[Lecture Note 9]
Stable and Unstable Foliations
Let ¢ be a nonhyperbolic fixed point of a diffeomorphism f in R¢. Let J =
Df(q), and denote
o' =o(J)N{lz] <1},0¢=0a(J)N{|z| =1}, and o“ =0c(J)N{|z| > 1}
the set of stable eigenvalues, center eigenvalues, unstable eigenvalues, respec-
tively, counting multiplicity. Let

c®=0"Uc% and ¢ =0c°Uc".

Definition 1. Let G be a nonhyperbolic fixed point of a diffeomorphism f in R?
and «, [ be any constants satisfying

max{|c®|} < o <1< g < min{|c"|}.

Let W = {p : sup{S"[f"(p)—q] : n > 0} < oo} be the center-stable manifold
of q. For every q € W the stable-fiber of q is defined as

F(q) ={p € W= :sup{a™"[f"(p) — f"(¢)] : n > 0} < oo}

and the collection

F = {F(g) g e W)
is called the stable-foliation of W .

Notice that the stable-fiber defines an equivalence relation on W*: ¢ € F*(q);
p € F*(q) ift ¢ € F°(p) and F*(q) = F*(p). Also, the foliation is an invariant
family with f(F°(q)) = F*(f(¢)), and W can be filled by fibers through a
center manifold as a stem

F(F (@) = F(f(@), W= UgeweF(q)-

In addition, the stable manifold is the fiber through ¢, W*® = F*(q), see Fig.1.
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Figure 1. The dynamics of the transi-

tion matrix of a Markov process at the

trivial fixed point O is captured by its

foliation through W*° which is spanned

o by the steady-state distribution vector
w.




A function f is of C*! if f is in C* (itself and all derivatives up to order k
are uniformly continuous and bounded in R?) and its kth derivative is globally
Lipschitz continuous. We will use || f||, to denote its C* norm.

Theorem 1 (Stable Foliation Theorem). Let § be a nonhyperbolic fixed point of a
OV diffeomorphism f in R with splitting R? = E* x E¢ x E* = E® x E* based
at the fixed point. Then a sufficiently small ||f — D f(q)||, implies there is a C*

function
Veu = (Yo, Yu) : E® x B® — E° x E¥

such that
(i) ¢ = (Ges, @) € WS iff u = Vu(qes, 4s) With qes = (¢s, ¢e), Le.,
W = graph(¢,) with ¢u(qes) = Yu(qes, gs)-

(ii) F*(q) = graph(Veu(ges, -)) for g € W, e,
P = (ps; Pe;pu) € F°(q) if and only if (pe, pu) = Yeu(des, Ds)-
(iii) f is a contraction on each F*(q) uniformly for all ¢ € W*.
(iv) F*(q) coincides with the stable manifold F*°(q) = W* and
T, F°(q) = E°.
(v) If f is C*' k> 1, then 1., is C*.

(vi) F? is independent of any two different choices in a.

The proof is an application of the Uniform Contraction Principle. The main
idea is to construct the stable-foliation function ., as part of a fixed point of a
uniform contraction map. We will break it up into a few lemmas. Before doing so,
we first recall a few important properties about W in the statements below from
the proof for the Center Manifold Theorem, assuming the fixed ¢ is translated to
0 € R%

Proposition 1. Forany 1 < < min{|c"|}, let Sg be a Banach space defined by
Ss = {7 = {pa}ilo : o € R, sup{B7"|pall : n > 0} < o0}
with norm
171l = sup{B™"[|pnl : n = 0}

For any sufficiently small || f — Df(q)|,, the orbit v, = { f"(p) }o>, of any point
D = (Des, Pu) € W can be expressed as a function vy, = v*(pes) for pes € E so
that v* € CP1(E, Sp) if f € C*Y(R?). Moreover, for any pes, pl., € E*

ny*(pcs) - 7*(]9/05)"5 < #S(ﬁ)”pcs - p/csH (D

where 0 < 0.5(8) < 1 is a uniform contraction constant depending on (. Fur-
thermore, there is a C*! function ¢,, : E°* — E¥ so that the following holds

W = graph(¢,), ¢,(0) =0, and Dg¢,(0) = 0.



