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Abstract

The increasing level of disease control by vaccination jointly with the growing standard of living and health of modern societies could
favour the spread of exemption as a “‘rational” behaviour towards vaccination. Rational exemption implies that families will tend to
relate the decision to vaccinate their children to the available information on the state of the disease. Using an SIR model with
information dependent vaccination we show that rational exemption might make elimination of the disease an unfeasible task even if
coverages as high as 100% are actually reached during epochs of high social alarm. Moreover, we show that rational exemption may also
become responsible for the onset of sustained oscillations when the decision to vaccinate also depends on the past history of the disease.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Vaccines have been a central factor in improving the
standards of living, and the standards of health (Bloom
and Cannings, 2004; Livi Bacci, 2005). Mass vaccination
has allowed increasing levels of disease control worldwide,
which has recently culminated in the elimination of
indigenous measles in Finland (Peltola et al., 1997) and
of poliomyelitis in many areas of the world (CDC, 2004).
A further positive effect of some mass vaccinations is
the reduction of the incidence of virus-related tumours
(Chang et al., 1997). For example, the anti-HBV vaccines
may be considered a preventive anti-tumour vaccine
(Lollini et al., 2006).

Nonetheless the recent experience of developed countries
shows instances of declines in vaccination coverage for
several diseases. In some cases this is a consequences of
rumours and adverse publicity against vaccines. For
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example, the decline in coverage of the Measles—Mumps—
Rubella vaccine (MMR) recently observed in the UK
(EURO SURVEILLANCE, 1998; CDR, 1998, 2002, 2004)
has been explained by the role of adverse publicity about
possible links between the vaccine, autism, and Crohn’s
disease (Wright and Polack, 2005). Similar facts have been
found for Scotland (Friederichs et al., 2006). Another
example is the decline in HBV coverage due to the
“Thimerosal” case (Luman et al., 2004). In the future
negative effects on coverage could derive from the
argument, often raised by anti-vaccination movements,
that vaccines could favour the onset of allergic diseases, a
point that is still debated by the scientific literature
(Koppen et al., 2004; Berndsen, 2004; Souza da Cunha,
2004; Schattner, 2005).

From a wider perspective, the phenomenon of coverage
upswing has been common in the history of modern
societies, often as a consequence of the tension between
public health targets and individual freedom, for example
between compulsory vaccination and conscientious or
philosophical exemption (Salmon et al., 2006). Exemption
against childhood immunization is a good example of
this phenomenon: the tension stemming from the fear of


www.elsevier.com/locate/tpb
dx.doi.org/10.1016/j.tpb.2007.01.001
mailto:manfredi@ec.unipi.it
mailto:ernesto.salinelli@eco.unipmn.it
mailto:ernesto.salinelli@eco.unipmn.it

302 A. d’Onofrio et al. | Theoretical Population Biology 71 (2007) 301-317

damages due to the vaccine is emphasized when compul-
sory vaccination diminishes parents’ autonomy as regards
the decisions on their children health. Such tension can in
many cases prove beneficial for the society as a whole, in
that it can push research toward better outcomes and
eventually lead to an improvement in the safety of vaccines,
which is a major target of public health. In the short-term
however the main consequence of coverage decline, or of
delayed vaccination, is always an increase in susceptibility
(CDR, 2004), and thus in the risk of resurgence of diseases
that were perhaps thought to be well controlled.

An increasing number of studies deal with the motiva-
tions underlying parents’ choices to vaccinate or not their
children (Maayan-Metzger et al., 2005; Wright and Polack,
2005; Wroe et al., 2005; Friederichs et al., 2006). Besides
the role played by conscientious exemption, these studies
suggest the possibility of an “inverted U” relationship
between education and income on one hand and propensity
to vaccinate on the other. Two main remarks thus arise:
first, the increasing well-being of modern societies could, in
prospective terms, lead to increasing difficulties in main-
taining high coverages. Second, an ultimate responsible in
coverage decline is vaccination itself, i.e. the vaccination
success in controlling diseases, which tends to encourage
forms of “‘rational exemption”. The argument underlying
rational exemption is simple. Consider for example the
cases of poliomyelitis and measles control. In several
countries the increasing coverage with MMR within the
WHO Plan for global measles elimination has driven
circulation of the disease to minimal levels or even zero
incidence, i.e. a situation where the few observed cases can
be traced back to immigration. As the incidence of the
diseases continues to decline thanks to vaccination, families
become increasingly concerned with the risks associated
with vaccines (WHO, 2006). If families start perceiving that
the chance of acquiring infection for their children is lower
compared to the risk of experiencing damages from the
vaccine (this is actually so for poliomyelitis), they could
believe it rational not to vaccinate their children, particu-
larly if they perceive that the rest of the population will,
instead, vaccinate. This rationality is of course myopic
since the decision to not vaccinate should be forward
looking and taking into account also expectations of future
resurgence of infection due to declining coverage, and not
just the currently observed regime of low incidence and
high coverage. Moreover, it is an example of “free riding”
(Stiglitz, 2000), as by the way all types of exemptions
(Salmon et al., 2006).

The widespread adoption of rational exemption would
lead to a situation where at least a part of families relate
their decision to vaccinate to the available information on
the state of the disease, vaccinating more, and promptly,
under circumstances of high social alarm due to the
disease, and little (and later) otherwise. Such a behaviour
always existed, as pointed out by Salmon et al.: ... vacci-
nation rates fell, although uptake tended to increase when
outbreaks occurred” (Salmon et al., 2006, p. 438).

Motivated by the above considerations, in this paper we
study the dynamic implications of information dependent
vaccination for SIR vaccine preventable childhood dis-
eases. The underlying idea is that the vaccine coverage is
the outcome of decisions, to vaccinate or not their children,
which are partly based on the publicly available informa-
tion on the state of the disease. There is a growing body of
literature on information-dependent vaccination and vac-
cination choice, and their implications for the dynamics of
SIR models for vaccine preventable diseases. Since the
seminal paper by Fine and Clarkson (1986), Brito et al.
(1991) have explored the conditions under which the free-
rider problem can actually be overcome without compul-
sory vaccination, through the use of taxes and subsidies.
Geoffard and Philipson (1997) use SIR-type models to
explore the difficulty of eradicating a disease in presence of
rational exemption, even if incentives such as subsidies are
included. Bauch and Earn (2004) develop a game
theoretical interpretation based on an SIR model of the
rational exemption phenomenon, and show that under a
purely voluntary policy, rational exemption makes eradi-
cation impossible. Reluga et al. (2006) expand Bauch and
Earn (2004) by setting the game theoretic approach within
the ‘‘viability” approach, and study the dynamical
consequences of rational exemption under both current
and delayed information. Bauch (2005) studies SIR-type
differential equations with information dependence and
analyze a model similar to the one in the present manu-
script. Both the latter studies show the existence of
oscillations and the impossibility of eradicating the disease
due to rational exemption. A further related study is Auld
(2003), who models the issue of vaccination choice within
the framework of an agent-based model.

