Stable and Unstable Foliations

Let \bar{q} be a nonhyperbolic fixed point of a diffeomorphism f in \mathbb{R}^d . Let $J = Df(\bar{q})$, and denote

$$\sigma^s = \sigma(J) \cap \{|z| < 1\}, \sigma^c = \sigma(J) \cap \{|z| = 1\}, \text{ and } \sigma^u = \sigma(J) \cap \{|z| > 1\}$$

the set of stable eigenvalues, center eigenvalues, unstable eigenvalues, respectively, counting multiplicity. Let

$$\sigma^{cs} = \sigma^s \cup \sigma^c$$
, and $\sigma^{cu} = \sigma^c \cup \sigma^u$.

Definition 1. Let \bar{q} be a nonhyperbolic fixed point of a diffeomorphism f in \mathbb{R}^d and α , β be any constants satisfying

$$\max\{|\sigma^s|\} < \alpha < 1 < \beta < \min\{|\sigma^u|\}.$$

Let $W^{\operatorname{cs}}=\{p:\sup\{\beta^{-n}[f^n(p)-\bar{q}]:n\geq 0\}<\infty\}$ be the center-stable manifold of \bar{q} . For every $q\in W^{\operatorname{cs}}$ the stable-fiber of q is defined as

$$\mathcal{F}^{s}(q) = \{ p \in W^{cs} : \sup\{\alpha^{-n}[f^{n}(p) - f^{n}(q)] : n \ge 0 \} < \infty \}$$

and the collection

$$\mathcal{F}^s = \{ \mathcal{F}^s(q) : q \in W^{cs} \}$$

is called the stable-foliation of W^{cs} .

Notice that the stable-fiber defines an equivalence relation on W^{cs} : $q \in \mathcal{F}^s(q)$; $p \in \mathcal{F}^s(q)$ iff $q \in \mathcal{F}^s(p)$ and $\mathcal{F}^s(q) = \mathcal{F}^s(p)$. Also, the foliation is an invariant family with $f(\mathcal{F}^s(q)) = \mathcal{F}^s(f(q))$, and W^{cs} can be filled by fibers through a center manifold as a stem

$$f(\mathcal{F}^s(q)) = \mathcal{F}^s(f(q)), \quad W^{cs} = \bigcup_{q \in W^c} \mathcal{F}^s(q).$$

In addition, the stable manifold is the fiber through \bar{q} , $W^s = \mathcal{F}^s(\bar{q})$, see Fig.1.

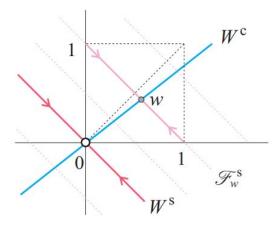


Figure 1. The dynamics of the transition matrix of a Markov process at the trivial fixed point 0 is captured by its foliation through $W^{\rm c}$ which is spanned by the steady-state distribution vector w.

A function f is of $C^{k,1}$ if f is in C^k (itself and all derivatives up to order k are uniformly continuous and bounded in \mathbb{R}^d) and its kth derivative is globally Lipschitz continuous. We will use $||f||_k$ to denote its C^k norm.

Theorem 1 (Stable Foliation Theorem). Let \bar{q} be a nonhyperbolic fixed point of a $C^{1,1}$ diffeomorphism f in \mathbb{R}^d with splitting $\mathbb{R}^d \cong \mathbb{E}^s \times \mathbb{E}^c \times \mathbb{E}^u = \mathbb{E}^{cs} \times \mathbb{E}^u$ based at the fixed point. Then a sufficiently small $||f - Df(\bar{q})||_1$ implies there is a C^1 function

$$\psi_{cu} = (\psi_c, \psi_u) : \mathbb{E}^{cs} \times \mathbb{E}^s \to \mathbb{E}^c \times \mathbb{E}^u$$

such that

(i)
$$q = (q_{cs}, q_u) \in W^{cs}$$
 iff $q_u = \psi_u(q_{cs}, q_s)$ with $q_{cs} = (q_s, q_c)$, i.e.,
$$W^{cs} = \operatorname{graph}(\phi_u) \text{ with } \phi_u(q_{cs}) = \psi_u(q_{cs}, q_s).$$

(ii)
$$\mathcal{F}^s(q) = \operatorname{graph}(\psi_{cu}(q_{cs},\cdot))$$
 for $q \in W^{cs}$, i.e.,
 $p = (p_s, p_c, p_u) \in \mathcal{F}^s(q)$ if and only if $(p_c, p_u) = \psi_{cu}(q_{cs}, p_s)$.

- (iii) f is a contraction on each $\mathcal{F}^s(q)$ uniformly for all $q \in W^{cs}$.
- (iv) $\mathcal{F}^s(ar{q})$ coincides with the stable manifold $\mathcal{F}^s(ar{q})=W^s$ and

$$\mathbb{T}_{\bar{q}}\mathcal{F}^s(\bar{q})\cong \mathbb{E}^s.$$

- (v) If f is $C^{k,1}$, $k \ge 1$, then ψ_{cu} is C^k .
- (vi) \mathcal{F}^s is independent of any two different choices in α .

The proof is an application of the Uniform Contraction Principle. The main idea is to construct the stable-foliation function ψ_{cu} as part of a fixed point of a uniform contraction map. We will break it up into a few lemmas. Before doing so, we first recall a few important properties about W^{cs} in the statements below from the proof for the Center Manifold Theorem, assuming the fixed \bar{q} is translated to $0 \in \mathbb{R}^d$.