We also recall that by the Variation of Parameters Formula Theorem (VPF)
for splitting R = E* x E® corresponding to D f(g) = diag(As, A.,), the map
(z,9) = f(x,y) with (z,y), (Z,7) € E® x E® is equivalent to

T = Asz + hy(x,y) 2)
Yy = Acuilg + hcu(jzv g)a
and for any orbit, ¢, = (zp,yn) = f(Xn_1,Yn_1), andn > 0
Yn = Acun_mym + Zﬁn#»l Acun+ _lhcu(qi)-

Here, the functions h,, h., are defined by f and are as smooth as f, satisfying
7,(0) = 0, Dhy(0) = 0, hey(0) = 0, Dhiey(0) = 0, )
They are globally Lipschitz and their Lipschitz constant can be taken to be
L =[|D(hs, heu)llg = 0 as [[f = Df(@)ll; = 0. (5)

The result above holds for sufficiently small || f — D f(q)||;.
Associated with h;, we will need the following functions throughout

9i(q,0p) = hi(q + op) — hi(q), for i = s, cu. (6)
Because h; € C*! sois g; € C*! satisfying
9:(0,0) =0, D,g:(0,0) =0, Ds,g:(0,0) =0, for i = s, cu. 7

More importantly, all derivatives in ¢ satisfy
D?gi(q,0) =0, for 0 <j <k, and i = s, cu. (8)

To save notation, we will use the same notation for Lipschitz constants of both h;
and g;

L = max{[[D(hs, hew)llg, [|1D(9s; geu)llg} = 0 as [|f = Df(@)l; = 0. ()

Since g; € C®!, we will denote by Ly, Lo, ..., L;, the Lipschitz constants for
Dqgi, Dgi, . .., Dl g;, respectively. Together with the fact that D7g;(¢,0) = 0 we
have ‘

|D}gi(q,0p)|| < L;||dp|| for 0 < j <k, and i = s, cu. (10)

Unlike L which can be made as small as possible by making || f — D f(q)||, small,
these constants L; are not necessarily small.
We will repeatedly use this formula for geometric sequences

at+ar+ar?+---+ar" = —“(t:n), forr #1
and its differentiation formulas in . We will denote throughout
W ={pn = 1"(P) 10

the orbit of f with the initial point p, for which p, = p. The proof now consists of
a sequence of lemmas below.



Lemma 1. For any parameter « satisfying max{|o®|} < a < 1, let
AS, = {07 = {0p,}o2o : 0p, € R% sup{a "||p,|| : » > 0} < o0} (1)

with norm

1671l = sup{a™"[|dp, || : n > 0O}.
For any ¢ € W* with v, = {q,} and 6p = {0p,} € AS,, let v = T(57) be
defined by the equations below

{ oxy, = A, (5%0—1-21 AT ng(% 1,0p;_1) (12)
5yn - Zz n+1A e lgcu(q“(;pl)

Then 0y € AS, with

LHMII

a4 aL||é], (13)

167l < llowoll + —af

where v, 3 are fixed constants satisfying
max{|c’|} <v<a<l<f<l1/a

More importantly, p € F*(q) if and only if the orbit difference vy = 7, — v, is a
fixed point of T, i.e., p = q + 6p with 6p = (dxq, 0y, the initial point of 6, and
specifically,

b= (p37pcapu) = (QSv qe, ¢U<QS7 Ch)) + (6x07 221 Acul_igcu(%'v (5[)1)) . (14)

Proof. We first show that 7" is well-defined together with the bound estimate. We
begin by making 1 < [ sufficiently close to 1 and fixing an adapted norm so that
the following conditions hold

A <v<a<1and ||[A, || <8< 2. (15)

We now demonstrate 0y = {(dx,,0y,)} € AS,. Because g;(¢,0) = 0 and
llgi(q, dp)|| < L||dp] from (8,10) we have for oz,

[52all < A 1020] + 30y 145" g5 051, 60,0
< vzl + iy v L 6,
= v o]| + Loyl 2z

o a—v

< (||6zo|| + H2la)on

(16)

Similarly, o A
Héyn” S ZZ%/,«LJFI ‘|Acun+1_2gcu<Qi7 6pz)H
< Z'L n+1 Bz—n—lLa ||57||a

Oé n+1
= B L)

a l-—af
_ aLl®rl on
T 1-ap :

(7)

Hence, the estimate (13) holds. This shows that the infinite series converges uni-
formly and that 7" is well-defined, mapping AS,, into itself.
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Next, we show the last part of the lemma. First, for p € F*(q), both orbits
Vps Vq are in Sg, and the orbit difference

07 =% — Vg = {0, : 0P, = P — @, > 0} (18)

is in AS,, by definition. By the VPF (3), ¢~y satisfies

{ 51‘71 = Asné'ro + Z?:l AsniigS(Qi—h 5pi—1)
0Yp = A" " 0Y, + Z;'Zn-i—l Acun+1ilgcu(qm op;)

Because ||dy,, || < a™||67]|, and || A" ™| < ™" and o8 < 1, the first term in
the y,-equation above converges to 0 as m — oco. The estimate (17) also shows
the partial sum of the y,,-equation converges uniformly. Therefore the limit as
m — oo exists for the y,,-equation and the limit is exactly the y,,-equation for the
map 7'. Hence, 0+ is a fixed point of 7.