The present work aims to contribute to this literature by
(a) incorporating information dependence not only on
current disease levels but also on the history of disease in
the population, (b) including the possibility of catch-up
vaccination as a strategy for those who decided to not
vaccinate during epochs of low perceived risk, (¢) providing
more general mathematical result: for instance all our
stability results on the model with vaccination dependent
on current information are shown to hold globally.

More specifically, we consider some SIR models in which
the vaccination coverage of newborn is the sum of two
components: a steady one, given by the fraction of parents
who, while taking the decision to immunize their children
are not affected by the state of information on the disease,
and an “information-dependent” one, which is taken to be
an increasing function of the perceived risk (or the social
alarm) due to the disease, as summarized by some
information variable depending on the current and past
state of the disease. We feel that our assumptions on
coverage capture well the idea of rational exemption.

Our results are as follows. First, if the information
function only summarizes the current state of the disease,
then unless the steady component is above the elimination
threshold, a unique endemic state will exist and is globally
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asymptotically stable (GAS). This result continues to hold
even when we allow in the model delayed catch-up
vaccination of older individuals as a ‘“‘recuperation
strategy’” for families that did not vaccinate their children
during epochs of low perceived risk. Second, if the
information function also summarizes the past history of
the disease according to an exponentially fading memory
then we can also observe the emergence of stable
oscillations through Hopf bifurcation of the endemic state,
i.e. delayed state-dependent vaccination can be a source of
steady oscillations for common childhood diseases. Ana-
lysis of selected subcases and numerical simulations gives
insight on the conditions under which stable oscillations
are more likely, and on the amplitude of the inter-epidemic
period that would result as a consequence of the interaction
between the factors traditionally included in SIR models,
average age at infection, vaccination, and demographics,
on the one hand, and those due to social behaviour by
individuals on the other hand. Numerical simulations also
suggest that the involved limit cycles are globally stable.

The paper is organized as follows. In Section 2 we
introduce a general model encompassing the various
special models considered. Section 3 reports some results
on equilibria and local stability of the general model.
Sections 4 and 5 report, respectively, the stability analysis
of the undelayed and of the delayed case. Examples,
numerical results, and a discussion of the implications of
information dependent vaccination for the period of
oscillations, are reported in Sections 6 and 7. Concluding
remarks follow.

2. A family of models for information-related vaccinating
behaviour

We consider the following family of SIR models for a
nonfatal disease in a constant homogeneously mixing
population, with state-dependent vaccination coverage:

X' = V(1 — p(M)) ~ X — O

Y = B0 — Y,

Z =vY — uz,
V' = uNp(M) — uV, (1

where X, Y, Z, V are functions of time, respectively
denoting the number of susceptibles, infectious (and
infectives), immune and vaccinated individuals at time ¢.
Moreover, pu> 0 denotes the birth and death rate, which are
assumed identical, v>0 the rate of recovery from infection,
p(£)>0 the transmission rate, which is assumed to be
constant or bounded and periodically varying with mini-
mal period 6 usually equal to 1 year (Anderson and May,
1991), and N=X+ Y + Z+ V is the total population,
constant over time. Thus, it is useful to introduce the
epidemiological fractions, i.e. the variables

S=X/N, I=Y/N, R=Z/N, U=V/N. )

The main novelty of (1) is the function p which denotes,
assuming a 100% effective vaccine, the actual vaccination
coverage at birth, which is assumed to be a function of the
information variable M. We consider two distinct possibi-
lities: (a) M only summarizes information about the
current state of the disease, i.e. M only depends on current
values of state variables, and (b) M also summarizes
information about past values of state variables.

As regards case (a), one could take any empirically
observed quantities published in usual statistics of in-
fectious diseases, for instance:

e M =uaffXY/N,ie. M is the currently reported absolute
incidence where o> 0 is the reporting rate. Alternatively,
as public data report standardized rather than absolute
incidence of diseases, one could take M = aff X Y/N2 =
afSI;

e M = kI (k>0),i.e. M is a linear function of the current
prevalence of the disease, representing for instance the
current standardized incidence of serious cases of the
disease;

o M =oafl/(n+afl), ie. M is a nonlinear increasing
function of standardized incidence which can be taken
as a measure of the perceived risk of infection (Reluga
et al., 20006).

Generalizing the examples above, we shall assume that M
is given by a function g of the fractions S, I. The function g
is assumed to be continuous, increasing in the [ variable,
whereas we do not state hypotheses on the behaviour in
dependence on S. For example, g can be independent of .S
(as in the case ¢(S,I) = kI), or increasing with S (as in the
case ¢(S,I) = affSI). Furthermore, it is natural to assume
g(S,0) = 0 for all S.

Case (b) in which M also depends on past values of state
variables appears more realistic for many endemic disease
where information comes after rather long routine
procedures (such as laboratory confirmations, reporting
delay in the transmission of information to public health
and statistics authorities, etc) and when awareness of these
phenomena to the general population takes time. In this
case the information function M would be given by the
delayed values of a function g of S and 7 with the same
properties as in the unlagged case.

As known from the literature there are several routes to
model time delays. The formulation adopted in this paper is

M(n) = /_ 9(S(), (1)K (1 — 1) dx, (€)

o0
where K is the delaying kernel (MacDonald, 1989). In the
stability analysis of Section 5, as a compromise between
realism and tractability, we will only consider Erlangian
kernels defined by the probability density function

aﬂ
(n—1)

for which the mean delay is given by T =n/a and the
standard deviation by © = /n/a. Of special relevance in

xn—l e ax

Erln,u(x) = X,d € RJ” ne N+ (4)
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the Erlangian family is the first element Er/;, called
exponentially fading memory because it pays a declining
weight to the past. On the other hand the second element
Erl,, defines the simpler “humped” Erlangian memory.

We have preferred infinitely supported distributed delays,
as the Erlangian ones, to fixed lags, i.e. to kernels having the
Dirac’s form K(t) = 6(t — 7,), which lead to delay differ-
ential equations, because of their greater realism (Lloyd,
2001). First, fixed delays embed the idea that the past is
reminded in terms of “‘events’ rather than its whole history.
Second, at the population level they require that individuals
are homogeneous in their patterns of delay.

Finally, integro-differential systems with Erlangian
delays are reducible to ordinary differential equations,
thereby making their analysis simpler compared to other
types of distributed delays (MacDonald, 1989). Note
that (3) also embeds the unlagged case (a) discussed
previously when

K(1) = o(2). (5)
This allows us to consider (3) as a general representation
for both cases (a) and (b).

Remark 1. Note that by assumptions on f§ and ¢ it follows
that M is bounded, taking all the values of an interval
4 = [0, M), where M®*P = sup, M ().