Proposition 1. For any $1 < \beta < \min\{|\sigma^u|\}$, let S_β be a Banach space defined by

$$S_{\beta} := \{ \gamma = \{ p_n \}_{n=0}^{\infty} : p_n \in \mathbb{R}^d, \sup \{ \beta^{-n} || p_n || : n \ge 0 \} < \infty \}$$

with norm

$$\|\gamma\|_{\beta} = \sup\{\beta^{-n} \|p_n\| : n \ge 0\}.$$

For any sufficiently small $||f - Df(\bar{q})||_1$, the orbit $\gamma_p = \{f^n(p)\}_{n=0}^{\infty}$ of any point $p = (p_{cs}, p_u) \in W^{cs}$ can be expressed as a function $\gamma_p = \gamma^*(p_{cs})$ for $p_{cs} \in \mathbb{E}^{cs}$ so that $\gamma^* \in C^{k,1}(\mathbb{E}^{cs}, S_\beta)$ if $f \in C^{k,1}(\mathbb{R}^d)$. Moreover, for any p_{cs} , $p'_{cs} \in \mathbb{E}^{cs}$

$$\|\gamma^*(p_{cs}) - \gamma^*(p'_{cs})\|_{\beta} \le \frac{1}{1 - \theta_{cs}(\beta)} \|p_{cs} - p'_{cs}\|$$
 (1)

where $0 < \theta_{cs}(\beta) < 1$ is a uniform contraction constant depending on β . Furthermore, there is a $C^{k,1}$ function $\phi_u : \mathbb{E}^{cs} \to \mathbb{E}^u$ so that the following holds

$$W^{\text{cs}} = \text{graph}(\phi_u), \ \phi_u(0) = 0, \ \text{and} \ D\phi_u(0) = 0.$$

We also recall that by the Variation of Parameters Formula Theorem (VPF) for splitting $\mathbb{R}^d \cong \mathbb{E}^s \times \mathbb{E}^{cu}$ corresponding to $Df(\bar{q}) \cong \operatorname{diag}(A_s, A_{cu})$, the map $(\bar{x}, \bar{y}) = f(x, y)$ with $(x, y), (\bar{x}, \bar{y}) \in \mathbb{E}^s \times \mathbb{E}^{cu}$ is equivalent to

$$\begin{cases} \bar{x} = A_s x + h_s(x, y) \\ y = A_{cu}^{-1} \bar{y} + h_{cu}(\bar{x}, \bar{y}), \end{cases}$$
 (2)

and for any orbit, $q_n = (x_n, y_n) = f(x_{n-1}, y_{n-1})$, and $n \ge 0$

$$\begin{cases} x_n = A_s^n x_0 + \sum_{i=1}^n A_s^{n-i} h_s(q_{i-1}) \\ y_n = A_{cu}^{n-m} y_m + \sum_{i=n+1}^m A_{cu}^{n+1-i} h_{cu}(q_i). \end{cases}$$
(3)

Here, the functions h_s , h_{cu} are defined by f and are as smooth as f, satisfying

$$h_s(0) = 0$$
, $Dh_s(0) = 0$, $h_{cu}(0) = 0$, $Dh_{cu}(0) = 0$. (4)

They are globally Lipschitz and their Lipschitz constant can be taken to be

$$L = ||D(h_s, h_{cu})||_0 \to 0 \quad \text{as} \quad ||f - Df(\bar{q})||_1 \to 0.$$
 (5)

The result above holds for sufficiently small $||f - Df(\bar{q})||_1$.

Associated with h_i , we will need the following functions throughout

$$g_i(q, \delta p) = h_i(q + \delta p) - h_i(q), \text{ for } i = s, cu.$$
 (6)

Because $h_i \in C^{k,1}$ so is $g_i \in C^{k,1}$ satisfying

$$g_i(0,0) = 0$$
, $D_p g_i(0,0) = 0$, $D_{\delta p} g_i(0,0) = 0$, for $i = s, cu$. (7)

More importantly, all derivatives in q satisfy

$$D_a^j g_i(q,0) = 0$$
, for $0 \le j \le k$, and $i = s, cu$. (8)

To save notation, we will use the same notation for Lipschitz constants of both h_i and g_i

$$L = \max\{\|D(h_s, h_{cu})\|_0, \|D(g_s, g_{cu})\|_0\} \to 0 \text{ as } \|f - Df(\bar{q})\|_1 \to 0.$$
 (9)

Since $g_i \in C^{k,1}$, we will denote by L_1, L_2, \ldots, L_k the Lipschitz constants for $D_q g_i, D_q^2 g_i, \ldots, D_q^k g_i$, respectively. Together with the fact that $D_q^j g_i(q,0) = 0$ we have

$$||D_a^j g_i(q, \delta p)|| \le L_i ||\delta p|| \text{ for } 0 \le j \le k, \text{ and } i = s, cu.$$
 (10)

Unlike L which can be made as small as possible by making $||f - Df(\bar{q})||_1$ small, these constants L_j are not necessarily small.

We will repeatedly use this formula for geometric sequences

$$a + ar + ar^{2} + \dots + ar^{n-1} = \frac{a(1-r^{n})}{1-r}$$
, for $r \neq 1$

and its differentiation formulas in r. We will denote throughout

$$\gamma_p = \{p_n = f^n(p)\}_{n=0}^{\infty}$$

the orbit of f with the initial point p, for which $p_0 = p$. The proof now consists of a sequence of lemmas below.

Lemma 1. For any parameter α satisfying $\max\{|\sigma^s|\} < \alpha < 1$, let

$$\Delta S_{\alpha} := \{ \delta \gamma = \{ \delta p_n \}_{n=0}^{\infty} : \delta p_n \in \mathbb{R}^d, \sup \{ \alpha^{-n} || \delta p_n || : n \ge 0 \} < \infty \}$$
 (11)

with norm

$$\|\delta\gamma\|_{\alpha} = \sup\{\alpha^{-n} \|\delta p_n\| : n \ge 0\}.$$

For any $q \in W^{\operatorname{cs}}$ with $\gamma_q = \{q_n\}$ and $\delta p = \{\delta p_n\} \in \Delta S_{\alpha}$, let $\overline{\delta \gamma} = T(\delta \gamma)$ be defined by the equations below

$$\begin{cases}
 \frac{\overline{\delta x}_n = A_s^n \delta x_0 + \sum_{i=1}^n A_s^{n-i} g_s(q_{i-1}, \delta p_{i-1}) \\
 \overline{\delta y}_n = \sum_{i=n+1}^\infty A_{cu}^{n+1-i} g_{cu}(q_i, \delta p_i)
\end{cases}$$
(12)

Then $\overline{\delta\gamma} \in \Delta S_{\alpha}$ with

$$\|\overline{\delta\gamma}\|_{\alpha} \le \|\delta x_0\| + \frac{L\|\delta\gamma\|_{\alpha}}{\alpha - \nu} + \frac{\alpha L\|\delta\gamma\|_{\alpha}}{1 - \alpha\beta},\tag{13}$$

where ν, β are fixed constants satisfying

$$\max\{|\sigma^s|\} < \nu < \alpha < 1 < \beta < 1/\alpha.$$

More importantly, $p \in \mathcal{F}^s(q)$ if and only if the orbit difference $\delta \gamma = \gamma_p - \gamma_q$ is a fixed point of T, i.e., $p = q + \delta p$ with $\delta p = (\delta x_0, \delta y_0)$ the initial point of $\delta \gamma$, and specifically,

$$p = (p_s, p_c, p_u) = (q_s, q_c, \phi_u(q_s, q_c)) + (\delta x_0, \sum_{i=1}^{\infty} A_{cu}^{1-i} g_{cu}(q_i, \delta p_i)).$$
 (14)