Conversely, assume 0y = {(dz,,0y,)} is a fixed point of 7" for a given ~,
from W, It is straightforward to verify

{ 55En = AS(SZL’n_l + gs<qw.—17 5pn—1)
5yn = Acu_l(synJrl + gcu(qn+17 5pn+l)'

Denote p,, = ¢, + 0P,y Pn = (Tny Yn), Gn = (Tgn, Yqn). Then because 7, is an

orbit it satisfies
{ Lgn = Asxq,lnfl + hS(QTL*l)
Ygn = Acui Yqn+1 + hcu(Qn+1)-

Sum up these two equations component by component to obtain

{ Tp = Asxn—l + hs(pn—l)
Yn = Acu_lynJrl + hcu(anrl)a

which shows v = {p, } = v, + 0 must be an orbit of f, v = ~,,. Since 7, € Sz
and 6y € AS, C Ss, we must have v,, € Sz. Hence, the initial point, py, of 7,
is in W and in F*(q) by definition. Last, the identity (14) follows by writing out
the initial point of v, . ]

Lemma 2. Let ¢, € C'(E* EY) be the function whose graph is W*. Then there
is a function Ve, = (e, 1y) : B¢ X E* — E¢ x E* so that for all w = (ws, w,) €
ECS’

(bu(w) = ¢u(U1, ws)

and for every g € W with ¢ = (w, ¢, (w))
Fi(w) = F*(q) = graph(eu(w, -)). (19)

Moreover, the definition of F* is independent of any two different choices in c.



Proof. By Lemma 1, p € F°(q) iff p = g + dp, with dp, the initial point of a
fixed point 6y = {0p,, }n>0 of the map 7" from its proof. We already know ¢ is
parameterized by w € E* by ¢ = (w, ¢,(w)). We only need to show dp, exists
and is parameterized by w and its [E°*-coordinate dx. In fact, if that is true, then
the function 1., must be defined from the identity (14) as below

(Ps: Pes Pu) = (@0, Ye(w, To), Yu(w, o)) = (W5, we, Pu(w)) + (620, 6yo(w, 520))
(20)

where g = ps, 0xg = ps — s = Tg — W, , and

Veu(w, T0) = (We, Pu(w)) + Zfil Acul_igcu(%’(w)a op;(w, xo — wy)) .

Assuming the fixed point, denoted by dv*, is unique for 7', then we see the zero
sequence 0" = {0} is a trivial fixed point if dzo = 0. As a consequence, we get

Yu(w, ws) = Pu(w) +0py , (w, 0) = du(w),

the inclusion of W. Definition (20) obviously shows (19). Therefore, it is only
left to show the existence and uniqueness of fixed point of 7" for each w and their
independence on any two choices in a.

To this end, we will consider 7" as a parameterized map 7" : AS, X E®* xE® —
AS,, with 6y = T(6,w, dx,) being defined by (12) as below

{ (5__.27“ = A5n6$0 + Z?:l Asniigs(qi—l(w)? 5pi—1) (21)
0y = 21 Aed™ ' geu(ai(w), 0p;)

We first show T is a uniform contraction. By the proof of Lemma 1, 7'(-, wﬁxo)
maps AS, into AS,. For its uniform contraction, let 6, 0y € AS, and §y =
T(6v,w,dxq),0v" = T(6v',w,dxp). Then we have

10, = 0z || < D00y (14" 95 (qi-1(w), 0p; 1) — gs(@i-1(w), op;_ )]
< i VPTUL|IOp g — op;_y |
< Y v Lat |6y — 07l
< ooy =&,

(22)
and

||@n - @n /” < Z;TH—I ||Acun+17i[gcu(%<z,u)7 5]9,) - gcu(%(w)a (5]9;)] H
<Y B0y = 0l

