
[Lecture Note 7]

Stable and Unstable Manifolds II
This notes is about stable and unstable manifolds for nonhyperbolic fixed

points of diffeomorphisms.
Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd. Let J =

Df(q̄), and denote

σs = σ(J) ∩ {|z| < 1}, σc = σ(J) ∩ {|z| = 1}, and σu = σ(J) ∩ {|z| > 1}

the set of stable eigenvalues, center eigenvalues, unstable eigenvalues, respec-
tively, of the linearizatoin Df(q̄). Let

σcs = σs ∪ σc, and σcu = σc ∪ σu.

Definition 1. Let q̄ be a nonsingular fixed point of a differentiable mapping f in
Rd and α be any constant satisfying

max{|σs|} < α < 1.

The stable manifold of the fixed point q̄ for f is

W s = {p : {α−n[fn(p)− q̄]}∞n=0 is a bounded sequence.}.

Theorem 1 (Stable Manifold Theorem). Let q̄ be a nonsingular fixed point of a
diffeomorphism f in Rd with splitting Rd ∼= Es ⊕ Ecu. Then for sufficiently small
δ > 0, ‖f −Df(q̄)‖1 < δ implies the definition of W s is independent of any
two different choices in the constant α. Also W s is the graph of a C1 function
φcu : Es → Ecu

W s = graph(φcu),

and the tangent space of W s at the fixed point is the stable eigenspace

Tq̄W s = Es.

Moreover, f is a contraction mapping on W s. Furthermore, if f is Ck, k ≥ 1,
and all its derivatives Djf , 1 ≤ j ≤ k, are bounded, then φcu is also Ck with
bounded derivatives.

The proof is an application of the Uniform Contraction Principle. The main
idea is to construct the stable-manifold function φcu as part of a fixed point of a
uniform contraction map. We will break it up into a few lemmas.

Before doing so, we first translate q̄ to the origin and choose a coordinate
system (x, y) for the splitting in which Df(q̄) ∼= diag(As, Acu). By the Variation
of Parameters Formula Theorem, for sufficiently small ‖f −Df(q̄)‖1, the map
(x̄, ȳ) = f(x, y) is equivalent to{

x̄ = Asx+ hs(x, y)
y = A−1

cu ȳ + hcu(x̄, ȳ),
(1)
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and for any orbit, pn = (xn, yn) = fn(p0), n ≥ 0, the following Variation of
Parameters Formula (VPF) holds{

xn = Ansx0 +
∑n

i=1 A
n−i
s hs(pi−1)

yn = An−mcu ym +
∑m

i=n+1A
n+1−i
cu hcu(pi).

(2)

Also, by the VPF theorem, the functions hs, hcu are all C1 satisfying

hs(0) = 0, Dhs(0) = 0, hcu(0) = 0, Dhcu(0) = 0, (3)

and they are globally Lipschitz and the Lipschitz constant can be taken to be

L = ‖Dh‖0 → 0 as ‖f −Df(q̄)‖1 → 0. (4)

We will repeatedly use this formula for geometric sequences

a+ ar + ar2 + · · ·+ arn−1 = a(1−rn)
1−r , for r 6= 1

and its differentiation formulas in r.

Lemma 1. For the parameter α satisfying max{|σs|} < α < 1, let

Sα := {γ = {pn}∞n=0 : pn ∈ Rd, sup{α−n‖pn‖ : n ≥ 0} <∞} (5)

for an adapted norm ‖·‖ for Rd and for any γ ∈ Sα let

‖γ‖α = sup{α−n‖pn‖ : n ≥ 0}.

For any γ ∈ Sα, γ = {pn}∞n=0, let γ̄ = T (γ) be defined by the equations below{
x̄n = Ansx0 +

∑n
i=1 A

n−i
s hs(pi−1)

ȳn =
∑∞

i=n+1A
n+1−i
cu hcu(pi).