Proof. We first show that T is well-defined together with the bound estimate. We begin by making $1 < \beta$ sufficiently close to 1 and fixing an adapted norm so that the following conditions hold

$$||A_s|| < \nu < \alpha < 1 \text{ and } ||A_{cu}^{-1}|| < \beta < \frac{1}{\alpha}.$$
 (15)

We now demonstrate $\overline{\delta\gamma}=\{(\overline{\delta x}_n,\overline{\delta y}_n)\}\in\underline{\Delta}S_\alpha$. Because $g_i(q,0)=0$ and $\|g_i(q,\delta p)\|\leq L\|\delta p\|$ from (8,10) we have for $\overline{\delta x}_n$

$$\|\overline{\delta x}_{n}\| \leq \|A_{s}^{n}\| \|\delta x_{0}\| + \sum_{i=1}^{n} \|A_{s}^{n-i}g_{s}(q_{i-1}, \delta p_{i-1})\|$$

$$\leq \nu^{n} \|\delta x_{0}\| + \sum_{i=1}^{n} \nu^{n-i} L \alpha^{i-1} \|\delta \gamma\|_{\alpha}$$

$$= \nu^{n} \|\delta x_{0}\| + L \|\delta \gamma\|_{\alpha} \frac{\alpha^{n} - \nu^{n}}{\alpha - \nu}$$

$$\leq (\|\delta x_{0}\| + \frac{L \|\delta \gamma\|_{\alpha}}{\alpha - \nu}) \alpha^{n}.$$
(16)

Similarly,

$$\|\overline{\delta y}_{n}\| \leq \sum_{i=n+1}^{\infty} \|A_{cu}^{n+1-i} g_{cu}(q_{i}, \delta p_{i})\|$$

$$\leq \sum_{i=n+1}^{\infty} \beta^{i-n-1} L \alpha^{i} \|\delta \gamma\|_{\alpha}$$

$$= \beta^{-n-1} L \|\delta \gamma\|_{\alpha} \frac{(\alpha \beta)^{n+1}}{1-\alpha \beta}$$

$$= \frac{\alpha L \|\delta \gamma\|_{\alpha}}{1-\alpha \beta} \alpha^{n}.$$
(17)

Hence, the estimate (13) holds. This shows that the infinite series converges uniformly and that T is well-defined, mapping ΔS_{α} into itself.

Next, we show the last part of the lemma. First, for $p \in \mathcal{F}^s(q)$, both orbits γ_p, γ_q are in S_β , and the orbit difference

$$\delta \gamma = \gamma_p - \gamma_q = \{ \delta p_n : \delta p_n = p_n - q_n, n \ge 0 \}$$
(18)

is in ΔS_{α} by definition. By the VPF (3), $\delta \gamma$ satisfies

$$\begin{cases} \delta x_n = A_s^n \delta x_0 + \sum_{i=1}^n A_s^{n-i} g_s(q_{i-1}, \delta p_{i-1}) \\ \delta y_n = A_{cu}^{n-m} \delta y_m + \sum_{i=n+1}^m A_{cu}^{n+1-i} g_{cu}(q_i, \delta p_i) \end{cases}$$

Because $\|\delta y_m\| \leq \alpha^m \|\delta\gamma\|_{\alpha}$ and $\|A_{cu}^{n-m}\| \leq \beta^{m-n}$ and $\alpha\beta < 1$, the first term in the y_n -equation above converges to 0 as $m \to \infty$. The estimate (17) also shows the partial sum of the y_n -equation converges uniformly. Therefore the limit as $m \to \infty$ exists for the y_n -equation and the limit is exactly the y_n -equation for the map T. Hence, $\delta\gamma$ is a fixed point of T.

Conversely, assume $\delta \gamma = \{(\delta x_n, \delta y_n)\}$ is a fixed point of T for a given γ_q from W^{cs} . It is straightforward to verify

$$\begin{cases} \delta x_n = A_s \delta x_{n-1} + g_s(q_{n-1}, \delta p_{n-1}) \\ \delta y_n = A_{cu}^{-1} \delta y_{n+1} + g_{cu}(q_{n+1}, \delta p_{n+1}). \end{cases}$$

Denote $p_n = q_n + \delta p_n$, $p_n = (x_n, y_n)$, $q_n = (x_{q,n}, y_{q,n})$. Then because γ_q is an orbit it satisfies

$$\begin{cases} x_{q,n} = A_s x_{q,n-1} + h_s(q_{n-1}) \\ y_{q,n} = A_{cu}^{-1} y_{q,n+1} + h_{cu}(q_{n+1}). \end{cases}$$

Sum up these two equations component by component to obtain

$$\begin{cases} x_n = A_s x_{n-1} + h_s(p_{n-1}) \\ y_n = A_{cu}^{-1} y_{n+1} + h_{cu}(p_{n+1}), \end{cases}$$

which shows $\gamma = \{p_n\} = \gamma_q + \delta \gamma$ must be an orbit of $f, \gamma = \gamma_{p_0}$. Since $\gamma_q \in S_\beta$ and $\delta \gamma \in \Delta S_\alpha \subset S_\beta$, we must have $\gamma_{p_0} \in S_\beta$. Hence, the initial point, p_0 , of γ_{p_0} is in W^{cs} and in $\mathcal{F}^s(q)$ by definition. Last, the identity (14) follows by writing out the initial point of γ_{p_0} .

Lemma 2. Let $\phi_u \in C^1(\mathbb{E}^{cs}, \mathbb{E}^u)$ be the function whose graph is W^{cs} . Then there is a function $\psi_{cu} = (\psi_c, \psi_u) : \mathbb{E}^{cs} \times \mathbb{E}^s \to \mathbb{E}^c \times \mathbb{E}^u$ so that for all $w = (w_s, w_c) \in \mathbb{E}^{cs}$,

$$\phi_u(w) = \psi_u(w, w_s)$$

and for every $q \in W^{\operatorname{cs}}$ with $q = (w, \phi_u(w))$

$$\mathcal{F}^s(w) := \mathcal{F}^s(q) = \operatorname{graph}(\psi_{cu}(w,\cdot)). \tag{19}$$

Moreover, the definition of \mathcal{F}^s is independent of any two different choices in α .