< 2250007 = 07|l

Hence,

"T(577w75$0) - T(5’Y/awa5330)“a < (L + Lo )"67 - 5’/”&

a—v 1—ap

showing T'(-, w, dx¢) is a uniform contraction in AS,, provided

0:=0(a)=-L Lo <1 (24)

a—v 1—ap
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which is true for sufficiently small || f — D f(q)||;.
Notice that the existence and uniqueness proof of §v* above shows that for

any

| A < o < a,
as long as

6(a’), O(a) < 1
T(-,w,dxp) has a unique fixed point in AS,, and AS,,. But since AS,, is a closed
subspace of AS,,, the unique fixed point 67" (w, dz) is in both AS, and AS,,.
This shows the independence of /* on any two choices in . [

Lemma 3. The foliation function )., is Lipschitz continuous.

Proof. Notice from its definition (20) that we only need to show dp, is Lipschitz
for which it suffices to show the unique fixed point 6" of T from Lemma 2 is
Lipschitz since dp, is only a point of the sequence 4. To begin, let

57* <w7 5$0) = {(Spn(w> (51’0) = ((5wn(w, 5$0)7 6yn(w7 51’0))}20:0 (25)

be the unique fixed point of 7'(-, w, dz) for each (w, dzy) € E* x E*. We first
fix constant o’ and make /3 closer to 1 if necessary so that the following relations
hold
Al <v<d <dBf<a<l<fB<lcl (26)
We will treat the fixed point 6" (w, dz¢) in both AS,, and AS,,. We will also use
the estimate below
167" (w, 60) |, < 510l (27)
which follows from the estimate (13) of Lemma 1.
We are now ready to show 4+ is Lipschitz in w and dx respectively. Since
T (67, w, dxo) is Lipschitz continuous in dxq with

I7(0, w, 60) — T(07, w, dx0"), < [0 — 0zl

because ||A,"|| < v", we have by the Uniform Contraction Principle I that 6" is
C%in §x, with

1677 (w, d0) — 07" (w, 0¢")||, < 125100 — /|| (28)
To show the fixed point is C%! in w, notice first from (10) that for i = s, cu,

19i(q,0p) — 9i(d', op)|| < [|1Dqgi(-,00)llolla — ¢l < Lalldplllla — ¢l (29)

This estimate together with the comments above on o’ and « imply

|62y — 02| < Z?:l ”As.nﬂ[gs(%—l(w)a 0pi_1) — 9s(qi—1(w"), 6p;_ )]l
< 2 V' Lal|6pi [l gi-1 (w) — gi—a (W)
< i VT L 0] BT (w) — (W)l
< VL [0 [t (w) = (w) |
< o am[69l Iy (w) — v ()]l
(30)



since o/ < a, ||67]],, < 1167]l,,- And

10y = 09Il < X s IAe™ " [geu (i (), p;) — geu (i), o)
< Zgn+1 BlinflLlH‘?piH ||Qz<w) — gi(w')]|
< it BT L [0 Bl (w) — ()| 31
< 2isns B L[yl 1y (w) = v ()l
< 252 10761y (w) = (@) -
Therefore,
173, w, dx0) — T8y, w', 0z0) I, < (325 + 72ep) 107l llv (w) — v* () 5.

So if we restrict dzg to ||dzo|| < R for any arbitrary R > 0, then by the bound
estimate (27) we have by Uniform Contraction Principle |

107" (w, 0z0) — 67" (w', dzo)[, < 19||T(5%w dzo) — T'(0,w', dzo)|,
< 119( L1 + e 2ol v (w) — (w4
S (aLu 1L155)( R) 171065 w— ’U)/H,
(32)

where 6y = 67" (w, dxg), showing §~* is Lipschitz in w for bounded dxy. Because
dpo(w, dz) is the first point of the sequence 0" (w, dzg), its Lipschitz continuity
follows, so is 1.,’s. ]

Lemma 4. f is a contraction on F*(q) uniformly for all ¢ € W*.

