
[Lecture Note 9]

Stable and Unstable Foliations
Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd. Let J =

Df(q̄), and denote

σs = σ(J) ∩ {|z| < 1}, σc = σ(J) ∩ {|z| = 1}, and σu = σ(J) ∩ {|z| > 1}

the set of stable eigenvalues, center eigenvalues, unstable eigenvalues, respec-
tively, counting multiplicity. Let

σcs = σs ∪ σc, and σcu = σc ∪ σu.

Definition 1. Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd

and α, β be any constants satisfying

max{|σs|} < α < 1 < β < min{|σu|}.

LetW cs = {p : sup{β−n[fn(p)− q̄] : n ≥ 0} <∞} be the center-stable manifold
of q̄. For every q ∈ W cs the stable-fiber of q is defined as

F s(q) = {p ∈ W cs : sup{α−n[fn(p)− fn(q)] : n ≥ 0} <∞}

and the collection
F s = {F s(q) : q ∈ W cs}

is called the stable-foliation of W cs.

Notice that the stable-fiber defines an equivalence relation onW cs: q ∈ F s(q);
p ∈ F s(q) iff q ∈ F s(p) and F s(q) = F s(p). Also, the foliation is an invariant
family with f(F s(q)) = F s(f(q)), and W cs can be filled by fibers through a
center manifold as a stem

f(F s(q)) = F s(f(q)), W cs = ∪q∈W cF s(q).

In addition, the stable manifold is the fiber through q̄, W s = F s(q̄), see Fig.1.

Figure 1. The dynamics of the transi-
tion matrix of a Markov process at the
trivial fixed point 0 is captured by its
foliation through W c which is spanned
by the steady-state distribution vector
w.
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A function f is of Ck,1 if f is in Ck (itself and all derivatives up to order k
are uniformly continuous and bounded in Rd) and its kth derivative is globally
Lipschitz continuous. We will use ‖f‖k to denote its Ck norm.

Theorem 1 (Stable Foliation Theorem). Let q̄ be a nonhyperbolic fixed point of a
C1,1 diffeomorphism f in Rd with splitting Rd ∼= Es×Ec×Eu = Ecs×Eu based
at the fixed point. Then a sufficiently small ‖f −Df(q̄)‖1 implies there is a C1

function
ψcu = (ψc, ψu) : Ecs × Es → Ec × Eu

such that

(i) q = (qcs, qu) ∈ W cs iff qu = ψu(qcs, qs) with qcs = (qs, qc), i.e.,

W cs = graph(φu) with φu(qcs) = ψu(qcs, qs).

(ii) F s(q) = graph(ψcu(qcs, ·)) for q ∈ W cs, i.e.,

p = (ps, pc, pu) ∈ F s(q) if and only if (pc, pu) = ψcu(qcs, ps).

(iii) f is a contraction on each F s(q) uniformly for all q ∈ W cs.

(iv) F s(q̄) coincides with the stable manifold F s(q̄) = W s and

Tq̄F s(q̄) ∼= Es.

(v) If f is Ck,1, k ≥ 1, then ψcu is Ck.

(vi) F s is independent of any two different choices in α.

The proof is an application of the Uniform Contraction Principle. The main
idea is to construct the stable-foliation function ψcu as part of a fixed point of a
uniform contraction map. We will break it up into a few lemmas. Before doing so,
we first recall a few important properties about W cs in the statements below from
the proof for the Center Manifold Theorem, assuming the fixed q̄ is translated to
0 ∈ Rd.

Proposition 1. For any 1 < β < min{|σu|}, let Sβ be a Banach space defined by

Sβ := {γ = {pn}∞n=0 : pn ∈ Rd, sup{β−n‖pn‖ : n ≥ 0} <∞}

with norm
‖γ‖β = sup{β−n‖pn‖ : n ≥ 0}.

