Þðbð1� ð1� p0ÞR0Þ � R0ðckmþ mþ nÞÞ

R2
0ðckmþ mþ nÞ3

40

for its numerator is the product of two negative quantities
if R0ð1� p0Þ41.
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