Proof. We need to show there is a constant 0 < p < 1 so that for any ¢ € W
and for any p,p’ € F*(q), ||f(p) — f(P)Il < ollp — Pl Let 4, 7, be the orbits
through p, p/, respectively. Then 6v* = v, — v, and 67 = 7, — 1, are fixed
points of T'(-,w, dz¢) and T'(-,w,dxy'), respectively, with dzqg = p, — w, and
dzo" = pl, — w,. More importantly,

Yo =N = (Vo = Ya) — (W — Yg) = 07" (w, dp) — 07" (w, d¢”)

whose second point on the sequence is

f) = f') = p1 = ph = 0py(w, 60) — 0py (w, 6).
The E®-coordinate of the right side can be estimated as
1021 — 21| < [ As(620 — 620) + gs(g0(w), 0) — gs(go(w), dz¢)|
< v[|dwo — 00| + || hs(qo(w) + 20) — hs(qo(w) + do')|
< |0z — dx0'|| + L[z — x|
<@+ L)p-7rl

The E“-coordinate of the right side is, with dp;, = dp,(w, dx¢), 0p; = op;(w, dxy'),

)
16y, = 0y, 'l < 3202, 1A [geu(@i(w), p;) — gcu(qz(w) op;)]||
= >y 1A [heu(gs(w) + 0p;) — heu(@i(w) + 3p))]|

< Zfoz B2 Lal||6v" (w, 6o) — 07" (w 0xo")l|
<7 aégHM (w,0x9) — 67" (w, 6z0) |,

< 1L°‘ 511020 — 0’|

< i 1_a5 1_9Hp Y|l



where (28) is used for the second last estimate. Therefore,

1f(p) = FOOII < (v + L+ £2555) Ip = 7|

which implies f is a uniform contraction for sufficiently small L, i.e., for suffi-
ciently small || f — Df(q)|;- O

Lemma 5. If f is C*! for k > 1, then 1), is C*.

Proof. By the Uniform Contraction Principle II, we need to verify two condi-
tions: (1) T'(dy,w,dxy) is differentiable in ¢~ and || Ds,T'(7, w, dx¢)|| is uni-
formly bounded by a constant smaller than 1; (2) T € C*(AS, x E® x E5, AS,,).

To show (1), let 0y = {op,},v = {v,} € AS,, and formally differentiate
(21). Then Dy, T (6, w, dzo)v needs to be as below in components:

{ [DcHT((S’% w, 55[0)'0]71, 5 — Z?zl AsniiDﬁpgs(qi—l(w)a 5pi—1)vi—1 (33)

[Ds, T (67, w, 55”0)“]”, u Z?im-l Acu"H*ichpgcu(qi(w), op;)vi.

By the exactly same estimate as for (22) we have

|| [D(S"/T((S’% w, 51’0)”]71, s|| S aL

=" vl

Similarly, by the exactly same estimate as for (23) we have

[ T(87, w, 0z0)v]n, cull < TEZZO" V],

These estimates imply two conclusions. One, because of the uniform convergence
of the second equation, it shows the derivative Dy, T'(d, dzo) exists. Two, it
shows the derivative is a bounded linear map in L(AS,,, AS,) whose a-norm

| DsyT' (0, w,0x0)]|,, < O0(a) <1,

is bounded by the same uniform contraction constant 6(«) from (24).

To show (2), we separate it into four cases. The first case is for derivatives in
xo, the second case is for derivatives in d+, the third case is for derivatives in w,
and the fourth case is about mixed derivatives. For the first case we note that

[Dszo T(677,w,0x0)]pn, s = As"™, and [Desz T (07, w, d20)]n, eu = 0.

This implies any mixed derivative with dz( is the zero operator, hence well-
defined and exists. The identity above also shows

1TDs2y T (07, w, 00)]nl < [|AS"]| < @™

implying || Ds, T(67y, w, dz0]||, < 1, and DgIOT(éfy,w,(Sxo) =0,for2 <j<k.
Hence, T is C* in dz,.

For the second case, the case of j = 1 was done above. For any 2 < j < k,
(D3, T(0y,w,dm0)] needs to be a j-linear form in AS,. To this end, let v =

9



' ®1?®---®0v) with each v* € AS,, 1 < ¢ < j. Formally differentiate (21) to
get

{ (D3, T(67,w, 620)v]n, s = >oiy A D3,95(gi—1 (w), 0p;_y Jvia

(DT, w,530)0], = Sy A D), 0p s, Y

where '

V=0 @V @v], v €RL
Similar to the estimate of (22) and because g;(q, dp) = h;(q+ dp) — hi(q), a < 1,
we have

I[D3,T(8, w, 0)v], ol < S0y 1A [I[D? [ vis |
< S T 0! |
< Il S0y v CIIE_ |, (35)
< HhSHk Z?;l V”_i&“_l)ﬂizl|lv’z|la
< Lol omqry_ o],

Similarly, by an exactly same estimate as (23) we can have

I[D3,T (67, w, 620)v]n, cull < 32521 1A D || lvil
< ia BT e ;07 T [0
< N heulle 877 2201 (B T 0], (36)
< heullp 87771 220 41 (Ba) Ty 0],

hcu " 1
< Bl ompy_ o],

Combine these two estimates to obtain

1D, T (87, w, 0z)]ll,, < ll(hs, heu) l, max{ 515, 257

a—v’ 1—af

The convergence of the infinite series also shows the derivatives are well-defined.
This completes the proof that 7" is C* in §+.