For any sufficiently small ‖f −Df(q̄)‖1, the orbit γp = {fn(p)}∞n=0 of any point
p = (pcs, pu) ∈ W cs can be expressed as a function γp = γ∗(pcs) for pcs ∈ Ecs so
that γ∗ ∈ Ck,1(Ecs, Sβ) if f ∈ Ck,1(Rd). Moreover, for any pcs, p′cs ∈ Ecs

‖γ∗(pcs)− γ∗(p′cs)‖β ≤
1

1−θcs(β)
‖pcs − p′cs‖ (1)

where 0 < θcs(β) < 1 is a uniform contraction constant depending on β. Fur-
thermore, there is a Ck,1 function φu : Ecs → Eu so that the following holds

W cs = graph(φu), φu(0) = 0, and Dφu(0) = 0.
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We also recall that by the Variation of Parameters Formula Theorem (VPF)
for splitting Rd ∼= Es × Ecu corresponding to Df(q̄) ∼= diag(As, Acu), the map
(x̄, ȳ) = f(x, y) with (x, y), (x̄, ȳ) ∈ Es × Ecu is equivalent to{

x̄ = Asx+ hs(x, y)
y = Acu

−1ȳ + hcu(x̄, ȳ),
(2)

and for any orbit, qn = (xn, yn) = f(xn−1, yn−1), and n ≥ 0{
xn = As

nx0 +
∑n

i=1 As
n−ihs(qi−1)

yn = Acu
n−mym +

∑m
i=n+1 Acu

n+1−ihcu(qi).
(3)

Here, the functions hs, hcu are defined by f and are as smooth as f , satisfying

hs(0) = 0, Dhs(0) = 0, hcu(0) = 0, Dhcu(0) = 0. (4)

They are globally Lipschitz and their Lipschitz constant can be taken to be

L = ‖D(hs, hcu)‖0 → 0 as ‖f −Df(q̄)‖1 → 0. (5)

The result above holds for sufficiently small ‖f −Df(q̄)‖1.
Associated with hi, we will need the following functions throughout

gi(q, δp) = hi(q + δp)− hi(q), for i = s, cu. (6)

Because hi ∈ Ck,1 so is gi ∈ Ck,1 satisfying

gi(0, 0) = 0, Dpgi(0, 0) = 0, Dδpgi(0, 0) = 0, for i = s, cu. (7)

More importantly, all derivatives in q satisfy

Dj
qgi(q, 0) = 0, for 0 ≤ j ≤ k, and i = s, cu. (8)

To save notation, we will use the same notation for Lipschitz constants of both hi
and gi

L = max{‖D(hs, hcu)‖0, ‖D(gs, gcu)‖0} → 0 as ‖f −Df(q̄)‖1 → 0. (9)

Since gi ∈ Ck,1, we will denote by L1, L2, . . . , Lk the Lipschitz constants for
Dqgi, D

2
qgi, . . . , D

k
qgi, respectively. Together with the fact that Dj

qgi(q, 0) = 0 we
have

‖Dj
qgi(q, δp)‖ ≤ Lj‖δp‖ for 0 ≤ j ≤ k, and i = s, cu. (10)

Unlike Lwhich can be made as small as possible by making ‖f −Df(q̄)‖1 small,
these constants Lj are not necessarily small.

We will repeatedly use this formula for geometric sequences

a+ ar + ar2 + · · ·+ arn−1 = a(1−rn)
1−r , for r 6= 1

and its differentiation formulas in r. We will denote throughout

γp = {pn = fn(p)}∞n=0

the orbit of f with the initial point p, for which p0 = p. The proof now consists of
a sequence of lemmas below.
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Lemma 1. For any parameter α satisfying max{|σs|} < α < 1, let

∆Sα := {δγ = {δpn}∞n=0 : δpn ∈ Rd, sup{α−n‖δpn‖ : n ≥ 0} <∞} (11)

with norm
‖δγ‖α = sup{α−n‖δpn‖ : n ≥ 0}.

For any q ∈ W cs with γq = {qn} and δp = {δpn} ∈ ∆Sα, let δγ = T (δγ) be
defined by the equations below{

δxn = As
nδx0 +

∑n
i=1 As

n−igs(qi−1, δpi−1)

δyn =
∑∞

i=n+1Acu
n+1−igcu(qi, δpi)

(12)

Then δγ ∈ ∆Sα with

‖δγ‖α ≤ ‖δx0‖+
L‖δγ‖α
α−ν +

αL‖δγ‖α
1−αβ , (13)

where ν, β are fixed constants satisfying

max{|σs|} < ν < α < 1 < β < 1/α.