Proof. By Lemma 1, $p \in \mathcal{F}^s(q)$ iff $p = q + \delta p_0$ with δp_0 the initial point of a fixed point $\delta \gamma = \{\delta p_n\}_{n \geq 0}$ of the map T from its proof. We already know q is parameterized by $w \in \mathbb{E}^{cs}$ by $q = (w, \phi_u(w))$. We only need to show δp_0 exists and is parameterized by w and its \mathbb{E}^s -coordinate δx_0 . In fact, if that is true, then the function ψ_{cu} must be defined from the identity (14) as below

$$(p_s, p_c, p_u) = (x_0, \psi_c(w, x_0), \psi_u(w, x_0)) := (w_s, w_c, \phi_u(w)) + (\delta x_0, \delta y_0(w, \delta x_0))$$
(20)

where $x_0 = p_s, \ \delta x_0 = p_s - q_s = x_0 - w_s$, and

$$\psi_{cu}(w, x_0) = (w_c, \phi_u(w)) + \sum_{i=1}^{\infty} A_{cu}^{1-i} g_{cu}(q_i(w), \delta p_i(w, x_0 - w_s)).$$

Assuming the fixed point, denoted by $\delta \gamma^*$, is unique for T, then we see the zero sequence $\delta \gamma^* = \{0\}$ is a trivial fixed point if $\delta x_0 = 0$. As a consequence, we get

$$\psi_u(w, w_s) = \phi_u(w) + \delta p_{0,u}(w, 0) = \phi_u(w),$$

the inclusion of W^{cs} . Definition (20) obviously shows (19). Therefore, it is only left to show the existence and uniqueness of fixed point of T for each w and their independence on any two choices in α .

To this end, we will consider T as a parameterized map $T: \Delta S_{\alpha} \times \mathbb{E}^{cs} \times \mathbb{E}^{s} \to \Delta S_{\alpha}$ with $\overline{\delta \gamma} = T(\delta \gamma, w, \delta x_{0})$ being defined by (12) as below

$$\begin{cases}
\overline{\delta x}_{n} = A_{s}^{n} \delta x_{0} + \sum_{i=1}^{n} A_{s}^{n-i} g_{s}(q_{i-1}(w), \delta p_{i-1}) \\
\overline{\delta y}_{n} = \sum_{i=n+1}^{\infty} A_{cu}^{n+1-i} g_{cu}(q_{i}(w), \delta p_{i})
\end{cases}$$
(21)

We first show T is a uniform contraction. By the proof of Lemma 1, $T(\cdot, w, \delta x_0)$ maps ΔS_{α} into ΔS_{α} . For its uniform contraction, let $\delta \gamma, \delta \gamma' \in \Delta S_{\alpha}$ and $\overline{\delta \gamma} = T(\delta \gamma, w, \delta x_0), \overline{\delta \gamma'} = T(\delta \gamma', w, \delta x_0)$. Then we have

$$\|\overline{\delta x}_{n} - \overline{\delta x}_{n}'\| \leq \sum_{i=1}^{n} \|A_{s}^{n-i}[g_{s}(q_{i-1}(w), \delta p_{i-1}) - g_{s}(q_{i-1}(w), \delta p'_{i-1})]\|$$

$$\leq \sum_{i=1}^{n} \nu^{n-i} L \|\delta p_{i-1} - \delta p'_{i-1}\|$$

$$\leq \sum_{i=1}^{n} \nu^{n-i} L \alpha^{i-1} \|\delta \gamma - \delta \gamma'\|_{\alpha}$$

$$\leq \frac{L}{\alpha - \nu} \alpha^{n} \|\delta \gamma - \delta \gamma'\|_{\alpha}$$
(22)

and

$$\|\overline{\delta y}_{n} - \overline{\delta y}_{n}'\| \leq \sum_{i=n+1}^{\infty} \|A_{cu}^{n+1-i}[g_{cu}(q_{i}(w), \delta p_{i}) - g_{cu}(q_{i}(w), \delta p'_{i})]\|$$

$$\leq \sum_{i=n+1}^{\infty} \beta^{i-n-1} L \|\delta p_{i} - \delta p'_{i}\|$$

$$\leq \sum_{i=n+1}^{\infty} \beta^{i-n-1} \alpha^{i} \|\delta \gamma - \delta \gamma'\|_{\alpha}$$

$$\leq \frac{L\alpha}{1-\alpha\beta} \alpha^{n} \|\delta \gamma - \delta \gamma'\|_{\alpha}.$$
(23)

Hence,

$$||T(\delta\gamma, w, \delta x_0) - T(\delta\gamma', w, \delta x_0)||_{\alpha} \le (\frac{L}{\alpha - \nu} + \frac{L\alpha}{1 - \alpha\beta})||\delta\gamma - \delta\gamma'||_{\alpha}$$

showing $T(\cdot, w, \delta x_0)$ is a uniform contraction in ΔS_{α} provided

$$\theta := \theta(\alpha) = \frac{L}{\alpha - \nu} + \frac{L\alpha}{1 - \alpha\beta} < 1 \tag{24}$$

which is true for sufficiently small $||f - Df(\bar{q})||_1$.

Notice that the existence and uniqueness proof of $\delta \gamma^*$ above shows that for any

$$||A_s|| < \alpha' < \alpha,$$

as long as

$$\theta(\alpha'), \ \theta(\alpha) < 1$$

 $T(\cdot, w, \delta x_0)$ has a unique fixed point in $\Delta S_{\alpha'}$ and ΔS_{α} . But since $\Delta S_{\alpha'}$ is a closed subspace of ΔS_{α} , the unique fixed point $\delta \gamma^*(w, \delta x_0)$ is in both $\Delta S_{\alpha'}$ and ΔS_{α} . This shows the independence of \mathcal{F}^s on any two choices in α .

Lemma 3. The foliation function ψ_{cu} is Lipschitz continuous.