For the third case, we will use the property that the fixed point §v*(w, dx¢)
is also in AS,, for any o’ satisfying (26), and the property that the center-stable
orbit v*(w) is a C* map from E** to S,, C Sj for any u satisfying || A.s|| < p < 5.
Specifically, we will take

|Aes|| < o= BY* < B for k> 2,

re-adjusting the adapted norm if necessary. In this setting, we will treat 7" as a
composition of amap 7' : AS, x S, x E* — AS, with the center-stable orbit
map v* € C*(E*, S,). That s,

T (67, w,dx¢) = T (67,7 (w), 6x¢)

where T is defined by the right side of (12) except for general v = {qn} € Sy
Since the center-stable orbit map v*(w) is C*, we only need to show T is C* in
by the chain rule. We will also use the property (10) that

1D2gi(q,0p)|| < Ll|op|| with L = max{L; : 1 < j < k}. (37)
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We are now ready to show 7 is C* in v = {¢,} € S,. We need to show
[D@T(&y, 7,0x)] is a bounded j-linear form from S, to AS,. To this end, let
v=v'®v*®- - ®@v’ witheachv’ € S,, 1 < ¢ < j. Formally differentiate (12)
in the general v € S, to get

{ [DIT (6,7, 0x0)vln, s = 2oy A" D3gs(div1, 0p;_1)vica
)T
;

n¥l1—i 38
DTy, 7, 0a0)0], = 3y A Digealaidpvis OO

where '
V=0 @V ®v], v €RL
Similar to the estimate of (30) and because of (37), 1 = 3,a/3 < «, we have

DT (67,7, 0x0)vn, ol < 320y 1A 11 L5 10p;- 1H\|Uz i
< LY v 0 Ty vyl
< Lfjoyll iy v ol 0TI o],
<L||5V|| DDA CUE) L 1 1||UZ||
< Loyl S5y v e T 1,
L”‘S'Y”aanﬂj 1||v£||

I/\

Similar to the estimate of (31) we have

IDIT(87, 7, 620) ], cull < 307041 1™ 1 L l10p; ] [
< LY, B a8y o T [0,
<LH57H > B 0 B) Ty [V,

< LIl Yo 0 B T ],
L||é
1Zag o Ty o'

| /\

Combine these two estimates to obtain
I[DIT (07,7, 6z0)ll, < (755 + =53) LlIov |-

The convergence of the infinite series also shows the derivatives are well-defined.
Hence T'(07, -, 6xg) is in C*(S,,, AS,,), showing T"is C* in w.

For the fourth case about mixed derivatives of 7" in all variables, the arguments
above for §y, w, 6 can be combined to show all derivatives up to order k exist for
T'. Therefore by the Uniform Contraction Principle II the fixed point 7" (w, dx¢)
is C* in both variables. O

Proof of Theorem 1. After the preceding lemmas, it only remains to point out that
by the definition of W%, it coincides with the definition of the foliation through
the fixed point, F*(g), i.e., W* = F*(q). In fact, we can show the tangent space
directly as below. Since ¢ ~ w = 0 and ¢,,(0) = 0, we have from (20)

Yeu(0, 20) = 0yo(0, 70) = 3272 A’ heu(0p;(0, 7))

whose partial derivative in zy € E® at the fixed point ¢ ~ 2o = 0 is
DIOwCU(Ov 0) = Zzoil ACUl_iDhCU<5pi(Oﬂ O>>D$06pi(0> 0) = 0
since §7*(0,0) = {0}, showing T;F*(0) = E*. O
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Remark: We can see from the proofs above that if the center-stable manifold
point ¢ is fixed at the fixed point ¢ throughout, then the extra Lipschitz continuity
condition for the highest derivative of f is not needed. That is, the stable manifold
F*(q) = W=is C*if fis C*. This is because in this case, g(g, dp) = h(p) with
q=0, op=p.
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