More importantly, p ∈ F s(q) if and only if the orbit difference δγ = γp − γq is a
fixed point of T , i.e., p = q + δp with δp = (δx0, δy0) the initial point of δγ, and
specifically,

p = (ps, pc, pu) = (qs, qc, φu(qs, qc)) + (δx0,
∑∞

i=1 Acu
1−igcu(qi, δpi)) . (14)

Proof. We first show that T is well-defined together with the bound estimate. We
begin by making 1 < β sufficiently close to 1 and fixing an adapted norm so that
the following conditions hold

‖As‖ < ν < α < 1 and ‖Acu−1‖ < β < 1
α

. (15)

We now demonstrate δγ = {(δxn, δyn)} ∈ ∆Sα. Because gi(q, 0) = 0 and
‖gi(q, δp)‖ ≤ L‖δp‖ from (8,10) we have for δxn

‖δxn‖ ≤ ‖Asn‖‖δx0‖+
∑n

i=1 ‖As
n−igs(qi−1, δpi−1)‖

≤ νn‖δx0‖+
∑n

i=1 ν
n−iLαi−1‖δγ‖α

= νn‖δx0‖+ L‖δγ‖α
αn−νn
α−ν

≤ (‖δx0‖+
L‖δγ‖α
α−ν )αn.

(16)

Similarly,
‖δyn‖ ≤

∑∞
i=n+1 ‖Acu

n+1−igcu(qi, δpi)‖
≤
∑∞

i=n+1 β
i−n−1Lαi‖δγ‖α

= β−n−1L‖δγ‖α
(αβ)n+1

1−αβ

=
αL‖δγ‖α

1−αβ αn.

(17)

Hence, the estimate (13) holds. This shows that the infinite series converges uni-
formly and that T is well-defined, mapping ∆Sα into itself.
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Next, we show the last part of the lemma. First, for p ∈ F s(q), both orbits
γp, γq are in Sβ , and the orbit difference

δγ = γp − γq = {δpn : δpn = pn − qn, n ≥ 0} (18)

is in ∆Sα by definition. By the VPF (3), δγ satisfies{
δxn = As

nδx0 +
∑n

i=1As
n−igs(qi−1, δpi−1)

δyn = Acu
n−mδym +

∑m
i=n+1Acu

n+1−igcu(qi, δpi)

Because ‖δym‖ ≤ αm‖δγ‖α and ‖Acun−m‖ ≤ βm−n and αβ < 1, the first term in
the yn-equation above converges to 0 as m → ∞. The estimate (17) also shows
the partial sum of the yn-equation converges uniformly. Therefore the limit as
m→∞ exists for the yn-equation and the limit is exactly the yn-equation for the
map T . Hence, δγ is a fixed point of T .

Conversely, assume δγ = {(δxn, δyn)} is a fixed point of T for a given γq
from W cs. It is straightforward to verify{

δxn = Asδxn−1 + gs(qn−1, δpn−1)
δyn = Acu

−1δyn+1 + gcu(qn+1, δpn+1).

Denote pn = qn + δpn, pn = (xn, yn), qn = (xq,n, yq,n). Then because γq is an
orbit it satisfies {

xq,n = Asxq,n−1 + hs(qn−1)
yq,n = Acu

−1yq,n+1 + hcu(qn+1).

Sum up these two equations component by component to obtain{
xn = Asxn−1 + hs(pn−1)
yn = Acu

−1yn+1 + hcu(pn+1),

which shows γ = {pn} = γq + δγ must be an orbit of f , γ = γp0 . Since γq ∈ Sβ
and δγ ∈ ∆Sα ⊂ Sβ , we must have γp0 ∈ Sβ . Hence, the initial point, p0, of γp0
is in W cs and in F s(q) by definition. Last, the identity (14) follows by writing out
the initial point of γp0 .