Proof. Notice from its definition (20) that we only need to show δp_0 is Lipschitz for which it suffices to show the unique fixed point $\delta \gamma^*$ of T from Lemma 2 is Lipschitz since δp_0 is only a point of the sequence $\delta \gamma^*$. To begin, let

$$\delta \gamma^*(w, \delta x_0) = \{\delta p_n(w, \delta x_0) = (\delta x_n(w, \delta x_0), \delta y_n(w, \delta x_0))\}_{n=0}^{\infty}$$
 (25)

be the unique fixed point of $T(\cdot, w, \delta x_0)$ for each $(w, \delta x_0) \in \mathbb{E}^{cs} \times \mathbb{E}^s$. We first fix constant α' and make β closer to 1 if necessary so that the following relations hold

$$||A_s|| < \nu < \alpha' < \alpha'\beta < \alpha < 1 < \beta < \frac{1}{\alpha} < \frac{1}{\nu}.$$
 (26)

We will treat the fixed point $\delta \gamma^*(w, \delta x_0)$ in both $\Delta S_{\alpha'}$ and ΔS_{α} . We will also use the estimate below

$$\|\delta\gamma^*(w,\delta x_0)\|_{\alpha} \le \frac{1}{1-\theta} \|\delta x_0\| \tag{27}$$

which follows from the estimate (13) of Lemma 1.

We are now ready to show $\delta \gamma^*$ is Lipschitz in w and δx_0 respectively. Since $T(\delta \gamma, w, \delta x_0)$ is Lipschitz continuous in δx_0 with

$$||T(\delta\gamma, w, \delta x_0) - T(\delta\gamma, w, \delta x_0')||_{\alpha} \le ||\delta x_0 - \delta x_0'||,$$

because $||A_s|^n|| < \nu^n$, we have by the Uniform Contraction Principle I that $\delta \gamma^*$ is $C^{0,1}$ in δx_0 with

$$\|\delta\gamma^*(w,\delta x_0) - \delta\gamma^*(w,\delta x_0')\|_{\alpha} \le \frac{1}{1-\theta} \|\delta x_0 - \delta x_0'\|.$$
 (28)

To show the fixed point is $C^{0,1}$ in w, notice first from (10) that for i=s,cu,

$$||g_i(q,\delta p) - g_i(q',\delta p)|| \le ||D_q g_i(\cdot,\delta p)||_0 ||q - q'|| \le L_1 ||\delta p|| ||q - q'||.$$
 (29)

This estimate together with the comments above on α' and α imply

$$\|\overline{\delta x}_{n} - \overline{\delta x}_{n}'\| \leq \sum_{i=1}^{n} \|A_{s}^{n-i}[g_{s}(q_{i-1}(w), \delta p_{i-1}) - g_{s}(q_{i-1}(w'), \delta p_{i-1})]\|$$

$$\leq \sum_{i=1}^{n} \nu^{n-i} L_{1} \|\delta p_{i-1}\| \|q_{i-1}(w) - q_{i-1}(w')\|$$

$$\leq \sum_{i=1}^{n} \nu^{n-i} L_{1} \alpha^{i-1} \|\delta \gamma\|_{\alpha'} \beta^{i-1} \|\gamma^{*}(w) - \gamma^{*}(w')\|_{\beta}$$

$$\leq \sum_{i=1}^{n} \nu^{n-i} L_{1} \alpha^{i-1} \|\delta \gamma\|_{\alpha} \|\gamma^{*}(w) - \gamma^{*}(w')\|_{\beta}$$

$$\leq \frac{L_{1}}{\alpha - \nu} \alpha^{n} \|\delta \gamma\|_{\alpha} \|\gamma^{*}(w) - \gamma^{*}(w')\|_{\beta}$$
(30)

since $\alpha'\beta < \alpha$, $\|\delta\gamma\|_{\alpha'} \leq \|\delta\gamma\|_{\alpha}$. And

$$\|\overline{\delta y}_{n} - \overline{\delta y}_{n}'\| \leq \sum_{i=n+1}^{\infty} \|A_{cu}^{n+1-i}[g_{cu}(q_{i}(w), \delta p_{i}) - g_{cu}(q_{i}(w'), \delta p_{i})]\|$$

$$\leq \sum_{i=n+1}^{\infty} \beta^{i-n-1} L_{1} \|\delta p_{i}\| \|q_{i}(w) - q_{i}(w')\|$$

$$\leq \sum_{i=n+1}^{\infty} \beta^{i-n-1} L_{1} \alpha'^{i} \|\delta \gamma\|_{\alpha'} \beta^{i} \|\gamma^{*}(w) - \gamma^{*}(w')\|_{\beta}$$

$$\leq \sum_{i=n+1}^{\infty} \beta^{i-n-1} L_{1} \alpha^{i} \|\delta \gamma\|_{\alpha} \|\gamma^{*}(w) - \gamma^{*}(w')\|_{\beta}$$

$$\leq \frac{L_{1}\alpha}{1-\alpha\beta} \alpha^{n} \|\delta \gamma\|_{\alpha} \|\gamma^{*}(w) - \gamma^{*}(w')\|_{\beta}.$$
(31)

Therefore,

$$||T(\delta\gamma, w, \delta x_0) - T(\delta\gamma, w', \delta x_0)||_{\alpha} \le \left(\frac{L_1}{\alpha - \nu} + \frac{L_1\alpha}{1 - \alpha\beta}\right) ||\delta\gamma||_{\alpha} ||\gamma^*(w) - \gamma^*(w')||_{\beta}.$$

So if we restrict δx_0 to $\|\delta x_0\| \le R$ for any arbitrary R > 0, then by the bound estimate (27) we have by Uniform Contraction Principle I

$$\|\delta\gamma^{*}(w,\delta x_{0}) - \delta\gamma^{*}(w',\delta x_{0})\|_{\alpha} \leq \frac{1}{1-\theta} \|T(\delta\gamma, w, \delta x_{0}) - T(\delta\gamma, w', \delta x_{0})\|_{\alpha}$$

$$\leq \frac{1}{1-\theta} \left(\frac{L_{1}}{\alpha-\nu} + \frac{L_{1}\alpha}{1-\alpha\beta}\right) \frac{\|\delta x_{0}\|}{1-\theta} \|\gamma^{*}(w) - \gamma^{*}(w')\|_{\beta}$$

$$\leq \left(\frac{L_{1}}{\alpha-\nu} + \frac{L_{1}\alpha}{1-\alpha\beta}\right) \frac{R}{(1-\theta)^{2}} \frac{1}{1-\theta_{cs}} \|w - w'\|,$$
(32)

where $\delta \gamma = \delta \gamma^*(w, \delta x_0)$, showing $\delta \gamma^*$ is Lipschitz in w for bounded δx_0 . Because $\delta p_0(w, \delta x_0)$ is the first point of the sequence $\delta \gamma^*(w, \delta x_0)$, its Lipschitz continuity follows, so is ψ_{cu} 's.