The coverage function p is defined as
p(M)=py+p (M) 0<p,<l, MeJ (6)

ie. it is the sum of two components, a fixed one or
“baseline” p,, meaning that a fraction of the population is
resilient to rumours and continues to vaccinate their
children whatever be the state of publicly available
information M, and a variable one p,;(M). We assume
that p,(M) essentially mirrors the reaction of families to the
social alarm caused by the disease, according to the idea of
rational exemption.! Thus, we assume that p, is an
increasing function of M. In real situations we expect that
p, 1s often S-shaped, very slowly increasing for low levels of
M, and thereafter quickly increasing but saturating to some
level p§*' = p;(M*"P) less or equal than 1 — pj. If inequality
PPt <1 — p, holds then a positive fraction of individuals is
never reached by vaccination, a fact well documented by
the public health practice, due to the presence of anti-
vaccinating movements and the cost to reach the more
elusive population groups. As a consequence, we formally
assume that

e 0<p (M) —p, for all M € 7;

* pi(0)=0;

e p, is continuous and differentiable, except, in some
cases, at a finite number of points, and increasing.

IThe idea of rational exemption, or free riding, fits well in the scheme.
Indeed the behaviour of the free rider is to vaccinate less when the fraction
immune R + U increases, i.e. Op; /O(R+ U)<0.Since R+ U=1—-S -1
this implies that p; remains an increasing function of both its arguments
(S,1).

Thus, if we take M to be the currently observed incidence
of the disease, our formulation amounts to saying that
when the disease incidence is high, families tend to react by
increasing the vaccination coverage of their children.
Conversely, when incidence declines to low levels, families
react by vaccinating less.

Combining (1) and (3), our general model is given by the
following nonlinear integro-differential system:

S" = u(l — py — py(M)) — puS — B(1)SI,
I'=1B(S — (p+v)), (7)
M= ["_ g(S@),I()K(t — t)dx,

where we have discarded variables R and U because their

dynamics follow trivially from the dynamics of S, / and M.
If (5) holds, then M = g(S,I), and (7) reduces to the

unlagged two-dimensional system:

S"= (1l = po — p1(9(S, 1)) — uS — B()SI,

I'=1(B()S — (1 +v)).

If instead M obeys (4) then, depending on the order of

Erlangian kernel, we obtain a family of models. In what

follows we will investigate analytically the first Erlangian
element Erl, , which leads to the three-dimensional system:

S = u(1 = py — py(M)) — uS — B()SI,
I' = I(BS — (1 +v)), ©)
M' = a(g(S,I) — M).

(®)

Generalizations for higher order Erlangian kernels easily
follow.

3. Properties of the general model

Let us consider initially the unlagged model (8) with
constant transmission rate. This model differs from the
standard text-book SIR model with vaccination at birth
(Capasso, 1993) by the appearance of the state-dependent
component of coverage p;(M). Obviously if the maximal
coverage p, + pi* is below the critical coverage (or elimina-
tion threshold) p. = 1 — 1/Ry, where Ry = i/(u+ v) is the
corresponding basic reproduction number, we cannot expect
outcomes different from the standard one, i.e. the disease will
persist. Similarly, if the baseline coverage p, exceeds the
elimination threshold then state dependent vaccination can
only accelerate elimination. Thus, the case of interest is when
the elimination threshold lies in between the baseline and the
maximal coverage. Two basic questions arise. First, can
strong information-dependent vaccination allow elimination
of the disease even though the baseline policy p, would not?
Think to situations where social alarm pushes people to
vaccinate for a while much in excess of the elimination
threshold, for instance to temporary vaccinate 98% of
newborn, when the elimination threshold is, say, 75%.
Second, can state-dependent vaccination affect the stability
of the endemic state?
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Passing to more complex formulations as (9), since the
inclusion of the delay only affects the stability of the
system but not its equilibria, the main questions obviously
become: in what manner the stability of the endemic state
is affected when people react to past rather than
current values of observed epidemiological variables? Can
the delay trigger more complex behaviour, e.g. stable
oscillations?

We start our analysis by noting that model (7) always
admits the disease-free equilibrium:

DFE = (1 — p,,0,0). (10)
The stability properties of DFE are analyzed in the
following proposition (proof in the Appendix A.1).

Proposition 2. Both in case of 0-periodic or constant f, a
sufficient condition for the GAS of the disease-free state
DFE (10) is

Hv 0/ Bu) du<1. (11)

Remark 3. Notice that if f is constant condition (11)
becomes the usual one
(1 —=py)Ro< 1. (12)

When condition (12) does not hold it is possible to show
that there is a unique endemic equilibrium.

Proposition 4. If f is constant and

(I =po)Ro>1 (13)
there exists a unique endemic equilibrium EE = (S,,1,, M,)
for (7).

Proof. Observe preliminarly that if (7) admits an endemic
equilibrium (S,, 1., M.), then from (3) it must be

Mo=gSulo) | K@de = g(So 1) (14)
0

and therefore p,;(M.) = p;(9(Se,1.)). Setting I'’ =0 and
disregarding the solution I = 0, we obtain

1
Sez“;”:E (15)
Defining

i) =pi(9(Ry", 1) (16)

it follows that there exists a unique solution 7, of the
equation S’ = 0:
I u+v
Ry

I = py+pi(D). (17)

Indeed the function defined by f,(I)=p,+p,(I) by
assumption is strictly increasing, whereas the linear function

w+v

1
f1(1)=1—R#0—

is strictly decreasing. Hence condition (13) is equivalent to
state that

£10) =1 -5 p = 150)

>P0
and by

F1) = =12 coepy 45,01 = £
1 =R u Po TP =/2

the conclusion follows. Notice that I, will always be
epidemiologically meaningful (i.e. 0</,<1). O

Remark 5. Eq. (17) implies

Iy <I,<14, (18)
where
Ro(l = R — sat
and
Ro(1 — R;!
I%_ﬂ o( lﬁ’o 0 ) (20)

Note that I is equal to the infectious fraction obtainable
in the SIR model with constant vaccination rate at birth
equal to p, + p}', whereas I} is equal to the infectious
fraction in the SIR model with constant vaccination when
only the baseline vaccination rate p, is considered.

Remark 6. In the piece-wise linear case p(M)=
min{cM, 1 — p,} if
9(S, 1) =1 - ¢(S)
Eq. (17) is analytically solvable and:
_ p+v o (I=pyRo—1
p+v+cppRy oty Ry
— HEY g @1
K+ v+ cupR

Remark 7. It is well known that, in case of instability of the
disease-free equilibrium, if the contact rate f(¢) is periodic,
then the behaviour of a nonlinear epidemic model may be
very complex. For example, at the best of our knowledge,
there is no analytical demonstration of the strong
persistence of the classical no-vaccination SIR model with
periodic f(#). As far as the persistence, we performed
intensive numerical simulations, and in all cases we
obtained that the system is strongly persistent. Epidemio-
logically, this means that the disease remains endemic
since, roughly speaking, there are no long-term ‘““oscilla-
tion-induced” eradications.