Lemma 2. Let φu ∈ C1(Ecs,Eu) be the function whose graph is W cs. Then there
is a function ψcu = (ψc, ψu) : Ecs×Es → Ec×Eu so that for all w = (ws, wc) ∈
Ecs,

φu(w) = ψu(w,ws)

and for every q ∈ W cs with q = (w, φu(w))

F s(w) := F s(q) = graph(ψcu(w, ·)). (19)

Moreover, the definition of F s is independent of any two different choices in α.
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Proof. By Lemma 1, p ∈ F s(q) iff p = q + δp0 with δp0 the initial point of a
fixed point δγ = {δpn}n≥0 of the map T from its proof. We already know q is
parameterized by w ∈ Ecs by q = (w, φu(w)). We only need to show δp0 exists
and is parameterized by w and its Es-coordinate δx0. In fact, if that is true, then
the function ψcu must be defined from the identity (14) as below

(ps, pc, pu) = (x0, ψc(w, x0), ψu(w, x0)) := (ws, wc, φu(w)) + (δx0, δy0(w, δx0))
(20)

where x0 = ps, δx0 = ps − qs = x0 − ws , and

ψcu(w, x0) = (wc, φu(w)) +
∑∞

i=1 Acu
1−igcu(qi(w), δpi(w, x0 − ws)) .

Assuming the fixed point, denoted by δγ∗, is unique for T , then we see the zero
sequence δγ∗ = {0} is a trivial fixed point if δx0 = 0. As a consequence, we get

ψu(w,ws) = φu(w) + δp0,u(w, 0) = φu(w),

the inclusion of W cs. Definition (20) obviously shows (19). Therefore, it is only
left to show the existence and uniqueness of fixed point of T for each w and their
independence on any two choices in α.

To this end, we will consider T as a parameterized map T : ∆Sα×Ecs×Es →
∆Sα with δγ = T (δγ, w, δx0) being defined by (12) as below{

δxn = As
nδx0 +

∑n
i=1 As

n−igs(qi−1(w), δpi−1)

δyn =
∑∞

i=n+1 Acu
n+1−igcu(qi(w), δpi)

(21)

We first show T is a uniform contraction. By the proof of Lemma 1, T (·, w, δx0)
maps ∆Sα into ∆Sα. For its uniform contraction, let δγ, δγ′ ∈ ∆Sα and δγ =
T (δγ, w, δx0), δγ ′ = T (δγ′, w, δx0). Then we have

‖δxn − δxn ′‖ ≤
∑n

i=1 ‖As
n−i[gs(qi−1(w), δpi−1)− gs(qi−1(w), δp′i−1)]‖

≤
∑n

i=1 ν
n−iL‖δpi−1 − δp′i−1‖

≤
∑n

i=1 ν
n−iLαi−1‖δγ − δγ′‖α

≤ L
α−να

n‖δγ − δγ′‖α
(22)

and

‖δyn − δyn ′‖ ≤
∑∞

i=n+1 ‖Acu
n+1−i[gcu(qi(w), δpi)− gcu(qi(w), δp′i)]‖

≤
∑∞

i=n+1 β
i−n−1L‖δpi − δp′i‖

≤
∑∞

i=n+1 β
i−n−1αi‖δγ − δγ′‖α

≤ Lα
1−αβα

n‖δγ − δγ′‖α.

(23)

Hence,

‖T (δγ, w, δx0)− T (δγ′, w, δx0)‖α ≤ ( L
α−ν + Lα

1−αβ )‖δγ − δγ′‖α

showing T (·, w, δx0) is a uniform contraction in ∆Sα provided

θ := θ(α) = L
α−ν + Lα

1−αβ < 1 (24)
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which is true for sufficiently small ‖f −Df(q̄)‖1.
Notice that the existence and uniqueness proof of δγ∗ above shows that for

any
‖As‖ < α′ < α,

as long as
θ(α′), θ(α) < 1

T (·, w, δx0) has a unique fixed point in ∆Sα′ and ∆Sα. But since ∆Sα′ is a closed
subspace of ∆Sα, the unique fixed point δγ∗(w, δx0) is in both ∆Sα′ and ∆Sα.
This shows the independence of F s on any two choices in α.

Lemma 3. The foliation function ψcu is Lipschitz continuous.

