
[Lecture Note 5]

Variation of Parameters Formula
and Adapted Norm

Let f : Rd → R
d be a continuously differentiable map andq̄ be a nonsingular

fixed point, i.e., the linearizationDf(q̄) is invertible. IfDf(q̄) is similar to a block
diagonal matrix

Df(q̄) ∼ diag(A,B)

then we can assume that after translating the fixed point to the origin0 there is a
coordinate system(x, y) ∈ R

d so that the mapping(x̄, ȳ) = f(x, y) can be written
as

{

x̄ = f1(x, y) = Ax+ h(x, y)

ȳ = f2(x, y) = By + h̃(x, y).
(1)

By the Global Inverse Function Theorem we know that forH(p) = f(p) −
Df(q̄)p if ‖H‖

1
< δ andδ sufficiently small, thenf is globally invertible with

inversef−1 = Df(q̄)−1 +G and‖G‖
1
< ǫ andǫ = O(δ) (i.e., limδ→0 ǫ = 0). So

for (x, y) = f−1(x̄, ȳ) we can write
{

x = [f−1]1(x̄, ȳ) = A−1x̄+ g̃(x̄, ȳ)
y = [f−1]2(x̄, ȳ) = B−1ȳ + g(x̄, ȳ).

(2)

Lemma 1 (Variation of Parameters Formula for Map). Let q̄ be a nonsingular
fixed point of a continuously differentiable mapf in R

d. If Df(q̄) ∼ diag(A,B)
for some matrixesA,B, then for sufficiently smallδ > 0, ‖f −Df(q̄)‖

1
< δ

implies there is a coordinate system so thatp̄ = f(p) is equivalent to

{

x̄ = Ax+ h(x, y)
y = B−1ȳ + g(x̄, ȳ),

(3)

with the properties thath(0, 0) = 0, g(0, 0) = 0, Dh(0, 0) = 0, Dg(0, 0) = 0,
and ‖(h, g)‖

1
→ 0 as δ → 0. Moreover, the following variation of parameter

formula holds for any orbit(xn+1, yn+1) = f(xn, yn), n ∈ Z

{

xn = An−ℓxℓ +
∑

n

i=ℓ+1
An−ih(xi−1, yi−1)

yn = Bn−mym +
∑

m

i=n+1
Bn+1−ig(xi, yi)

(4)

for anyℓ ≤ n ≤ m.

Proof. The discussion preceding the lemma shows that for sufficiently small δ,
p̄ = f(p) is equivalent to Eq.(1) and Eq.(2), together they imply Eq.(3). Also,
it follows from the discussion thath(0, 0) = 0, g(0, 0) = 0, Dh(0, 0) = 0,
Dg(0, 0) = 0, and‖(h, g)‖

1
→ 0 asδ → 0.

Conversely, assume a pair of points(x, y), (x̄, ȳ) satisfy Eq.(3). Recall from
the Global Inverse Function Theorem that forH = f − J with J = Df(q̄), the
inverse off = J+H can be written asf−1 = J−1+G with G = −J−1◦H ◦f−1.
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In the coordinate system(x, y) for which J = diag(A,B), H = (h, h̃), G =
(g̃, g), we have

g = −B−1 ◦ h̃ ◦ f−1.

Hence, the second equation of Eq.(3) can be written as

ȳ = By − Bg(x̄, ȳ) = By + h̃ ◦ f−1(x̄, ȳ).

Pairing it with the first equation of Eq.(3) we have
{

x̄ = Ax+ h(x, y)

ȳ = By + h̃ ◦ (J−1 +G)(x̄, ȳ).
(5)

Treating it as a fixed point for the mapping defined by the rightside of equation,
p̄ = S(p̄, p), S : Rd × R

d → R
d, we can conclude that if

‖H‖
1
(‖J‖+ ‖G‖

1
) < 1 (6)

thenS(·, p) is a uniform contraction. Hence, for everyp = (x, y), there is a
unique fixed point(x̄, ȳ) = f ∗(x, y) parameterized by(x, y). Because(x̄, ȳ) =
f(x, y) obviously satisfies Eq.(5), it is a fixed point ofS(·, p). Therefore, by the
uniqueness of the fixed point we must have(x̄, ȳ) = f(x, y) = f ∗(x, y), proving
the equivalence of Eq.(3) to Eq.(1). Because the assumption‖f −Df(q̄)‖

1
< δ

implies (6) for smallδ, the equivalence indeed holds.
As a consequence to Eq.(3), for any orbitγ = {pn}

∞

n=−∞
, with (xn+1, yn+1) =

f(xn, yn), we use the first equation of Eq.(3) to write

xn = Axn−1 + h(xn−1, yn−1)

and then recursively apply it to itself to obtain the first equation of Eq.(4). Simi-
larly, we use the second equation of Eq.(3) to write

yn = B−1yn+1 + g(xn+1, yn+1)

and then recursively apply it to itself to obtain the second equation of Eq.(4).