4. Stability analysis of the endemic equilibrium in the
unlagged case

We now focus on the stability of the endemic state EE =
(S, 1.) in the no delay case (8) under the assumption of a
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constant transmission rate f. We assume that p, is
differentiable. The following general result holds (proof
postponed to the Appendix A.2):

Proposition 8. Let f§ be constant, and (1 — py)Ro>1. Then
the unique endemic state EE of system (8):

1. if
0 1,
M) (S t)<1+E 22)
oS I
is LAS;
2. if, in particular,
g
o= 2
35> (23)

is GAS in the positively invariant set:

QF ={(S,1)| =0, I>0, S+I<1, S<1 —py}. (24

In the undelayed system limit cycles may be possible
when the function ¢ is decreasing with respect to the
proportion of susceptible subjects, as the following
proposition illustrates (proof in the Appendix A.3).

Proposition 9. If § is constant, (1 — py)Ro> 1, and

’ Og Bl.
_p](Me)aS(Se,Ie)>1 + L

(25)
then system (8) has at least one LAS limit cycle in Q**.

4.1. A noteworthy extension: adding vaccination of
susceptibles at ages different from birth

Previous results are quite general. Indeed they hold for
the following more general model which also allows,
compared to the basic model (8), “catch-up” vaccination
of older individuals:

S = p(1 = py — p1(M)) — (9 + q;(M))S — uS — BSI,
I' = I(BS — (1 + v)). (26)

The quantities ¢, and g¢,;(M), respectively, denote the
steady and information dependent components of the rate
of vaccination of susceptibles at ages different from birth,
in particular ¢;(M) fulfills the same assumptions as p,(M).
This is a more robust formulation of our state-dependent
vaccination problem because it allows to families that
decided to not vaccinate their children during epochs of
low social alarm the further possibility to ‘“‘run to
vaccinate” them at a later age during a subsequent period
of high social alarm. It is possible to check that if the basic
program (py, q,) is insufficient to eliminate the disease, then
also the “expanded” programme (p, + p;,qo + ¢;) Will be
incapable to achieve elimination. Proceeding as in the
previous sections, we may, when the function g is
increasing in the susceptible fraction, demonstrate these
two propositions (we omit the easy proofs) extending
Propositions 2 and 8:

Proposition 10. A sufficient condition for the GAS of the
disease-free state DFE of system (206) is

pl—p) 1 1 /9
——————— | Puydu<]. (27)
wt+qy p+v0Jo
Proposition 11. If 8 is constant and
1—
MRO =1 (28)
4

then model (26) admits a unique endemic equilibrium and it is
GAS in the set:

T ={(S,0)S=0,1>0,0<S+I<1}.

We are now ready to get back to the two main questions
we have raised on the potential role of state-dependent
vaccination. Our main result of this section shows that: (a)
if the baseline vaccination coverage is below the critical
elimination threshold, then elimination is definitely an
unfeasible task, even if during epochs of social alarm due to
the disease coverage in the newborn could temporary
achieve levels close to 100%! (b) things do not change when
also state-dependent catch-up of older individuals is
allowed; (c) the existence of state-dependent vaccination
coverage can change the stability character of the EE, when
g is decreasing in the susceptible fraction, from point
stability to locally stable oscillations.

5. Onset of stable oscillations under exponentially fading
memories

In this section we prove that when the actual coverage
also depends on past information then stable oscillations
may appear even under the simplest pattern of delay, i.e.
the exponentially fading memory Er/;,. To make compu-
tations simpler we assume ¢(S,/) = kI in (3), obtaining
from (9), under the assumption of constant f3, the following
three-dimensional system:

S" = (1 = py — py(M)) — uS — BSI,

I'=1(BS — (u+v)), (29)
M = a(kl — M).

As we have seen in Proposition 4, under condition
(1 —pg)Ro>1, system (29) has the unique endemic
equilibrium EE = (S.,1., M,).

The local stability of EE depends on the delay parameter
a defined in (4) as it is shown in the following proposition.

Proposition 12. If and only if

(BIe + ) — Blopkp, (M) + 21, + w)\/PL(v + 1) <O
(30)

there exist two values ay, a» with 0<aj<a, for the
parameter a such that EE is unstable for a € (ay,a),
whereas it is LAS for aé¢la;,ay]. At the points a and a;
Hopf bifurcations occur.
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Proof. The stability analysis at EE leads to the following
characteristic equation:

B4 b2+ biA+by =0, (31)
with coefficients

by=pI,+pn+a>0,
by = pl(u+v+a)+au>0,
bo = aPl.(kupi(M.) + (u+v))>0. (32)

The positivity of b;, by Descartes theorem, rules out the
possibility of real positive eigenvalues, so that stability
losses can only occur via Hopf bifurcations. Since a affects
only the stability of EE and not its location and delay
parameters are most often destabilizing (MacDonald,
1989), we use a as bifurcation parameter.

From Routh—-Hurwitz theorem EE will be LAS if and
only if byb; — by >0 equivalently written as

f(a) = Bya> + Bija+ By>0, acRy, (33)
where

B, = Ble + U, (34)
By = (Bl + p)* — Bl.ukp|(M.), (35)
By = PI.(BI. + w)(v + p). (36)

The coefficients B, By are positive, whereas B| has variable
sign. Thus, if B; >0 EE is always LAS independently on
the delay. On the other hand, if B;<0 instability is
possible. Note that since f(0)>0, f(c0)>0 the endemic
equilibrium is however always LAS for both large or
small values of the delay parameter «, i.e. for large mean
delays (T =1/a — 4+o00) and for small mean delays

(T=1/a—0).
Thus, stability continues to prevail if the discriminant
A = B} — 410 + W(BI. + )’ (37)

is negative or null, whereas if A>0 there are two positive
distinct solutions a; and a, for the equation f(a) =0, i.e.
two meaningful bifurcating values of the delay parameter
a.

By simple algebra we can write A as

A= (Bi =281+ 0v/BLO + 1)
x(Bi + 2081 + WVBLO + 1)) (38)

Since we are supposing B} <0, then A>0 if and only if (30)
holds.

It is finally trivial to demonstrate that a; and «a; fulfill the
test for nonzero speed (Guckenheimer and Holmes, 1983).
Indeed as far as @ and a; are distinct roots of f(a) = 0 then
[d(bzbl - bo)} _ {df(a)] £0, i=1.2. 0

da a=a; da a=da;

Intuition would suggest that the onset of oscillations
critically depends on the interaction between the informa-
tion delay @ = T, and the shape of the extra-vaccination

coverage p,, particularly its slope p] evaluated at the
endemic equilibrium. This intuition is not easy to be proved
analytically from condition (30). We therefore move now to
simulation in order to complete and illustrate our findings.

6. Examples and numerical simulations

In this section we report some numerical simulation of
system (29) under three noteworthy functional forms of the
function p;. We focus on the relation between patterns of
information delay and the reactivity of information-
dependent vaccination in determining the onset of oscilla-
tions. Subsequently we shall discuss in greater detail the
implications for the period of inter-epidemic oscillations.