Proof. Notice from its definition (20) that we only need to show δp0 is Lipschitz
for which it suffices to show the unique fixed point δγ∗ of T from Lemma 2 is
Lipschitz since δp0 is only a point of the sequence δγ∗. To begin, let

δγ∗(w, δx0) = {δpn(w, δx0) = (δxn(w, δx0), δyn(w, δx0))}∞n=0 (25)

be the unique fixed point of T (·, w, δx0) for each (w, δx0) ∈ Ecs × Es. We first
fix constant α′ and make β closer to 1 if necessary so that the following relations
hold

‖As‖ < ν < α′ < α′β < α < 1 < β < 1
α
< 1

ν
. (26)

We will treat the fixed point δγ∗(w, δx0) in both ∆Sα′ and ∆Sα. We will also use
the estimate below

‖δγ∗(w, δx0)‖α ≤
1

1−θ‖δx0‖ (27)

which follows from the estimate (13) of Lemma 1.
We are now ready to show δγ∗ is Lipschitz in w and δx0 respectively. Since

T (δγ, w, δx0) is Lipschitz continuous in δx0 with

‖T (δγ, w, δx0)− T (δγ, w, δx0
′)‖α ≤ ‖δx0 − δx0

′‖,

because ‖Asn‖ < νn, we have by the Uniform Contraction Principle I that δγ∗ is
C0,1 in δx0 with

‖δγ∗(w, δx0)− δγ∗(w, δx0
′)‖α ≤

1
1−θ‖δx0 − δx0

′‖. (28)

To show the fixed point is C0,1 in w, notice first from (10) that for i = s, cu,

‖gi(q, δp)− gi(q′, δp)‖ ≤ ‖Dqgi(·, δp)‖0‖q − q
′‖ ≤ L1‖δp‖‖q − q′‖. (29)

This estimate together with the comments above on α′ and α imply

‖δxn − δxn ′‖ ≤
∑n

i=1 ‖As
n−i[gs(qi−1(w), δpi−1)− gs(qi−1(w′), δpi−1)]‖

≤
∑n

i=1 ν
n−iL1‖δpi−1‖‖qi−1(w)− qi−1(w′)‖

≤
∑n

i=1 ν
n−iL1α

′i−1‖δγ‖α′βi−1‖γ∗(w)− γ∗(w′)‖β
≤
∑n

i=1 ν
n−iL1α

i−1‖δγ‖α‖γ∗(w)− γ∗(w′)‖β
≤ L1

α−να
n‖δγ‖α‖γ∗(w)− γ∗(w′)‖β

(30)
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since α′β < α, ‖δγ‖α′ ≤ ‖δγ‖α. And

‖δyn − δyn ′‖ ≤
∑∞

i=n+1 ‖Acu
n+1−i[gcu(qi(w), δpi)− gcu(qi(w′), δpi)]‖

≤
∑∞

i=n+1 β
i−n−1L1‖δpi‖‖qi(w)− qi(w′)‖

≤
∑∞

i=n+1 β
i−n−1L1α

′i‖δγ‖α′βi‖γ∗(w)− γ∗(w′)‖β
≤
∑∞

i=n+1 β
i−n−1L1α

i‖δγ‖α‖γ∗(w)− γ∗(w′)‖β
≤ L1α

1−αβα
n‖δγ‖α‖γ∗(w)− γ∗(w′)‖β.

(31)

Therefore,

‖T (δγ, w, δx0)− T (δγ, w′, δx0)‖α ≤ ( L1

α−ν + L1α
1−αβ )‖δγ‖α‖γ∗(w)− γ∗(w′)‖β .

So if we restrict δx0 to ‖δx0‖ ≤ R for any arbitrary R > 0, then by the bound
estimate (27) we have by Uniform Contraction Principle I

‖δγ∗(w, δx0)− δγ∗(w′, δx0)‖α ≤
1

1−θ‖T (δγ, w, δx0)− T (δγ, w′, δx0)‖α
≤ 1

1−θ (
L1

α−ν + L1α
1−αβ )‖δx0‖

1−θ ‖γ
∗(w)− γ∗(w′)‖β

≤ ( L1

α−ν + L1α
1−αβ ) R

(1−θ)2
1

1−θcs‖w − w
′‖,

(32)
where δγ = δγ∗(w, δx0), showing δγ∗ is Lipschitz inw for bounded δx0. Because
δp0(w, δx0) is the first point of the sequence δγ∗(w, δx0), its Lipschitz continuity
follows, so is ψcu’s.

Lemma 4. f is a contraction on F s(q) uniformly for all q ∈ W cs.