(6)

Then γ̄ ∈ Sα with
‖γ̄‖α ≤ ‖x0‖+

L‖γ‖α
α−ν +

Lα‖γ‖α
1−αβ (7)

where ν, β are fixed parameters satisfying

max{|σs|} < ν < α < 1 < β < 1/α. (8)

More importantly, p ∈ W s if and only if the orbit γp = {fn(p)}∞n=0 is a fixed point
of T with

p = (x0, y0) = (x0,
∑∞

i=1A
1−i
cu hcu(pi)) . (9)

Proof. For α, β, ν satisfying (8), choose an adapted norm so that the following
inequalities hold

‖As‖ < ν < α < 1, and ‖A−1
cu ‖ < β < 1/α. (10)
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For γ ∈ Sα, γ̄ = T (γ), since ‖hs(p)‖ = ‖hs(p)− hs(0)‖ ≤ L‖p‖ we have

‖x̄n‖ ≤ ‖Ans‖‖x0‖+
∑n

i=1 ‖An−is hs(pi−1)‖
≤ νn‖x0‖+

∑n
i=1 ν

n−iLαi−1‖γ‖α
= νn‖x0‖+ L‖γ‖α

αn−νn
α−ν

≤ (‖x0‖+
L‖γ‖α
α−ν )αn.

(11)

Similarly, because ‖An+1−i
cu ‖ ≤ βi−n−1, i ≥ n + 1, αβ < 1, and ‖hcu(p)‖ =

‖hcu(p)− hcu(0)‖ ≤ L‖p‖,

‖ȳn‖ ≤
∑∞

i=n+1 ‖An+1−i
cu hcu(pi)‖

≤
∑∞

i=n+1 β
i−n−1Lαi‖γ‖α

= β−n−1L‖γ‖α
(αβ)n+1

1−αβ

=
Lα‖γ‖α
1−αβ α

n.

(12)

Hence, the estimate (7) for γ̄ holds, and T maps Sα into itself.
Now for any p = p0 = (x0, y0) ∈ W s, because γ = {pn = (xn, yn) =

fn(p)}∞n=0 ∈ Sα, ‖pn‖ ≤ ‖γ‖ααn. Because ‖An−mcu ym‖ ≤ βm−n‖γ‖ααm and
αβ < 1, the first term of the yn-equation of the VPF (2) goes to zero as m→∞.
By the same estimate as for (12), the partial sum of the yn-equation of the VPF
(2) converges uniformly. Therefore, by taking m → ∞, we see that the stable-
manifold orbit γ is a fixed point of T .

Conversely, if a sequence γ = {pn = (xn, yn)} ∈ Sα is a fixed point of T ,
satisfying {

xn = Ansx0 +
∑n

i=1A
n−i
s hs(pi−1)

yn =
∑∞

i=n+1A
n+1−i
cu hcu(pi)

(13)

for all n ≥ 0, then it is straightforward to check

xn+1 = Asxn + hs(xn, yn) and yn = A−1
cu yn+1 + hcu(xn+1, yn+1)

hold for all n ≥ 0, and because of (1) the sequence is an orbit of f . Therefore,
p ∈ W s iff γ ∈ Sα with p0 = p is a fixed point of T for which the identity (9)
holds.

Lemma 2. There is a Lipschitz continuous function φcu ∈ C0,1(Es,Ecu) so that

W s = graph(φcu). (14)

Also W s and φcu are independent of any two different choices in α.

Proof. By Lemma 1, we know that p ∈ W s if and only if p is the initial point
of a sequence γ ∈ Sα which is a fixed point of the map T defined by (6) and
(9) holds. To show the existence of such a fixed point, we will consider T as a
parameterized map by x0 ∈ Es and show that T (·, x0) : Sα → Sα, x0 ∈ Es, is a
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uniform contraction. Specifically, let γ, γ′ and γ̄ = T (γ, x0), γ̄′ = T (γ′, x0), then
we have

‖x̄n − x̄′n‖ ≤
∑n

i=1 ‖An−is [hs(pi−1)− hs(p′i−1)]‖
≤
∑n

i=1 ν
n−iL‖pi−1 − p′i−1‖

≤
∑n

i=1 ν
n−iLαi−1‖γ − γ′‖α

≤ L
α−να

n‖γ − γ′‖α

(15)

and
‖ȳn − ȳ′n‖ ≤

∑∞
i=n+1 ‖An+1−i

cu [hcu(pi)− hcu(p′i)]‖
≤
∑∞

i=n+1 β
i−n−1L‖pi − p′i‖

≤
∑∞

i=n+1 β
i−n−1Lαi‖γ − γ′‖α

≤ Lα
1−αβα

n‖γ − γ′‖α.