Most our computations will be based on the following
benchmark parameter constellation roughly mimicking
measles: u = (1/L)days™" where L = 75 x 365 days is the
life expectancy at birth, v =(1/2) days™! where 2 =7
days is the average duration of infection, Ry = 10 (f ~
1.43days™"). In a standard SIR model without information
dependent coverage these values would imply a susceptible
fraction at equilibrium S, = 0.1, and critical coverage
p,=090. In addition we take a baseline coverage
Ppo = 0.75, which for p; =0 implies an infective fraction
at equilibrium equal to 3.83 x 107>, Finally, just to fix the
ideas we set k = 1. This amounts to say that all cases of the
disease are considered to be ‘“‘serious cases’.

Example (Piece-wise linear varying vaccination coverage).
Let it be

pi(M) =min{cM,1 —p,}, Me.7,

where ¢ is a positive constant, representing the propor-
tional change in the extra-vaccination coverage p, for an
infinitesimal change or proportional change in delayed
disease incidence M. This case has some pedagogic interest
and moreover is a local approximation to more general
coverage functions. The condition for instability (30) may
be written as W(c)<0 where

H] + 2 ,uCkH]
Hy + uck # H, + uck

| H{H,
'u) Hj + uck (39)
and

Hi = p(u+v)(Ro(1 = po) — 1)>0,

Y(c) = (

o 2t
+ <H2+uck+

Hy=u+v>0.

Note that
H 2 H

P(0) = <—1 + u) + 2(—1 + u) VH, >0, (40)
H, H,

¥(oo) = 1> — H,. (41)

Thus, since the function W is strictly decreasing in ¢, if
WY(00) <0, there exists a unique threshold ¢* such that if
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¢>c* the instability condition is fulfilled. We note that the
condition ¥(oco) <0 holds for Ry(1 — p,) large enough. This
means that oscillations are more likely to occur for
infectious diseases with a large reproduction number, or
under moderate control circumstances. Moreover, a longer
period of infectiousness is, other things being equal, a
further factor favouring oscillations.

Fig. 1 reports the shape of the function ffor distinct values
of ¢. For low values of ¢ (say ¢ = 200), f'is always positive,
but as ¢ increases its graph shifts downward and intersections
with the axis occur, thereby leading to bifurcations.
Oscillations thus require quite large ¢ values, since we need
a high reactivity of p, at the scale of M, = kI,.

Example (Michaelis—Menten type coverage). Let us con-
sider a more realistic case, namely the Michaelis—-Menten
function (Murray, 1989)

CM
DM +1°

This function is concave and saturating with C = p{(0)
(thus p;(M)<CM). It is convenient to reparametrize it as

DM
DM +1°

where we have set C/D=1—p,—¢, ¢ € R.. This para-
metrization would imply a “roof in the overall coverage
given by py+ (1 —p, —¢) =1 — ¢ if we could let M go to
+o0o. Though M is bounded, by choosing D sufficiently
large, p, will reach values sufficiently close to its asymptote
even for rather small values of M, which is satisfactory for
practical purposes. Here we take ¢=0.01 potentially
implying a roof coverage of 99% under circumstances of
high perceived risk. Keeping constant the roof coverage the
reactivity of p, is tuned by D.

(M) = C,DeRy, MeJ. (42)

(M) =(1—py—¢) (43)

x 10°

= =100
71| c=200
2. 6=300

f(a)

2 4 6 8 10 12 14 16
a x 108

Fig. 1. The piece-wise linear case: shape of f(a), for different values of ¢,
from ¢ = 100 (higher curve) to ¢ = 500 (lower curve).

Numerical computations show how the onset of oscilla-
tions is governed by the interaction between a and D. This
is illustrated in Fig. 2 reporting the f(a) function governing
the stability of the endemic state for different values of D
(under the benchmark parametric set). For small values of
D, f(a) is always positive and the endemic state is always
locally stable. As D further increases, f(a) intersects the
horizontal axis, thus leading to instability. For instance for
D = 1500 the system, which is stable for large values of a, is
destabilized for a =~ 0.005days™' corresponding to an
average delay 7 =~ 200 days. Further decreasing a, i.e.
further increasing the mean delay 7, leads to limit cycles
whose amplitude is increasing up to a maximum and then
decreasing until ¢ = 0.0015days™", corresponding to 7' =~
660 days, where oscillations disappear and the stability of
the endemic state is restored. The shape of the bifurcation
locus (a, D), given by the union of the solutions ay, a, of the
equation f(a) = 0, as functions of D, is illustrated in Fig. 3
for the benchmark parameter set, against two different
cases, respectively, with Ry = 8 and 6 (other parameters as
the benchmark set). The corresponding mean bifurcating
delays, i.e. the quantities 7;(D) = 1/a;(D), i =1,2 are
reported in Fig. 4. Fig. 5 depicts the bifurcation locus as
function of D for different values of the recovery rate v =
1/2 (2 = benchmark =7 days against 2 =21 and 35
days) which confirms the result found in the linear case:
other things being equal an increase in the duration of the
infectious period & favours the onset of oscillations.

As regards the dynamics of the model, we now consider
numerical simulations of the model in the cyclic zone for
D = 5000 (I, = 2.61 x 107°), implying (Fig. 3) that the first
stability loss occurs for a around 0.017days™', i.e. an
average delay of about two months, and that the cyclical
regime persist up to average delays in excess of 6 years,

; —_—
7 o) i _
!
N
6 / 3’ E
7
5 | f _
4t i 1
F
| / .

7

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
a

Fig. 2. The Michaelis—Menten case: shape of f as a function of the delay
parameter a, for different values of D, from D = 500 (higher curve) to
D = 3000 (lower curve).
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Fig. 3. The Michaelis—Menten case: shape of the bifurcation locus in the
(a, D) plane for three different values of Ry (Ry = 10,8,6). The “low”
(“high™) branch of each curve is the graph of the smaller (larger)
bifurcation value a; (a;) as a function of the D parameter tuning curve (42).
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Fig. 4. The Michaelis—Menten case: shape of the bifurcation locus of
Fig. 3 on the (T, D) plane for three different values of Ry (Ry = 10,8, 6).
The “low” (“high”) branch of each curve is the graph of the smaller
(larger) bifurcating delay T» = 1/a> (T} = 1/a;) as a function of the D
parameter tuning curve (42).

where the local stability of the endemic equilibrium is
restored. Simulations for an average delay 7 =1 year,
which in many cases appears a reasonable figure for the
information delay, are reported in Figs. 6 and 7. The initial
conditions Sy, Iy and M, were chosen by slightly
perturbing the endemic state of the basic SIR model with
constant vaccination coverage p, = 0.75: So = 1/Ry = 0.1,
I, = 0.00038, and taking M, = kly. The convergence to
the limit cycle predicted by Proposition 12 is illustrated in
Fig. 6 which reports the phase plane dynamics in the (S, 1)
plane (7 in log scale) until the emergence of the long-term
pattern. The values of I during cycle troughs can appear

0.02 : : : : :
0.018 |
0.016 |
0.014 |

Duration=7 days

0.012 Duration=21

0.01 |
0.008 |
0.006 | _
0.004 | A

0.002 | S

0 T
0 1000 2000

a4, Ay

" Duration=35

E===———————

5000 6000

3000
D

4000

Fig. 5. The Michaelis—Menten case: shape of the bifurcation locus (a, D)
for three different values of the duration of infection <
(2 =17,21,35days). The “low” (“high”) branch of the curve is the graph
of the smaller (larger) bifurcation value a; (a2) as a function of the D
parameter tuning curve (42).
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Fig. 6. The Michaelis—Menten case in the cyclic regime: transient and
long-term dynamics in the (S, ) plane.

very small but are comparable with those emerging in the
periodically forced SIR model with vaccination.