Proof. We need to show there is a constant 0 < % < 1 so that for any q ∈ W cs

and for any p, p′ ∈ F s(q), ‖f(p)− f(p′)‖ ≤ %‖p− p′‖. Let γp, γp′ be the orbits
through p, p′, respectively. Then δγ∗ = γp − γq and δγ∗′ = γp′ − γq are fixed
points of T (·, w, δx0) and T (·, w, δx0

′), respectively, with δx0 = ps − ws and
δx0

′ = p′s − ws. More importantly,

γp − γp′ = (γp − γq)− (γp′ − γq) = δγ∗(w, δx0)− δγ∗(w, δx0
′)

whose second point on the sequence is

f(p)− f(p′) = p1 − p′1 = δp1(w, δx0)− δp1(w, δx0
′).

The Es-coordinate of the right side can be estimated as

‖δx1 − δx1
′‖ ≤ ‖As(δx0 − δx0

′) + gs(q0(w), δx0)− gs(q0(w), δx0
′)‖

≤ ν‖δx0 − δx0
′‖+ ‖hs(q0(w) + δx0)− hs(q0(w) + δx0

′)‖
≤ ν‖δx0 − δx0

′‖+ L‖δx0 − δx0
′‖

≤ (ν + L)‖p− p′‖

The Ecu-coordinate of the right side is, with δpi = δpi(w, δx0), δp′i = δpi(w, δx0
′),

‖δy1 − δy1
′‖ ≤

∑∞
i=2 ‖Acu

2−i[gcu(qi(w), δpi)− gcu(qi(w), δp′i)]‖
=
∑∞

i=2 ‖Acu
2−i[hcu(qi(w) + δpi)− hcu(qi(w) + δp′i)]‖

≤
∑∞

i=2 β
i−2Lαi‖δγ∗(w, δx0)− δγ∗(w, δx0

′)‖α
≤ Lα2

1−αβ‖δγ
∗(w, δx0)− δγ∗(w, δx0

′)‖α
≤ Lα2

1−αβ
1

1−θ‖δx0 − δx0
′‖

≤ Lα2

1−αβ
1

1−θ‖p− p
′‖
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where (28) is used for the second last estimate. Therefore,

‖f(p)− f(p′)‖ ≤ (ν + L+ Lα2

1−αβ
1

1−θ )‖p− p
′‖

which implies f is a uniform contraction for sufficiently small L, i.e., for suffi-
ciently small ‖f −Df(q̄)‖1.

Lemma 5. If f is Ck,1 for k ≥ 1, then ψcu is Ck.

Proof. By the Uniform Contraction Principle II, we need to verify two condi-
tions: (1) T (δγ, w, δx0) is differentiable in δγ and ‖DδγT (δγ, w, δx0)‖ is uni-
formly bounded by a constant smaller than 1; (2) T ∈ Ck(∆Sα×Ecs×Es,∆Sα).

To show (1), let δγ = {δpn}, v = {vn} ∈ ∆Sα, and formally differentiate
(21). Then DδγT (δγ, w, δx0)v needs to be as below in components:{

[DδγT (δγ, w, δx0)v]n, s =
∑n

i=1As
n−iDδpgs(qi−1(w), δpi−1)vi−1

[DδγT (δγ, w, δx0)v]n, cu =
∑∞

i=n+1Acu
n+1−iDδpgcu(qi(w), δpi)vi.

(33)

By the exactly same estimate as for (22) we have

‖[DδγT (δγ, w, δx0)v]n, s‖ ≤ L
α−να

n‖v‖α.

Similarly, by the exactly same estimate as for (23) we have

‖[DδγT (δγ, w, δx0)v]n, cu‖ ≤ Lα
1−αβα

n‖v‖α.

These estimates imply two conclusions. One, because of the uniform convergence
of the second equation, it shows the derivative DδγT (δγ, δx0) exists. Two, it
shows the derivative is a bounded linear map in L(∆Sα,∆Sα) whose α-norm

‖DδγT (δγ, w, δx0)‖α ≤ θ(α) < 1,

is bounded by the same uniform contraction constant θ(α) from (24).
To show (2), we separate it into four cases. The first case is for derivatives in

x0, the second case is for derivatives in δγ, the third case is for derivatives in w,
and the fourth case is about mixed derivatives. For the first case we note that

[Dδx0T (δγ, w, δx0)]n, s = As
n, and [Dδx0T (δγ, w, δx0)]n, cu = 0.