(16)

Hence,
‖T (γ, x0)− T (γ′, x0)‖α ≤ ( L

α−ν + Lα
1−αβ )‖γ − γ′‖α

showing T (·, x0) is a uniform contraction in Sα provided

θ := θ(α) = L
α−ν + Lα

1−αβ < 1 (17)

which is true for sufficiently small ‖f −Df(q̄)‖1. Let

γ∗(x0) = {pn(x0)}∞n=0, pn(x0) = (xn(x0), yn(x0)), n ≥ 0 (18)

be the unique fixed point of T (·, x0) for each x0 ∈ Es. Because ‖Ans‖ ≤ νn < αn,
T (γ, x0) is Lipschitz continuous in x0 with

‖T (γ, x0)− T (γ, x0
′)‖α ≤ ‖x0 − x0

′‖.

Thus, by the Uniform Contraction Principle I, γ∗(x0) is Lipschitz continuous with

‖γ∗(x0)− γ∗(x0
′)‖α ≤

1
1−θ‖x0 − x0

′‖. (19)

Define
φcu(x0) = y0(x0) =

∑∞
i=1 A

1−i
cu hcu(pi(x0)), (20)

the y-coordinate of the initial point of the fixed point γ∗(x0). Then by (19),

‖φcu(x0)− φcu(x0
′)‖ ≤ ‖γ∗(x0)− γ∗(x0

′)‖α ≤
1

1−θ‖x0 − x0
′‖,

proving φcu ∈ C0,1(Es,Ecu). Since p = (x0, y0) = (x0, φcu(x0)) ∈ W s, the
identity (14) holds.

To show W s and φcu are independent of the choice of α, let α′ and α be two
different constants satisfying the definition W s. We can re-adjust the adapted
norm so that

‖As‖ < α′ < α < 1.

Then results above show that for sufficiently small ‖f −Df(q̄)‖1, both θ(α′) and
θ(α) are smaller 1. As a result,

W s
α′ = graph(φcu, α′), W s

α = graph(φcu, α).
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On one hand, W s
α′ ⊆ W s

α is automatic because Sα′ ⊂ Sα for α′ < α. On the
other hand, because of the uniqueness of the contraction mapping T (·, x0) on Sα
with Sα′ being a closed subspace of Sα, we must have γ∗α′(x0) ≡ γ∗α(x0) and
φcu, α′ ≡ φcu, α. Hence, W s

α ⊆ W s
α′ and

W s
α = W s

α′

follows, showing the independence of the definition on any two choices in α.

Lemma 3. f is a uniform contraction on W s.

Proof. Let p0 = (x0, φcu(x0)), p′0 = (x0
′, φcu(x0

′)) be two points from W s, and
consider their images under f , p1 = f(p0), p′1 = f(p′0). Because they are fixed
points of T , by (13) we have

‖x1 − x′1‖ ≤ ‖As‖‖x0 − x0
′‖+ ‖hs(p0)− hs(p′0)‖

≤ ν‖x0 − x0
′‖+ L‖p0 − p′0‖

≤ (ν + L)‖p0 − p′0‖

and by (19)

‖y1 − y′1‖ ≤
∑∞

i=2 ‖A2−i
cu [hcu(pi(x0))− hcu(pi(x0

′)]‖
≤
∑∞

i=2 β
i−2L‖pi(x0)− pi(x0

′)‖
≤ L

∑∞
i=2 β

i−2αi‖γ∗(x0)− γ∗(x0
′)‖α

≤ Lα2

1−αβ
1

1−θ‖x0 − x0
′‖

≤ Lα2

1−αβ
1

1−θ‖p0 − p′0‖

implying
‖f(p0)− f(p′0)‖ ≤ (ν + L+ Lα2

1−αβ
1

1−θ )‖p0 − p′0‖

which is a uniform contraction for small L, i.e., for small ‖f −Df(q̄)‖1 .

Lemma 4. If f ∈ Ck(Rd), then φcu ∈ Ck(Es,Ecu), and Tq̄W s = Es .