Lemma 4. f is a contraction on $\mathcal{F}^s(q)$ uniformly for all $q \in W^{cs}$.

Proof. We need to show there is a constant $0 < \varrho < 1$ so that for any $q \in W^{cs}$ and for any $p, p' \in \mathcal{F}^s(q)$, $||f(p) - f(p')|| \le \varrho ||p - p'||$. Let $\gamma_p, \gamma_{p'}$ be the orbits through p, p', respectively. Then $\delta \gamma^* = \gamma_p - \gamma_q$ and $\delta \gamma^{*'} = \gamma_{p'} - \gamma_q$ are fixed points of $T(\cdot, w, \delta x_0)$ and $T(\cdot, w, \delta x_0')$, respectively, with $\delta x_0 = p_s - w_s$ and $\delta x_0' = p'_s - w_s$. More importantly,

$$\gamma_p - \gamma_{p'} = (\gamma_p - \gamma_q) - (\gamma_{p'} - \gamma_q) = \delta \gamma^*(w, \delta x_0) - \delta \gamma^*(w, \delta x_0')$$

whose second point on the sequence is

$$f(p) - f(p') = p_1 - p'_1 = \delta p_1(w, \delta x_0) - \delta p_1(w, \delta x_0').$$

The \mathbb{E}^s -coordinate of the right side can be estimated as

$$\|\overline{\delta x}_{1} - \overline{\delta x}_{1}'\| \leq \|A_{s}(\delta x_{0} - \delta x_{0}') + g_{s}(q_{0}(w), \delta x_{0}) - g_{s}(q_{0}(w), \delta x_{0}')\|$$

$$\leq \nu \|\delta x_{0} - \delta x_{0}'\| + \|h_{s}(q_{0}(w) + \delta x_{0}) - h_{s}(q_{0}(w) + \delta x_{0}')\|$$

$$\leq \nu \|\delta x_{0} - \delta x_{0}'\| + L\|\delta x_{0} - \delta x_{0}'\|$$

$$\leq (\nu + L)\|p - p'\|$$

The \mathbb{E}^{cu} -coordinate of the right side is, with $\delta p_i = \delta p_i(w, \delta x_0), \delta p_i' = \delta p_i(w, \delta x_0'),$

$$\begin{split} \|\overline{\delta y}_{1} - \overline{\delta y}_{1}'\| &\leq \sum_{i=2}^{\infty} \|A_{cu}^{2-i}[g_{cu}(q_{i}(w), \delta p_{i}) - g_{cu}(q_{i}(w), \delta p'_{i})]\| \\ &= \sum_{i=2}^{\infty} \|A_{cu}^{2-i}[h_{cu}(q_{i}(w) + \delta p_{i}) - h_{cu}(q_{i}(w) + \delta p'_{i})]\| \\ &\leq \sum_{i=2}^{\infty} \beta^{i-2} L\alpha^{i} \|\delta \gamma^{*}(w, \delta x_{0}) - \delta \gamma^{*}(w, \delta x_{0}')\|_{\alpha} \\ &\leq \frac{L\alpha^{2}}{1-\alpha\beta} \|\delta \gamma^{*}(w, \delta x_{0}) - \delta \gamma^{*}(w, \delta x_{0}')\|_{\alpha} \\ &\leq \frac{L\alpha^{2}}{1-\alpha\beta} \frac{1}{1-\theta} \|\delta x_{0} - \delta x_{0}'\| \\ &\leq \frac{L\alpha^{2}}{1-\alpha\beta} \frac{1}{1-\theta} \|p - p'\| \end{split}$$

where (28) is used for the second last estimate. Therefore,

$$||f(p) - f(p')|| \le (\nu + L + \frac{L\alpha^2}{1-\alpha\beta} \frac{1}{1-\theta}) ||p - p'||$$

which implies f is a uniform contraction for sufficiently small L, i.e., for sufficiently small $||f - Df(\bar{q})||_1$.

Lemma 5. If f is $C^{k,1}$ for $k \ge 1$, then ψ_{cu} is C^k .

Proof. By the Uniform Contraction Principle II, we need to verify two conditions: (1) $T(\delta\gamma, w, \delta x_0)$ is differentiable in $\delta\gamma$ and $\|D_{\delta\gamma}T(\delta\gamma, w, \delta x_0)\|$ is uniformly bounded by a constant smaller than 1; (2) $T \in C^k(\Delta S_\alpha \times \mathbb{E}^{cs} \times \mathbb{E}^s, \Delta S_\alpha)$.

To show (1), let $\delta \gamma = \{\delta p_n\}, v = \{v_n\} \in \Delta S_{\alpha}$, and formally differentiate (21). Then $D_{\delta \gamma} T(\delta \gamma, w, \delta x_0) v$ needs to be as below in components:

$$\begin{cases}
[D_{\delta\gamma}T(\delta\gamma, w, \delta x_0)v]_{n, s} = \sum_{i=1}^{n} A_s^{n-i} D_{\delta p} g_s(q_{i-1}(w), \delta p_{i-1})v_{i-1} \\
[D_{\delta\gamma}T(\delta\gamma, w, \delta x_0)v]_{n, cu} = \sum_{i=n+1}^{\infty} A_{cu}^{n+1-i} D_{\delta p} g_{cu}(q_i(w), \delta p_i)v_i.
\end{cases} (33)$$

By the exactly same estimate as for (22) we have

$$||[D_{\delta\gamma}T(\delta\gamma, w, \delta x_0)v]_{n,s}|| \leq \frac{L}{\alpha-\nu}\alpha^n||v||_{\alpha}.$$

Similarly, by the exactly same estimate as for (23) we have

$$||[D_{\delta\gamma}T(\delta\gamma, w, \delta x_0)v]_{n, cu}|| \le \frac{L\alpha}{1-\alpha\beta}\alpha^n||v||_{\alpha}.$$

These estimates imply two conclusions. One, because of the uniform convergence of the second equation, it shows the derivative $D_{\delta\gamma}T(\delta\gamma,\delta x_0)$ exists. Two, it shows the derivative is a bounded linear map in $L(\Delta S_{\alpha},\Delta S_{\alpha})$ whose α -norm

$$||D_{\delta\gamma}T(\delta\gamma, w, \delta x_0)||_{\alpha} \le \theta(\alpha) < 1,$$

is bounded by the same uniform contraction constant $\theta(\alpha)$ from (24).