Fig. 7 reports with time span 350 years, the correspond-
ing transient (left-hand side) and long-term (right-hand
side) time paths of susceptibles (top), infectives normalized
to their equilibrium value (medium), and of the coverage
function p; (bottom), jointly with its time average. The
period of the oscillation sharply switches over time from a
value which is initially close to the quasi-period of about 6
years predicted by the SIR model with constant baseline
vaccination at birth only (p, = 0.75), to a long-term value
close to 19 years. Moreover p; peaks up to 17% during
epochs of high perceived risk, implying that overall
coverage can peak to levels as high as 92% i.e. significantly
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Fig. 7. The Michaelis—Menten case in the cyclic “zone”: transient (left-hand side) and long-term (right-hand side) time paths of S, 7, and p;, showing
convergence to a stable limit cycle. The dynamics of p; is compared with its time average (the flat line in the bottom graph).

in excess of the critical coverage. Elimination does not
occur however, and this is understood by the low average
level achieved by the extra coverage over time, which is less
than 3%, implying that the overall average coverage does
not exceed 78%.

Example (Holling-type 2 S-shaped coverage). Let us finally
consider the following S-shaped function:

CoM?
1+ D M”

which is a two-parameter Holling-type 2 curve (other
choices are possible, for instance we also explored logistic-
like functions, but the results are largely similar). We
parametrize it in a manner analogous to what done for the
Michaelis—Menten curve:

(M) = Co,DreR,, Me.g (44)

D, M?

S 45
1 + D M? 45)

P1(M) = (1 —py—e)

In this case the parameter tuning the reactivity of p, is D».
We still keep ¢ = 0.01. Though analytical computations
become nasty in this case the S-shaped form is probably the
one which better approximates real behaviour. Thus, we
use this case to illustrate more in depth the relation
between information-dependent vaccination and informa-
tion delays. Under the benchmark parameter constellation
values of D, in excess of 10° are necessary to generate
oscillations. Setting, respectively, D, and T to the bench-
mark values D, =50 x 10° and 7= T, = 1 year, Fig. 8
reports the time paths (until the long-term regime is

achieved) of S, I and p,. The period of oscillations steadily
increases until a long-term figure of about 19 years; in
addition the p; function approaches, during epochs of high
social alarm, levels as high as 22% so that the overall
coverages reaches levels as high as 97%. As already
occurred in the Michaelis-Menten example, elimination
of the disease cannot occur: the average coverage (not
reported on the graph) during any inter-epidemic period,
never exceeds 3%.

In order to better illustrate the impact of the information
delays we have also investigated the sensitivity of output to
changes in the fundamental parameters, by considering
three distinct values of the average delay 7, i.e. besides the
benchmark delay 77 = 1 year, the values T, = 6 months,
T3 = 18 months. This has been repeated for: (a) the
benchmark parameter set (B), (b) a first “alternative”
parameter set Al, considering a larger value of Ry, i.e.
Ry = 15 (a more standard value for measles in developed
countries); (c) a second ‘“‘alternative” parameter set A2
considering a faster response of vaccination to changing
epidemiological conditions, with D> = 100 x 10°.

Fig. 9 provides a summary plot of the time paths of the
susceptible fraction (left-hand side) and the information-
dependent component of coverage p; (right-hand side)
for this set of cases. The main facts can be summarized
as follows:

(1) increasing information delays lead, coeteris paribus, to
increasing periods of the long-term oscillation. For
instance in the Al scenario (Ry = 15) the period
increase from less than 12 years for an average delay
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Fig. 9. The S-shaped case in the cyclic “zone”. Summary plot of the time paths of S (left-hand side) and p, (right-hand side) for the three scenarios: B,
A1,A2. Each scenario considers three distinct values of the average delay: 7' = 6 months, 7 = 12 months, 7" = 18 months.
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T = 6 months to about 14 years for 7 = 12 months,
and to about 16 years for 7 = 18 months (similar
things occur for scenarios B, A2);

(2) the increase in the inter-epidemic period observed in (1)
in presence of longer memories leads to larger oscilla-
tions of the susceptible fraction, consistently with the
larger susceptible replenishment due to the larger
spacing between major epidemics;

(3) increasing the reactivity of vaccination through in-
creasing D, also leads to increasing periods. For
instance comparing scenarios B and A2 under 7' = 18
months (similar for the other values) the inter-epidemic
period grows from little in excess of 20 years to more
than 30;

(4) increasing the reactivity of vaccination through in-
creasing D, (compare B with A2) allows the overall
coverage p, + p, to more closely approach its “roof”.
However, as already pointed out eradication never
occurs.

Remark 13. In addition to the results reported here,
numerical simulations suggest that the closed orbit emer-
ging via Hopf bifurcation of the endemic state in
Proposition 12 is unique; moreover, the results of this
Proposition seem to hold globally: when the endemic state
is stable it appears to be GAS, and similarly when it
switches its stability with the limit cycle. Finally, the results
of this section extend straightforwardly to other choices of
the information function M, for instance when it is given
by the past reported incidence of the disease, and other
types of delaying kernels in the Erlangian family.

7. The period of oscillations

The previous simulation results suggest the possibility
that information delays in vaccination behaviour
might yield a wide range of outcomes in terms of the
period of the ensuing long-term sustained oscillation,
compared to the basic (i.e. nonperiodically forced)
SIR model. In the SIR model without vaccination only
damped oscillations occur and are generated by the inter-
play of the epidemic mechanism, i.e. exhaustion of
susceptibles, and the demographic one, i.e. regeneration
of susceptibles via new births. For short diseases occurring
early in life the quasi-period of the corresponding oscilla-
tions about the endemic state is well approximated by the
simple formula (Anderson and May, 1991) 1 =~ 272/ .42
where .o/ is the average age at which infection was
acquired, also called the pre-vaccination average age at
infection. When vaccination at birth is introduced it is
well known that if the disease is not eliminated (i.e. the
coverage is below the critical threshold 1 — 1/Ry) the
average age at infection increases and this consequently
raises the inter-epidemic period. For example under the
benchmark parametric set we find 7 =~ 2.5 years, and
Tyace = 6.1 years.