DenoteJ = Df(q̄), σ(J) the set of eigenvalues of the linearization, count-
ing multiplicity. Denoteσs(J) = σ(J) ∩ {|z| < 1}, σc(J) = σ(J) ∩ {|z| =
1}, σu(J) = σ(J) ∩ {|z| > 1} the set of eigenvalues inside, on, outside the unit
circle, respectively. DenoteEs,Ec,Eu the corresponding generalized eigenspaces
for eigenvalues ofσs, σc, σu, respectively. ThenRd ∼= E

s ⊕ E
c ⊕ E

u. In fact,
the phase space can be split or combined in other different ways. Two splits
we will need later areRd ∼= E

cs ⊕ E
u, Rd ∼= E

s ⊕ E
cu, with E

cs = E
s ⊕ E

c

andEcu = E
c ⊕ E

u, corresponding toσcs = σs ∪ σc, σcu = σc ∪ σu, etc. Let
di = #(σi) = dim(Ei). Thend = dcs + du, dcs = ds + dc, etc. Also,Edi ∼= R

di ,
for i = s, c, u, sc, su.

Depending on applications, a coordinate system(x, y) can be chosen so that
Df(q̄) = diag(A,B) with eigenvalues ofA the setσcs and those ofB the set
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σu. OrA’s eigenvalues are fromσs, andB’s eigenvalues are fromσcu. Or in the
case of hyperbolic fixed points,A’s eigenvalues are fromσs, andB’s eigenvalues
are fromσu, becauseσc = ∅. Or a coordinate system(x, y, z) so thatDf(q̄) =
diag(A,C,B) with σ(A) = σs, σ(C) = σc, andσ(B) = σu. In any case, for
‖f −Df(q̄)‖

1
< δ with sufficiently smallδ, the Variation of Parameters Formula

(Lemma 1) applies. For the cases of two-matrixes splits for the linearization,
functionsh, g are allC1 satisfying

h(0, 0) = 0, Dh(0, 0) = 0, g(0, 0) = 0, Dg(0, 0) = 0 (7)

and they are globally Lipschitz with Lipschitz constants satisfying

L = max{Lip(h),Lip(g)} → 0 as ‖f −Df(q̄)‖
1
→ 0. (8)

The same conditions also hold forh̃, g̃ but we do not need them usually. The
Variation of Parameters Formula can also be generalized to three-matrixes split
cases for the linearization.

We can further assume the coordinate is chosen so that the matrixesA,B, etc.,
are in their Jordan canonical forms. Specifically, for example,A = diag(D1, . . . , Dk)
with eachDi being one of the following forms:















D N 0 . . . 0
0 D N . . . 0
...

...
. . .

...
0 0 . . . D N
0 0 . . . 0 D















where eitherD = λ,N = 0, or D = λ,N = ǫ, or D =

[

a −b
b a

]

, N =
[

0 0
0 0

]

, orD =

[

a −b
b a

]

, N =

[

ǫ 0
0 ǫ

]

, with λ or a+ ib the eigenvalues of

Di, andǫ being an arbitrarily small but nonzero number. Similar forms forB or
for any other splitting also hold. Take a hyperbolic case as an example for which
σc = ∅, σ(A) = σs, σ(B) = σu. Then for any fixed but arbitrary constantsα, β
satisfying

max{σ(A)} < α < 1 < β < min{σ(B)}

we can choose a sufficiently smallǫ a priori and then a coordinate system(x, y)
so that with respect the Euclidean norm for(x, y) the matrix norms forA andB
satisfy

‖A‖ < α < 1 < β < ‖B‖ and‖B−1‖ < 1/β. (9)

Such a norm is referred to as anadapted normfor the linearization. Take a non-
hyperbolic case for whichσ(A) = σcs andσB = σu. Then for any constants
α, β

max{σ(A)} = 1 < β <
1

α
< min{σ(B)}
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we can choose again a sufficiently smallǫ a priori and then a coordinate system
(x, y) so that the matrix norm forA andB satisfy

‖A‖ < β and‖B−1‖ < α < 1. (10)

The last case as an example is for the splittingσ(A) = σs andσ(B) = σcu, for
which for any constantsα, β

max{σ(A)} < α < 1 and max{σ(B−1)} = 1 < β

we can choose an adapted coordinate(x, y) so that

‖A‖ < α < 1 and‖B‖ < β. (11)

Such coordinates will prove to be convenient in analyses of invariant manifolds of
diffeomorphic maps.
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