To show (2), we separate it into four cases. The first case is for derivatives in x_0 , the second case is for derivatives in $\delta \gamma$, the third case is for derivatives in w, and the fourth case is about mixed derivatives. For the first case we note that

$$[D_{\delta x_0}T(\delta\gamma,w,\delta x_0)]_{n,\ s}=A_s{}^n,\ \ \text{and}\ \ [D_{\delta x_0}T(\delta\gamma,w,\delta x_0)]_{n,\ cu}=0.$$

This implies any mixed derivative with δx_0 is the zero operator, hence well-defined and exists. The identity above also shows

$$||[D_{\delta x_0}T(\delta \gamma, w, \delta x_0)]_n|| \le ||A_s|^n|| \le \alpha^n$$

implying $\|D_{\delta x_0}T(\delta \gamma, w, \delta x_0]\|_{\alpha} \leq 1$, and $D^j_{\delta x_0}T(\delta \gamma, w, \delta x_0) = 0$, for $2 \leq j \leq k$. Hence, T is C^k in δx_0 .

For the second case, the case of j=1 was done above. For any $2 \le j \le k$, $[D^j_{\delta\gamma}T(\delta\gamma,w,\delta x_0)]$ needs to be a j-linear form in ΔS_{α} . To this end, let v=1

 $v^1\otimes v^2\otimes \cdots \otimes v^j$ with each $v^\ell\in \Delta S_\alpha,\ 1\leq \ell\leq j.$ Formally differentiate (21) to get

$$\begin{cases}
 \left[D_{\delta\gamma}^{j} T(\delta\gamma, w, \delta x_{0}) v \right]_{n, s} = \sum_{i=1}^{n} A_{s}^{n-i} D_{\delta p}^{j} g_{s}(q_{i-1}(w), \delta p_{i-1}) v_{i-1} \\
 \left[D_{\delta\gamma}^{j} T(\delta\gamma, w, \delta x_{0}) v \right]_{n, cu} = \sum_{i=n+1}^{\infty} A_{cu}^{n+1-i} D_{\delta p}^{j} g_{cu}(q_{i}(w), \delta p_{i}) v_{i},
\end{cases}$$
(34)

where

$$v_i = v_i^1 \otimes v_i^2 \otimes \cdots \otimes v_i^j, \quad v_i^\ell \in \mathbb{R}^d.$$

Similar to the estimate of (22) and because $g_i(q, \delta p) = h_i(q + \delta p) - h_i(q)$, $\alpha < 1$, we have

$$||[D_{\delta\gamma}^{j}T(\delta\gamma, w, \delta x_{0})v]_{n, s}|| \leq \sum_{i=1}^{n} ||A_{s}^{n-i}|| ||D^{j}h_{s}|| ||v_{i-1}||$$

$$\leq \sum_{i=1}^{n} \nu^{n-i} ||h_{s}||_{j} \Pi_{\ell=1}^{j} ||v_{i-1}^{\ell}||$$

$$\leq ||h_{s}||_{k} \sum_{i=1}^{n} \nu^{n-i} \alpha^{j(i-1)} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha}$$

$$\leq ||h_{s}||_{k} \sum_{i=1}^{n} \nu^{n-i} \alpha^{(i-1)} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha}$$

$$\leq \frac{||h_{s}||_{k}}{\alpha - \nu} \alpha^{n} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha}.$$
(35)

Similarly, by an exactly same estimate as (23) we can have

$$||[D_{\delta\gamma}^{j}T(\delta\gamma, w, \delta x_{0})v]_{n, cu}|| \leq \sum_{i=n+1}^{\infty} ||A_{cu}^{n+1-i}|| ||D^{j}h_{cu}|| ||v_{i}||$$

$$\leq \sum_{i=n+1}^{\infty} \beta^{i-n-1} ||h_{cu}||_{j} \alpha^{ji} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha}$$

$$\leq ||h_{cu}||_{k} \beta^{-n-1} \sum_{i=n+1}^{\infty} (\beta\alpha^{j})^{i} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha}$$

$$\leq ||h_{cu}||_{k} \beta^{-n-1} \sum_{i=n+1}^{\infty} (\beta\alpha)^{i} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha}$$

$$\leq \frac{||h_{cu}||_{k} \alpha}{1-\alpha\beta} \alpha^{n} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha}.$$
(36)

Combine these two estimates to obtain

$$\|[D_{\delta\gamma}^j T(\delta\gamma, w, \delta x_0)]\|_{\alpha} \le \|(h_s, h_{cu})\|_k \max\{\frac{1}{\alpha - \nu}, \frac{\alpha}{1 - \alpha\beta}\}.$$

The convergence of the infinite series also shows the derivatives are well-defined. This completes the proof that T is C^k in $\delta\gamma$.

For the third case, we will use the property that the fixed point $\delta \gamma^*(w, \delta x_0)$ is also in $\Delta S_{\alpha'}$ for any α' satisfying (26), and the property that the center-stable orbit $\gamma^*(w)$ is a C^k map from \mathbb{E}^{cs} to $S_{\mu} \subset S_{\beta}$ for any μ satisfying $||A_{cs}|| < \mu < \beta$. Specifically, we will take

$$||A_{cs}|| < \mu = \beta^{1/k} < \beta \text{ for } k \ge 2,$$

re-adjusting the adapted norm if necessary. In this setting, we will treat T as a composition of a map $\bar{T}: \Delta S_{\alpha'} \times S_{\mu} \times \mathbb{E}^s \to \Delta S_{\alpha}$ with the center-stable orbit map $\gamma^* \in C^k(\mathbb{E}^{cs}, S_{\mu})$. That is,

$$T(\delta \gamma, w, \delta x_0) = \bar{T}(\delta \gamma, \gamma^*(w), \delta x_0)$$

where \bar{T} is defined by the right side of (12) except for general $\gamma = \{q_n\} \in S_{\mu}$. Since the center-stable orbit map $\gamma^*(w)$ is C^k , we only need to show \bar{T} is C^k in γ by the chain rule. We will also use the property (10) that

$$||D_q^j g_i(q, \delta p)|| \le \bar{L} ||\delta p|| \text{ with } \bar{L} = \max\{L_j : 1 \le j \le k\}.$$
 (37)