Proof. To show φcu(·) is as smooth as f is, it suffices to show the fixed point
γ∗(·) is as smooth as f . By the Uniform Contraction Principle II, we only need
to verify two conditions: (1) ‖DγT (γ, x0)‖ is uniformly bounded by a constant
smaller than 1; (2) T ∈ Ck(Sα × Es, Sα).

To show (1), let γ = {pn}, v = {vn} ∈ Sα, and formally differentiate (6).
Then DγT (γ, x0)v needs to be as below in components:{

[DγT (γ, x0)v]n, s =
∑n

i=1A
n−i
s Dhs(pi−1)vi−1

[DγT (γ, x0)v]n, cu =
∑∞

i=n+1A
n+1−i
cu Dhcu(pi)vi .

(21)

By the exactly same estimate as for (15) we have

‖[DγT (γ, x0)v]n, s‖ ≤ L
α−να

n‖v‖α .
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Similarly, by the exactly same estimate as for (16) we have

‖[DγT (γ, x0)v]n, cu‖ ≤ Lα
1−αβα

n‖v‖α .

These estimates imply two conclusions. One, because of the uniform convergence
of the second equation, it shows the derivative DγT (γ, x0) exists. Two, it shows
the derivative is a bounded linear map in L(Sα, Sα) whose α-norm

‖DγT (γ, x0)‖α ≤ θ(α) < 1,

is bounded by the same uniform contraction constant θ(α) from (17).
To show (2), we note first that

[Dx0T (γ, x0)]n, s = Ans , and [Dx0T (γ, x0)]n, cu = 0.

This implies any mixed derivative in γ and x0 are the zero operators, hence well-
defined and exists. So, we only need to show T is Ck separately in γ and x0. For
the latter, the identity above shows

‖[Dx0T (γ, x0)]n‖ ≤ ‖Ans‖ ≤ αn

and ‖Dx0T (γ, x0]‖α ≤ 1 follows. Also, Dj
x0
T (γ, x0) = 0, for 2 ≤ j ≤ k. Hence,

T is Ck in x0.
Now we show T is Ck in γ, i.e., Dj

γT (γ, x0) exists and is bounded for any
1 ≤ j ≤ k. The case of j = 1 was done above. For any 2 ≤ j ≤ k, [Dj

γT (γ, x0)]
is a j-linear form in Sα. To this end, let v = v1⊗ v2⊗· · ·⊗ vj with each v` ∈ Sα.
Formally differentiate (6) to get{

[Dj
γT (γ, x0)v]n, s =

∑n
i=1 A

n−i
s Djhs(pi−1)vi−1

[Dj
γT (γ, x0)v]

n, cu
=
∑∞

i=n+1A
n+1−i
cu Djhcu(pi)vi ,

(22)

where
vi = v1

i ⊗ v2
i ⊗ · · · ⊗ v

j
i , v`i ∈ Rd.

Similar to the estimate of (15), we have

‖[Dj
γT (γ, x0)v]n, s‖ ≤

∑n
i=1 ‖An−is ‖‖Djhs‖‖vi−1‖

≤
∑n

i=1 ν
n−i‖hs‖jΠ

j
`=1‖v`i−1‖

≤ ‖hs‖k
∑n

i=1 ν
n−iαj(i−1)Πj

`=1‖v`‖α
≤ ‖hs‖k

∑n
i=1 ν

n−iα(i−1)Πj
`=1‖v`‖α

≤ ‖hs‖k
α−ν α

nΠj
`=1‖v`‖α.

(23)

Similarly, by an exactly same estimate as (16) we can have

‖[Dj
γT (γ, x0)v]n, cu‖ ≤

∑∞
i=n+1 ‖An+1−i

cu ‖‖Djhcu‖‖vi‖
≤
∑∞

i=n+1 β
i−n−1‖hcu‖jαjiΠ

j
`=1‖v`‖α

≤ ‖hcu‖kβ−n−1
∑∞

i=n+1(βαj)iΠj
`=1‖v`‖α

≤ ‖hcu‖kβ−n−1
∑∞

i=n+1(βα)iΠj
`=1‖v`‖α

≤ ‖hcu‖kα
1−αβ αnΠj

`=1‖v`‖α.

(24)
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Combine these two estimates to obtain

‖[Dj
γT (γ, x0)]‖

α
≤ ‖(hs, hcu)‖k max{ 1

α−ν ,
α

1−αβ}.