7.1. The inter-epidemic quasi-period of the unlagged model

To clarify how information-dependent vaccination can
affect the period of oscillations, we start from our two-
dimensional undelayed model, which only has damped
oscillations, and thus is straightforwardly comparable with
the basic SIR model with vaccination. The question here is
to what extent can (current) information-dependent
vaccination interact with the mechanisms operating in the
basic SIR model (transmission, demographics, “‘baseline”
vaccination) and affect the inter-epidemic quasi-period?
In our unlagged model the quasi-period of linearized
oscillations is available in closed form. Choosing ¢(S, /) =
kI we have

et = i e
V= BLY + 4BL (ki (KI) + p+v)
with dumping time
dump = 2 . (47)
u+pl.

It is possible to investigate the dependency of the length of
the quasi-period (46) on the parameters tuning the shape of
the information-dependent coverage p,. We focus our
analysis to the case of short diseases (u <v) occurring early
in life.

The piece-wise linear case: Under a piece-wise linear p,
function: p(M) = min{cM, 1 — p,}, it is possible to show
(Appendix A.4), studying Tuuagges as a function of ¢ only
(other parameters being equal, but p<v), that t,,g4ea(c) is
monotonically decreasing over the whole range of ¢ and

Tun/agged(o) ~ Tunlagged(+oo)~ (48)

This means that 7,,44eq(c) is indeed almost flat in this case.
To sum up, in the piece-wise linear case we have the
surprising result that the quasi-period does not differ from
the corresponding quasi-period of the basic SIR model
with vaccination at the baseline level p,, whatever be the
magnitude of c!

The Michaelis—Menten case: Different phenomena
occur for Michaelis—-Menten-type p; functions. Some
analytical considerations are still possible. The adopted
parametrization (42) makes p; dependent on two para-
meters, D and ¢, implying that the quasi-period of the
model is a function T,uggeq(D, €) of both such parameters.
Fig. 10 shows the relation between the quasi-period and D,
for ¢ =0.01 as in our simulation run, other parameters
as in the benchmark set, for a very wide range of D values.
Fig. 10 confirms that tuuuggeq(D,0.01) is an eventually
increasing function of D (it can indeed have a through,
though not pronounced, for very small D values) ranging
from the value of about 6.1 years observed in the
underlying SIR model with only the baseline vaccination
schedule p, = 0.75 (this corresponds to D=0) up to a
maximum around 10 years for very large levels of D
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(D = 10°%). The flat lines denote the quasi-period in the
underlying SIR models (a) without vaccination, and (b)
with baseline coverage p, = 0.75, reported for reference.
Fig. 11 shows the overall shape of tuuggea(D,€). The
dependency on ¢ is nonmonotonic but this depends mainly
on the fact that the manner in which D, ¢ affect p; is not
independent, i.e. for a given D, increasing values of ¢
promote steeper shapes of p;, which lead to smaller
endemic infected fractions, and so on.

10

8 I The unlagged model with
information related vaccination

Basic SIR with vaccination at birth (py=0.75)

Length of quasi-period (years)
»

3 | Basic SIR without vaccination

0 1 2 3 4 5 6 7 8 9 10
D x 10%
Fig. 10. The unlagged model, Michaelis—Menten case. The quasi-period

Tunlagged Of the endemic oscillation as a function of D, for ¢ = 0.01, other
parameters as in the benchmark set.
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7.2. The inter-epidemic period of the delayed model

The delayed model exhibits both damped oscillations
when the endemic state is LAS and genuine stable
oscillations in the regime induced by the Hopf bifurcations.
The inclusion of the delay has the potential to affect the
period of oscillations in both such cases, but little can be
said analytically on the dependence of the period or quasi-
period on the shape of the vaccination function p,. For
instance as regards the damped oscillations about the
endemic state, the eigenvalues can still be found in
closed form but the problem of interpretation becomes
formidable.

7.2.1. The period at the onset of the Hopf bifurcation

The true period of the (degenerate) cycle that occurs at
the appearance of the Hopf bifurcation can be found
explicitly. At a bifurcation point the system has a real
negative eigenvalue, call it 4, and a purely imaginary pair
+wi, where @ denotes the frequency of the oscillations,
related to the period © by t = 2n/w. Thus, the character-
istic polynomial at the bifurcation point can be factored as
follows: P(1) = (J* + w?)(. — A). Comparing this expres-
sion with the characteristic polynomial (31)—(32) of our
delayed model (29), we obtain w? = pl.(u+ v+ a)+ au
and remembering that we need to consider parameter
constellations belonging to the bifurcation locus, i.e.
for byby — by = f(a) = 0, the frequency of the degenerate
cycle is

on = (VLG T o var) (49)
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Fig. 11. The unlagged model, Michaelis-Menten case. The quasi-period t,,4g4es Of the endemic oscillation as a joint function of D, ¢, other parameters as

in the benchmark set.
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Fig. 12. The Michaelis—Menten case. Bifurcating delay versus the
corresponding bifurcating period (benchmark parametric set).

and the corresponding period is

21
Tdelav Bif = . (50)
By <\/ﬁle(,u +v+a)+ a,Lt)f(a)o

This allows us to look at how the period of the degenerate
oscillations is influenced by the parameters tuning the
vaccination function p;.

For example, for the Michaelis—Menten case, Fig. 12
adds to the graph of the bifurcation locus of Fig. 4, the
graph of the amplitude of the period of the degenerate cycle
occurring on each point of the bifurcation locus. The
interpretation of Fig. 12 is the following: for example
for D = 3000 the ““small delay” bifurcation occurs for a
value of T around 3 months. At this point a degenerate
cycle occurs having period little in excess of 6 years. Briefly
Fig. 12 shows that the period at the onset of the bifurcation
is rather insensitive to “where the bifurcation actually
occurs”, particularly the bifurcation occurring for small
delays (the lower branch of the bifurcation locus) causes
degenerate cycles whose period never differ significantly
from the period of the basic SIR model with baseline
vaccination.

7.2.2. The true period of the sustained oscillation

The most interesting issue is clearly what happens when
we move far away from the bifurcation locus, i.e. what is
the dependency of the period of the true sustained
oscillation on the amplitude of the average information
delay on which families base their vaccination decisions.
Our discussion on the shape of the bifurcations locus has
shown that for parameters constellations for which cycles
exist, they “live” in a very wide range of values of the
average delay. By repeated simulations of the model it is
possible to draw the dependency of the period of
oscillations on the length of the memory. Fig. 13 shows

225 ¢
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Fig. 13. The Michaelis—-Menten case. Period of the sustained oscillations as
a function of the average delay (Period and average delay expressed in years,
D = 4400, ¢ = 0.01, other parameters as in the benchmark parametric set).

for the Michaelis—Menten case, under a value of D (D =
4400) allowing oscillation (¢ = 0.01, other parameters as in
the benchmark parametric set) the dependency of the
period of the stable long-term oscillation on the length of
the average delay. Fig. 13 is drawn with reference only to
the window of T values for which stable oscillations exist,
which is between about two months and 7 years (outside
this window no stable oscillations but only damped
oscillations toward the steady state exist). The dependency
is humped, as it is reasonable, given the shape of the
bifurcation locus. In particular the amplitude of the period
as a function of the average delay takes values close to the
figure predicted by the SIR model with vaccination at the
baseline level p,, i.e. close to about 6.2 years, for small
delays, i.e. delays very close to the ‘“small delay”
bifurcation value; then it increases with the information
delay up to a peak of about 22 years (this occurs when the
average information delay is close to 3 years); finally it
starts decreasing to re-approach a value close to the period
of the SIR model for very large information delays (where
cycles disappear).