We are now ready to show \bar{T} is C^k in $\gamma = \{q_n\} \in S_\mu$. We need to show $[D^j_{\gamma}\bar{T}(\delta\gamma,\gamma,\delta x_0)]$ is a bounded j-linear form from S_μ to ΔS_α . To this end, let $v=v^1\otimes v^2\otimes \cdots \otimes v^j$ with each $v^\ell\in S_\mu$, $1\leq \ell\leq j$. Formally differentiate (12) in the general $\gamma\in S_\mu$ to get

$$\begin{cases}
 \left[D_{\gamma}^{j} \bar{T}(\delta \gamma, \gamma, \delta x_{0}) v \right]_{n, s} = \sum_{i=1}^{n} A_{s}^{n-i} D_{q}^{j} g_{s}(q_{i-1}, \delta p_{i-1}) v_{i-1} \\
 \left[D_{\gamma}^{j} \bar{T}(\delta \gamma, \gamma, \delta x_{0}) v \right]_{n, cu} = \sum_{i=n+1}^{\infty} A_{cu}^{n+1-i} D_{q}^{j} g_{cu}(q_{i}, \delta p_{i}) v_{i},
\end{cases}$$
(38)

where

$$v_i = v_i^1 \otimes v_i^2 \otimes \cdots \otimes v_i^j, \quad v_i^\ell \in \mathbb{R}^d.$$

Similar to the estimate of (30) and because of (37), $\mu^k = \beta$, $\alpha'\beta < \alpha$, we have

$$\begin{split} \|[D_{\gamma}^{j}\bar{T}(\delta\gamma,\gamma,\delta x_{0})v]_{n,\;s}\| &\leq \sum_{i=1}^{n}\|A_{s}^{\;n-i}\|L_{j}\|\delta p_{i-1}\|\|v_{i-1}\|\\ &\leq \bar{L}\sum_{i=1}^{n}\nu^{n-i}\alpha'^{i-1}\|\delta\gamma\|_{\alpha'}\Pi_{\ell=1}^{j}\|v_{\ell-1}^{\ell}\|\\ &\leq \bar{L}\|\delta\gamma\|_{\alpha}\sum_{i=1}^{n}\nu^{n-i}\alpha'^{i-1}\mu^{j(i-1)}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\mu}\\ &\leq \bar{L}\|\delta\gamma\|_{\alpha}\sum_{i=1}^{n}\nu^{n-i}(\alpha'\beta)^{i-1}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\mu}\\ &\leq \bar{L}\|\delta\gamma\|_{\alpha}\sum_{i=1}^{n}\nu^{n-i}\alpha^{i-1}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\mu}\\ &\leq \frac{\bar{L}\|\delta\gamma\|_{\alpha}}{\alpha-\nu}\alpha^{n}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\mu}. \end{split}$$

Similar to the estimate of (31) we have

$$\begin{split} \|[D_{\gamma}^{j}\bar{T}(\delta\gamma,\gamma,\delta x_{0})v]_{n,\;cu}\| &\leq \sum_{i=n+1}^{\infty} \|A_{cu}^{\;n+1-i}\|L_{j}\|\delta p_{i}\|\|v_{i}\| \\ &\leq \bar{L}\sum_{i=n+1}^{\infty} \beta^{i-n-1}\alpha'^{i}\|\delta\gamma\|_{\alpha'}\mu^{ji}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\mu} \\ &\leq \bar{L}\|\delta\gamma\|_{\alpha}\sum_{i=n+1}^{\infty} \beta^{i-n-1}(\alpha'\beta)^{i}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\mu} \\ &\leq \bar{L}\|\delta\gamma\|_{\alpha}\sum_{i=n+1}^{\infty} \beta^{i-n-1}\alpha^{i}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\mu} \\ &\leq \frac{\bar{L}\|\delta\gamma\|_{\alpha}\alpha}{1-\alpha\beta}\alpha^{n}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\mu}. \end{split}$$

Combine these two estimates to obtain

$$\|[D_{\gamma}^{j}\bar{T}(\delta\gamma,\gamma,\delta x_{0})]\|_{\alpha} \leq (\frac{1}{\alpha-\nu} + \frac{\alpha}{1-\alpha\beta})\bar{L}\|\delta\gamma\|_{\alpha}.$$

The convergence of the infinite series also shows the derivatives are well-defined. Hence $\bar{T}(\delta\gamma, \cdot, \delta x_0)$ is in $C^k(S_\mu, \Delta S_\alpha)$, showing T is C^k in w.

For the fourth case about mixed derivatives of T in all variables, the arguments above for $\delta\gamma$, w, δx_0 can be combined to show all derivatives up to order k exist for T. Therefore by the Uniform Contraction Principle II the fixed point $\delta\gamma^*(w,\delta x_0)$ is C^k in both variables.

Proof of Theorem 1. After the preceding lemmas, it only remains to point out that by the definition of W^s , it coincides with the definition of the foliation through the fixed point, $\mathcal{F}^s(\bar{q})$, i.e., $W^s = \mathcal{F}^s(\bar{q})$. In fact, we can show the tangent space directly as below. Since $\bar{q} \sim w = 0$ and $\phi_u(0) = 0$, we have from (20)

$$\psi_{cu}(0,x_0) = \delta y_0(0,x_0) = \sum_{i=1}^{\infty} A_{cu}^{1-i} h_{cu}(\delta p_i(0,x_0))$$

whose partial derivative in $x_0 \in \mathbb{E}^s$ at the fixed point $\bar{q} \sim x_0 = 0$ is

$$D_{x_0}\psi_{cu}(0,0) = \sum_{i=1}^{\infty} A_{cu}^{1-i} Dh_{cu}(\delta p_i(0,0)) D_{x_0}\delta p_i(0,0) = 0$$

since
$$\delta \gamma^*(0,0) = \{0\}$$
, showing $\mathbb{T}_{\bar{q}} \mathcal{F}^s(0) = \mathbb{E}^s$.

Remark: We can see from the proofs above that if the center-stable manifold point q is fixed at the fixed point \bar{q} throughout, then the extra Lipschitz continuity condition for the highest derivative of f is not needed. That is, the stable manifold $\mathcal{F}^s(\bar{q})=W^s$ is C^k if f is C^k . This is because in this case, $g(\bar{q},\delta p)=h(p)$ with $\bar{q}=0,\ \delta p=p$.