The convergence of the infinite series also shows the derivatives are well-defined.
This completes the proof that T ∈ Ck(Sα × Es, Sα).

Finally, for the derivative of φcu as the fixed point for T , we have from (20)

Dφcu(x0) =
∑∞

i=1A
1−i
cu Dhcu(pi(x0))Dpi(x0).

Because Dhcu(0) = 0 and γ∗(0) = {pn(0) = 0 : n ≥ 0} is the trivial fixed point
corresponding to the fixed point q̄ ∼ 0, we have

φcu(0) = 0 and Dφcu(0) = 0,

showing that the tangent space of W s at the fixed point is the stable eigenspace
Rds ∼= Es. This completes the proof.

Definition 2. Let q̄ be a nonsingular fixed point of a differentiable mapping f in
Rd and β be any constant satisfying

1 < β < min{|σu|}.

The unstable manifold of the fixed point q̄ for f is

W s = {p : {βn[f−n(p)− q̄]}∞n=0 is a bounded sequence.}

By applying the theorem above to f−1 we can prove the following theorem.

Theorem 2 (Unstable Manifold Theorem). Let q̄ be a nonsingular fixed point of
a continuously differentiable map f in Rd with splitting Rd ∼= Ecs ⊕ Eu. Then
for sufficiently small δ > 0, ‖f −Df(q̄)‖1 < δ implies the definition of W u is
independent of any two different choices in the constant β. Also W u is the graph
of a C1 function φcs : Eu → Ecs

W u = graph(φcs),

and the tangent space of W u at the fixed point is the unstable eigenspace

Tq̄W u = Eu.

Moreover, f−1 is a contraction on W u. Furthermore, if f is Ck, k ≥ 1, and all
its derivatives Djf , 1 ≤ j ≤ k, are bounded, then φcs is also Ck with bounded
derivatives.

Theorem 3 (Local Stable and Local Unstable Manifold Theorem). Let q̄ be a non-
singular fixed point of a continuously differentiable map f in Rd and let Es, Eu be
the stable, respectively, the unstable eigenspace at q̄ for the linearization Df(q̄).
Let α, β be any constants satisfying

max{|σs|} < α < 1 < β < min{|σu|}.

7



Then there is a small neighborhood Nr(q̄) and two differentiable functions φcu :
Nr(q̄) ∩ Es → Ecu, φcs : Nr(q̄) ∩ Eu → Ecs, so that the local stable and local
unstable manifolds

W s
loc(q̄) := graph(φcu), W u

loc(q̄) := graph(φcs)

satisfy the following properties

(i) W s
loc = {p ∈ Nr : limn→∞ f

n(p) = q̄ at rate αn}

(ii) W u
loc = {p ∈ Nr : limn→∞ f

−n(p) = q̄ at rate β−n}

(iii) f is a contraction on W s
loc, and f−1 is a contraction on W u

loc .

(iv) Tq̄W s
loc = Es, Tq̄W u

loc = Eu

Moreover, if f is Ck, k ≥ 1, then both W s
loc and W u

loc are Ck manifolds.

Proof. Modify the map f by a C∞ cut-off function ρr(p − q̄) to f → f(p) =
Df(q̄)p + ρr(p − q̄)(f(p) − Df(q̄)p). Then for sufficiently small r, Theorems
1 and 2 can be applied to the modified map to obtain the maps φcu, φcs. Restrict
both to the neighborhood Nr(q̄), then the results follow from the theorems.

Definition 3. Let q̄ be a nonsingular fixed point of a continuously differentiable
map f in Rd. The global stable manifold of the fixed point is defined as

W s
glb(q̄) = ∪∞n f−n(W s

loc(q̄))

and the global unstable manifold is defined as

W u
glb(q̄) = ∪∞n fn(W s

loc(q̄)).

A point p̄ is called a homoclinic point of a hyperbolic fixed point q̄ of f if p̄
is an intersection of W s

glb(q̄) and W u
glb(q̄). We note that if the global stable and

unstable manifolds intersect transversely, then a horseshoe dynamics arises, and
hence f is expected to be chaotic in a neighborhood of the homoclinic orbit.
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