This implies any mixed derivative with δx0 is the zero operator, hence well-
defined and exists. The identity above also shows

‖[Dδx0T (δγ, w, δx0)]n‖ ≤ ‖Asn‖ ≤ αn

implying ‖Dδx0T (δγ, w, δx0]‖α ≤ 1, and Dj
δx0
T (δγ, w, δx0) = 0, for 2 ≤ j ≤ k.

Hence, T is Ck in δx0.
For the second case, the case of j = 1 was done above. For any 2 ≤ j ≤ k,

[Dj
δγT (δγ, w, δx0)] needs to be a j-linear form in ∆Sα. To this end, let v =
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v1⊗ v2⊗ · · · ⊗ vj with each v` ∈ ∆Sα, 1 ≤ ` ≤ j. Formally differentiate (21) to
get{

[Dj
δγT (δγ, w, δx0)v]n, s =

∑n
i=1As

n−iDj
δpgs(qi−1(w), δpi−1)vi−1

[Dj
δγT (δγ, w, δx0)v]

n, cu
=
∑∞

i=n+1Acu
n+1−iDj

δpgcu(qi(w), δpi)vi,
(34)

where
vi = v1

i ⊗ v2
i ⊗ · · · ⊗ v

j
i , v`i ∈ Rd.

Similar to the estimate of (22) and because gi(q, δp) = hi(q+ δp)− hi(q), α < 1,
we have

‖[Dj
δγT (δγ, w, δx0)v]n, s‖ ≤

∑n
i=1 ‖As

n−i‖‖Djhs‖‖vi−1‖
≤
∑n

i=1 ν
n−i‖hs‖jΠ

j
`=1‖v`i−1‖

≤ ‖hs‖k
∑n

i=1 ν
n−iαj(i−1)Πj

`=1‖v`‖α
≤ ‖hs‖k

∑n
i=1 ν

n−iα(i−1)Πj
`=1‖v`‖α

≤ ‖hs‖k
α−ν α

nΠj
`=1‖v`‖α.

(35)

Similarly, by an exactly same estimate as (23) we can have

‖[Dj
δγT (δγ, w, δx0)v]n, cu‖ ≤

∑∞
i=n+1 ‖Acu

n+1−i‖‖Djhcu‖‖vi‖
≤
∑∞

i=n+1 β
i−n−1‖hcu‖jαjiΠ

j
`=1‖v`‖α

≤ ‖hcu‖kβ−n−1
∑∞

i=n+1(βαj)iΠj
`=1‖v`‖α

≤ ‖hcu‖kβ−n−1
∑∞

i=n+1(βα)iΠj
`=1‖v`‖α

≤ ‖hcu‖kα
1−αβ αnΠj

`=1‖v`‖α.

(36)

Combine these two estimates to obtain

‖[Dj
δγT (δγ, w, δx0)]‖

α
≤ ‖(hs, hcu)‖k max{ 1

α−ν ,
α

1−αβ}.

The convergence of the infinite series also shows the derivatives are well-defined.
This completes the proof that T is Ck in δγ.

For the third case, we will use the property that the fixed point δγ∗(w, δx0)
is also in ∆Sα′ for any α′ satisfying (26), and the property that the center-stable
orbit γ∗(w) is a Ck map from Ecs to Sµ ⊂ Sβ for any µ satisfying ‖Acs‖ < µ < β.
Specifically, we will take

‖Acs‖ < µ = β1/k < β for k ≥ 2,

re-adjusting the adapted norm if necessary. In this setting, we will treat T as a
composition of a map T̄ : ∆Sα′ × Sµ × Es → ∆Sα with the center-stable orbit
map γ∗ ∈ Ck(Ecs, Sµ). That is,

T (δγ, w, δx0) = T̄ (δγ, γ∗(w), δx0)

where T̄ is defined by the right side of (12) except for general γ = {qn} ∈ Sµ.
Since the center-stable orbit map γ∗(w) is Ck, we only need to show T̄ is Ck in γ
by the chain rule. We will also use the property (10) that

‖Dj
qgi(q, δp)‖ ≤ L̄‖δp‖ with L̄ = max{Lj : 1 ≤ j ≤ k}. (37)
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We are now ready to show T̄ is Ck in γ = {qn} ∈ Sµ. We need to show
[Dj

