Variation of Parameters Formula and Adapted Norm

Let $f:\mathbb{R}^d\to\mathbb{R}^d$ be a continuously differentiable map and \bar{q} be a nonsingular fixed point, i.e., the linearization $Df(\bar{q})$ is invertible. If $Df(\bar{q})$ is similar to a block diagonal matrix

$$Df(\bar{q}) \sim \operatorname{diag}(A, B)$$

then we can assume that after translating the fixed point to the origin 0 there is a coordinate system $(x,y)\in\mathbb{R}^d$ so that the mapping $(\bar{x},\bar{y})=f(x,y)$ can be written as

$$\begin{cases} \bar{x} = f_1(x, y) = Ax + h(x, y) \\ \bar{y} = f_2(x, y) = By + \tilde{h}(x, y). \end{cases}$$
 (1)

By the Global Inverse Function Theorem we know that for $H(p)=f(p)-Df(\bar{q})p$ if $\|H\|_1<\delta$ and δ sufficiently small, then f is globally invertible with inverse $f^{-1}=Df(\bar{q})^{-1}+G$ and $\|G\|_1<\epsilon$ and $\epsilon=O(\delta)$ (i.e., $\lim_{\delta\to 0}\epsilon=0$). So for $(x,y)=f^{-1}(\bar{x},\bar{y})$ we can write

$$\begin{cases} x = [f^{-1}]_1(\bar{x}, \bar{y}) = A^{-1}\bar{x} + \tilde{g}(\bar{x}, \bar{y}) \\ y = [f^{-1}]_2(\bar{x}, \bar{y}) = B^{-1}\bar{y} + g(\bar{x}, \bar{y}). \end{cases}$$
(2)

Lemma 1 (Variation of Parameters Formula for Map). Let \bar{q} be a nonsingular fixed point of a continuously differentiable map f in \mathbb{R}^d . If $Df(\bar{q}) \sim \operatorname{diag}(A, B)$ for some matrixes A, B, then for sufficiently small $\delta > 0$, $||f - Df(\bar{q})||_1 < \delta$ implies there is a coordinate system so that $\bar{p} = f(p)$ is equivalent to

$$\begin{cases} \bar{x} = Ax + h(x, y) \\ y = B^{-1}\bar{y} + g(\bar{x}, \bar{y}), \end{cases}$$
(3)

with the properties that h(0,0) = 0, g(0,0) = 0, Dh(0,0) = 0, Dg(0,0) = 0, and $||(h,g)||_1 \to 0$ as $\delta \to 0$. Moreover, the following variation of parameter formula holds for any orbit $(x_{n+1},y_{n+1}) = f(x_n,y_n), n \in \mathbb{Z}$

$$\begin{cases} x_n = A^{n-\ell} x_\ell + \sum_{i=\ell+1}^n A^{n-i} h(x_{i-1}, y_{i-1}) \\ y_n = B^{n-m} y_m + \sum_{i=n+1}^m B^{n+1-i} g(x_i, y_i) \end{cases}$$
(4)

for any $\ell \leq n \leq m$.

Proof. The discussion preceding the lemma shows that for sufficiently small δ , $\bar{p}=f(p)$ is equivalent to Eq.(1) and Eq.(2), together they imply Eq.(3). Also, it follows from the discussion that h(0,0)=0, g(0,0)=0, Dh(0,0)=0, Dg(0,0)=0, and $\|(h,g)\|_1\to 0$ as $\delta\to 0$.

Conversely, assume a pair of points (x,y), $(\bar x,\bar y)$ satisfy Eq.(3). Recall from the Global Inverse Function Theorem that for H=f-J with $J=Df(\bar q)$, the inverse of f=J+H can be written as $f^{-1}=J^{-1}+G$ with $G=-J^{-1}\circ H\circ f^{-1}$.