8. Discussion

This work has investigated the implications of informa-
tion-dependent vaccination for the dynamics and control
of SIR childhood vaccine preventable infectious diseases.
Here information-dependent vaccination is used to model
the phenomena of rational exemption to vaccination and
social alarm as a consequence of the spread of public
information on the disease, by assuming that a component
of the overall vaccination coverage is positively correlated
with the available information on the disease. In simple
words this means that a fraction of the families will not
vaccinate their children during epochs of low social alarm
due to the disease, thereby decreasing the total coverage.

Overall, our results have shown that if the steady
component of vaccination is below the critical elimination
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threshold there is no hope to eliminate the disease even if
during epochs of high social alarm coverage at birth could
temporary achieve levels as high as 100%, and strong
supplementary coverage of adults can be achieved by
catch-up policies. A further main consequence of informa-
tion-dependent vaccination is the onset of sustained
oscillations. Such cycles are triggered by a somewhat
violent but not instantaneous reaction by people to the
social alarm caused by the disease. In other words stable
oscillations appear when parents, in deciding on whether to
vaccinate or not their children make use of past, and not
only current, information about the disecase and further-
more tend to react quite violently to epochs of social alarm
by promptly and significantly increasing the vaccination
coverage.

It is to be noticed that, as regards the cyclic regime, this
occurs in a very wide range of information delays, from few
months to several years, so that we can correctly say that
oscillations are the rule. These oscillations can generate,
depending on the form of the information-dependent
vaccination curve, a wide range of possible inter-epidemic
periods, some of which are completely realistic also from
the viewpoint of vaccination programmes. In particular
these periods range from a minimum length which is
exactly the one found in the SIR model with vaccination
and remain within order of magnitude “relevant” for
public health purposes provided the delay is not too long.

Additionally, the results found in the paper appear to be
robust in that they seem to extend to other choices of the
information function, and to other types of delay patterns.
Thus, we feel that the mechanisms devised in this paper
represent an important source of oscillations of vaccine
preventable diseases, up to now little stressed. Concerning
the oscillations, another point we are currently investigat-
ing is the nonlinear inter-play between these information-
related oscillations and seasonal variations in the contact
rate (d’Onofrio et al., manuscript in preparation).

We acknowledge that this is just a first step toward more
realistic formulations of the problem of the interaction of
information and vaccinating behaviour. Future work
should (a) include behaviourally founded vaccination
functions along the directions indicated for instance in
Bauch (2005), Reluga et al. (2006); (b) include more
realistic factors particularly age structure. This appears to
be the only way to properly deal with the risks of serious
side-effects from the diseases, which are age-related, and
potential long-term undesired effects of vaccination. More-
over, it is the proper manner to deal with vaccination
choices, since fully rational agents (parents) should take
into consideration the risk of side effects while forming the
decision to vaccinate or not their children. Moreover, the
inclusion of age structure would allow a more realistic
treatment of ‘“‘catch-up” vaccination, treated here very
coarsely, as a rational strategy for those who decided to not
vaccinate their children at the proper age because the
perceived risk from the diseases was low; (c) include real
data on vaccinating behaviour.
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Appendix A
A.1. Proof of Proposition 2

Defining o(?) = S(¢) + I(¢) we obtain:

0 = (1 —po) — uo —vI — up;(M)< (1 = py) — po. (51)

By a comparison theorem for ODEs (Hale, 1969), it follows
that asymptotically it must be

S+1I<1—pgy (52)
hence
I'<IB@)(1 —py—1) — (u+)). (53)

From (53) it descends

I'<IB)(1 = po) — (u+ 1)

and if (11) strictly holds, it follows that

It)—>0 = S —1-p, (54)

i.e. the DFE is GAS.
If in (11) the equality holds, we may write

(1 = p)p(1) = (u+v) + w(), (55)

where w(?) is a 0-periodic function having null mean value,
if (¢) is O-periodic. The case of constant transmission rate
may be formally studied as well by considering w(z) = 0.
Thus, we may rewrite (53) as follows:

I'<sw)I — p(o)I? (56)

i.e. I(f)<z(t), where z(¢) is the solution of the Riccati’s
differential equation:

7 = w(t)z — p(1)z2, (57)
with z(0) = 1(0)#0. Defining

t
W(t) :/ w(s) ds (58)
0
which is periodic by construction, it turns out that
) — exp /(1)
1/1(0) + [, exp{ W ()} f(u) du
exp( Wmax) +
< — 0. (59)
1/1(0) + (ﬁmin exp( Wmin))t
Thus, in turn
2(t) - 0" = I(t)—> 0" = S()— 1—p,. (60)
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A.2. Proof of Proposition 8

1. By Proposition 4 there exists a unique endemic
equilibrium EE = (S,, I.) for system (8). A linearization of
(8) near EF yields the following Jacobian matrix:

J(Se, 1)
ANl PN
_:u'pl(ML*)_(Se’ [e) — U= ﬁle _(ﬁse + .upl(Me)_(Ses [e))
oS ol
[78 0

s

with eigenvalues having negative real parts, since, by (22)
and the assumption p} >0,

, 0
tr J(Se, L) = —upl(m% — pu— pI, <0, (61)

N A (ORSTALRETONA) EUNCY

2. In Q** there are no closed orbits since, by (23) and p} >0:

N N LI pec) By

Thus, by the Poincaré—Bendixon thricotomy (Thieme,
2003) it follows that the endemic equilibrium is GAS
in Q.

A.3. Proof of Proposition 9

With reference to the Proof of Proposition 8, we have
from (61) that condition (25) guarantees the instability of
EE, and since Q™ is bounded and positively invariant,
from the Poincaré-Bendixon’s thricotomy it follows the
existence of at least one LAS limit cycle.

A.4. Proof on inter-epidemic periods
The undelayed model: piece-wise linear case: In the piece-

wise linear case (p;(M) = min{cM,1 — p,}) formula (46)
implies

Tun[ayged(c)
3 4n
(1 +v)((1 = p)Ro — D’
_ 1y 2
\/4(u+V)u((1 PR — 1) — <1+ (i + v + ckp) )
(63)
Thus, since u is “small” and u<v, it easily follows
4
szlngged(o) = E 2
(1 =po)B
\/ 4+ (1 = po)Ro — 1) — (m)

4n
VA + (T = p)Ro — 1) — 412
Finally, to show the monotonicity of Tyuuggeq(c), define
4n

Tunlagged(c) = % .

= Tul1/agged(+oo)-

We have that

1'(0)
_ 280 = (= p)R)B(1 = (1 = po)Ro) = Ro(ckp+ p+v)
- 2 3
Ri(ckp+ p+v)

for its numerator is the product of two negative quantities
if Ro(1 —py)>1.
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