γT̄ (δγ, γ, δx0)] is a bounded j-linear form from Sµ to ∆Sα. To this end, let
v = v1⊗ v2⊗ · · · ⊗ vj with each v` ∈ Sµ, 1 ≤ ` ≤ j. Formally differentiate (12)
in the general γ ∈ Sµ to get{

[Dj
γT̄ (δγ, γ, δx0)v]n, s =

∑n
i=1 As

n−iDj
qgs(qi−1, δpi−1)vi−1

[Dj
γT̄ (δγ, γ, δx0)v]

n, cu
=
∑∞

i=n+1Acu
n+1−iDj

qgcu(qi, δpi)vi,
(38)

where
vi = v1

i ⊗ v2
i ⊗ · · · ⊗ v

j
i , v`i ∈ Rd.

Similar to the estimate of (30) and because of (37), µk = β, α′β < α, we have

‖[Dj
γT̄ (δγ, γ, δx0)v]n, s‖ ≤

∑n
i=1 ‖As

n−i‖Lj‖δpi−1‖‖vi−1‖
≤ L̄

∑n
i=1 ν

n−iα′i−1‖δγ‖α′Π
j
`=1‖v`i−1‖

≤ L̄‖δγ‖α
∑n

i=1 ν
n−iα′i−1µj(i−1)Πj

`=1‖v`‖µ
≤ L̄‖δγ‖α

∑n
i=1 ν

n−i(α′β)i−1Πj
`=1‖v`‖µ

≤ L̄‖δγ‖α
∑n

i=1 ν
n−iαi−1Πj

`=1‖v`‖µ
≤ L̄‖δγ‖α

α−ν αnΠj
`=1‖v`‖µ.

Similar to the estimate of (31) we have

‖[Dj
γT̄ (δγ, γ, δx0)v]n, cu‖ ≤

∑∞
i=n+1 ‖Acu

n+1−i‖Lj‖δpi‖‖vi‖
≤ L̄

∑∞
i=n+1 β

i−n−1α′i‖δγ‖α′µjiΠ
j
`=1‖v`‖µ

≤ L̄‖δγ‖α
∑∞

i=n+1 β
i−n−1(α′β)iΠj

`=1‖v`‖µ
≤ L̄‖δγ‖α

∑∞
i=n+1 β

i−n−1αiΠj
`=1‖v`‖µ

≤ L̄‖δγ‖αα
1−αβ αnΠj

`=1‖v`‖µ.

Combine these two estimates to obtain

‖[Dj
γT̄ (δγ, γ, δx0)]‖

α
≤ ( 1

α−ν + α
1−αβ )L̄‖δγ‖α.

The convergence of the infinite series also shows the derivatives are well-defined.
Hence T̄ (δγ, ·, δx0) is in Ck(Sµ,∆Sα), showing T is Ck in w.

For the fourth case about mixed derivatives of T in all variables, the arguments
above for δγ, w, δx0 can be combined to show all derivatives up to order k exist for
T . Therefore by the Uniform Contraction Principle II the fixed point δγ∗(w, δx0)
is Ck in both variables.

Proof of Theorem 1. After the preceding lemmas, it only remains to point out that
by the definition of W s, it coincides with the definition of the foliation through
the fixed point, F s(q̄), i.e., W s = F s(q̄). In fact, we can show the tangent space
directly as below. Since q̄ ∼ w = 0 and φu(0) = 0, we have from (20)

ψcu(0, x0) = δy0(0, x0) =
∑∞

i=1 Acu
1−ihcu(δpi(0, x0))

whose partial derivative in x0 ∈ Es at the fixed point q̄ ∼ x0 = 0 is

Dx0ψcu(0, 0) =
∑∞

i=1 Acu
1−iDhcu(δpi(0, 0))Dx0δpi(0, 0) = 0

since δγ∗(0, 0) = {0}, showing Tq̄F s(0) = Es.
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Remark: We can see from the proofs above that if the center-stable manifold
point q is fixed at the fixed point q̄ throughout, then the extra Lipschitz continuity
condition for the highest derivative of f is not needed. That is, the stable manifold
F s(q̄) = W s is Ck if f is Ck. This is because in this case, g(q̄, δp) = h(p) with
q̄ = 0, δp = p.
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