In the coordinate system (x,y) for which $J=\operatorname{diag}(A,B),\ H=(h,\tilde{h}),\ G=(\tilde{g},g),$ we have

$$g = -B^{-1} \circ \tilde{h} \circ f^{-1}.$$

Hence, the second equation of Eq.(3) can be written as

$$\bar{y} = By - Bg(\bar{x}, \bar{y}) = By + \tilde{h} \circ f^{-1}(\bar{x}, \bar{y}).$$

Pairing it with the first equation of Eq.(3) we have

$$\begin{cases} \bar{x} = Ax + h(x, y) \\ \bar{y} = By + \tilde{h} \circ (J^{-1} + G)(\bar{x}, \bar{y}). \end{cases}$$
 (5)

Treating it as a fixed point for the mapping defined by the right side of equation, $\bar{p} = S(\bar{p}, p), S : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$, we can conclude that if

$$||H||_1(||J|| + ||G||_1) < 1$$
(6)

then $S(\cdot,p)$ is a uniform contraction. Hence, for every p=(x,y), there is a unique fixed point $(\bar x,\bar y)=f^*(x,y)$ parameterized by (x,y). Because $(\bar x,\bar y)=f(x,y)$ obviously satisfies Eq.(5), it is a fixed point of $S(\cdot,p)$. Therefore, by the uniqueness of the fixed point we must have $(\bar x,\bar y)=f(x,y)=f^*(x,y)$, proving the equivalence of Eq.(3) to Eq.(1). Because the assumption $\|f-Df(\bar q)\|_1<\delta$ implies (6) for small δ , the equivalence indeed holds.

As a consequence to Eq.(3), for any orbit $\gamma = \{p_n\}_{n=-\infty}^{\infty}$, with $(x_{n+1}, y_{n+1}) = f(x_n, y_n)$, we use the first equation of Eq.(3) to write

$$x_n = Ax_{n-1} + h(x_{n-1}, y_{n-1})$$

and then recursively apply it to itself to obtain the first equation of Eq.(4). Similarly, we use the second equation of Eq.(3) to write

$$y_n = B^{-1}y_{n+1} + g(x_{n+1}, y_{n+1})$$

and then recursively apply it to itself to obtain the second equation of Eq.(4). \Box

Denote $J=Df(\bar{q}),\,\sigma(J)$ the set of eigenvalues of the linearization, counting multiplicity. Denote $\sigma^s(J)=\sigma(J)\cap\{|z|<1\},\sigma^c(J)=\sigma(J)\cap\{|z|=1\},\sigma^u(J)=\sigma(J)\cap\{|z|>1\}$ the set of eigenvalues inside, on, outside the unit circle, respectively. Denote $\mathbb{E}^s,\mathbb{E}^c,\mathbb{E}^u$ the corresponding generalized eigenspaces for eigenvalues of $\sigma^s,\sigma^c,\sigma^u$, respectively. Then $\mathbb{R}^d\cong\mathbb{E}^s\oplus\mathbb{E}^c\oplus\mathbb{E}^u$. In fact, the phase space can be split or combined in other different ways. Two splits we will need later are $\mathbb{R}^d\cong\mathbb{E}^{cs}\oplus\mathbb{E}^u,\,\mathbb{R}^d\cong\mathbb{E}^s\oplus\mathbb{E}^{cu},\,$ with $\mathbb{E}^{cs}=\mathbb{E}^s\oplus\mathbb{E}^c$ and $\mathbb{E}^{cu}=\mathbb{E}^c\oplus\mathbb{E}^u,\,$ corresponding to $\sigma^{cs}=\sigma^s\cup\sigma^c,\sigma^{cu}=\sigma^c\cup\sigma^u,\,$ etc. Let $d_i=\#(\sigma^i)=\dim(\mathbb{E}^i).$ Then $d=d_{cs}+d_u,\,d_{cs}=d_s+d_c,\,$ etc. Also, $\mathbb{E}^{d_i}\cong\mathbb{R}^{d_i},\,$ for i=s,c,u,sc,su.

Depending on applications, a coordinate system (x, y) can be chosen so that $Df(\bar{q}) = \text{diag}(A, B)$ with eigenvalues of A the set σ^{cs} and those of B the set

 σ^u . Or A's eigenvalues are from σ^s , and B's eigenvalues are from σ^{cu} . Or in the case of hyperbolic fixed points, A's eigenvalues are from σ^s , and B's eigenvalues are from σ^u , because $\sigma^c = \varnothing$. Or a coordinate system (x,y,z) so that $Df(\bar{q}) = \operatorname{diag}(A,C,B)$ with $\sigma(A) = \sigma^s$, $\sigma(C) = \sigma^c$, and $\sigma(B) = \sigma^u$. In any case, for $\|f - Df(\bar{q})\|_1 < \delta$ with sufficiently small δ , the Variation of Parameters Formula (Lemma 1) applies. For the cases of two-matrixes splits for the linearization, functions h,g are all C^1 satisfying

$$h(0,0) = 0, Dh(0,0) = 0, g(0,0) = 0, Dg(0,0) = 0$$
 (7)

and they are globally Lipschitz with Lipschitz constants satisfying

$$L = \max\{\text{Lip}(h), \text{Lip}(g)\} \to 0 \text{ as } ||f - Df(\bar{q})||_1 \to 0.$$
 (8)

The same conditions also hold for \tilde{h}, \tilde{g} but we do not need them usually. The Variation of Parameters Formula can also be generalized to three-matrixes split cases for the linearization.

We can further assume the coordinate is chosen so that the matrixes A, B, etc., are in their Jordan canonical forms. Specifically, for example, $A = \text{diag}(D_1, \dots, D_k)$ with each D_i being one of the following forms:

$$\begin{bmatrix}
D & N & 0 & \dots & 0 \\
0 & D & N & \dots & 0 \\
\vdots & \vdots & \ddots & & \vdots \\
0 & 0 & \dots & D & N \\
0 & 0 & \dots & 0 & D
\end{bmatrix}$$

where either $D=\lambda, N=0$, or $D=\lambda, N=\epsilon$, or $D=\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, $N=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, or $D=\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, $N=\begin{bmatrix} \epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$, with λ or a+ib the eigenvalues of D_i , and ϵ being an arbitrarily small but nonzero number. Similar forms for B or for any other splitting also hold. Take a hyperbolic case as an example for which $\sigma^c=\varnothing$, $\sigma(A)=\sigma^s$, $\sigma(B)=\sigma^u$. Then for any fixed but arbitrary constants α,β satisfying

$$\max\{\sigma(A)\} < \alpha < 1 < \beta < \min\{\sigma(B)\}$$

we can choose a sufficiently small ϵ a priori and then a coordinate system (x,y) so that with respect the Euclidean norm for (x,y) the matrix norms for A and B satisfy

$$\|A\| < \alpha < 1 < \beta < \|B\| \ \ \text{and} \ \|B^{-1}\| < 1/\beta. \tag{9}$$

Such a norm is referred to as an *adapted norm* for the linearization. Take a non-hyperbolic case for which $\sigma(A) = \sigma^{cs}$ and $\sigma B = \sigma^{u}$. Then for any constants α, β

$$\max\{\sigma(A)\} = 1 < \beta < \frac{1}{\alpha} < \min\{\sigma(B)\}\$$

we can choose again a sufficiently small ϵ a priori and then a coordinate system (x,y) so that the matrix norm for A and B satisfy

$$||A|| < \beta \text{ and } ||B^{-1}|| < \alpha < 1.$$
 (10)

The last case as an example is for the splitting $\sigma(A)=\sigma^s$ and $\sigma(B)=\sigma^{cu}$, for which for any constants α,β

$$\max\{\sigma(A)\} < \alpha < 1 \ \text{ and } \ \max\{\sigma(B^{-1})\} = 1 < \beta$$

we can choose an adapted coordinate (x, y) so that

$$||A|| < \alpha < 1 \text{ and } ||B|| < \beta. \tag{11}$$

Such coordinates will prove to be convenient in analyses of invariant manifolds of diffeomorphic maps.