[Lecture Note 8]
Center Manifold Theorem

Let ¢ be a nonhyperbolic fixed point of a diffeomorphism f in R¢. Let J =
Df(q), and denote

o' =o(J)N{lz] <1},0¢=0a(J)N{|z| =1}, and o“ =0c(J)N{|z| > 1}

the set of stable eigenvalues, center eigenvalues, unstable eigenvalues, respec-
tively, of the linearizatoin D f(q). Let

c®=0"Uc% and ¢ =0c°Uc".
Definition 1. Let G be a nonhyperbolic fixed point of a diffeomorphism f in R?
and [ be any constant satisfying

1 < f < min{|c"|}.
The center-stable manifold of the fixed point q for f is
We ={p:{B7"f"(p) — q]}o2, is a bounded sequence}.

Theorem 1 (Center-Stable Manifold Theorem). Let ¢ be a nonhyperbolic fixed
point of a diffeomorphism f in R% with splitting R = E° x E*. Then a sufficiently
small || f — D f(q)||, implies W< is independent of any two different choices in [3.
Also, W is the graph of a C! function ¢,, : E** — E“

W = graph(¢.),
and the tangent space of W at the fixed point is the center-stable eigenspace
TQWCS g ]ECS‘

Furthermore, if f € C¥(R?), 1 < k < oo, then ¢, € C*(E*,EY), and if f €
CH(RY), then ¢, € CH(E® EY).

The proof is an application of the Uniform Contraction Principle. The main
idea is to construct the center-stable manifold function ¢,, as part of a fixed point
of a uniform contraction map. We will break it up into a few lemmas.

Before doing so, we recall a few important properties about f. We first trans-
late g to the origin and choose a coordinate system (z,y) for the splitting R? =
E® x E* for which D f(q) = diag(A.s, A,). By the Variation of Parameters For-
mula Theorem, a sufficiently small || f — D f(g)||, implies that the map (z,y) =

f(x,y) is equivalent to
{ x
Y

Acst + y
1
Ay + ha(7,9), M



and for any orbit, p, = (¥, yn) = f(Tn_1,Yn-1), n >0,

{ Tp = AZSZ'O + Z?:l A?s_ihcs(pifl) (2)
Yn = Az_mym + Zgn_;_l AZ—H_Zhu(pi)-
Also, by the VPF theorem, functions h, h, are all C* satisfying
hes(0) = 0, Dhes(0) =0, h,(0) =0, Dh,(0) =0 3)
and they are globally Lipschitz and the Lipschitz constant can be taken to be
L=|Dnl, =0 as |f—=Df(@l, = 0. 4)
We will repeatedly use the formula below and and its differentiations in r
at+ar+ar?+---+ar"l = “(i:;n), for r # 1.
Lemma 1. For the parameter (3 from the definition of W, let
Sg = {7 =A{pn}oio : Pn € R, sup{87"|[pul : n > 0} < o0} (5)
with norm
171l = sup{B~"[|pnl| : n > 0}.
Forany v = {p, = (zn,y0)} € Ss, let7 = T () be defined by equations
{ Tp = AZSZEO + Z?:l A?S_ths(pl—l) (6)
Yn = Z?in-yl AZJrliZhU(pi)'
Then 7 € Sg with
_ Lilv| LBl
Flls < llwoll + 5= + =2 ™
where parameters o, s and 3 satisfy
I/min{l]c"|} <a<1<¢<f <1/a<min{|c"|}. (8)

More importantly, p = (x¢,yo) € W if and only if the orbit vy, = {f"(p) }o, is
a fixed point of 'T' and

b= ('x07y0) = (33'0, Zjil Ai_zhu(pl)) . (9)

Proof. An adapted norm will be chosen throughout, but for this lemma we only
need it to satisfy the relations below

1A < a <1, Al <s < B < 1/a < ||A]. (10)

We now show 7 € Sjs. Specifically, because ||hes(p)|| = ||hes(p) — hes(0)]| <
Lijp|| and 1 < ¢ < 3, we have for Z,,

[1Z0| < [|AG][]]o] EZ?zll\lAZs‘ihcs(pi—l)ll
< "lwoll + 22y " LB Il " (11)
n n_.n L n
= "[laoll + LI 5552 < (ol + 528"
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Similarly,

Il € S A )] € Sy 0 LR
—n— apf)nt1 LB|y n
= 0 Ly 5 = Sl

Hence, the bound estimate (7) holds, implying 7" : Sg — Sp.

Next, for any p := pg = (2o, y0) € W, by definition v = {p,, = f™(po)} €
Sp, 80 |lpull < [[7][38" for n > 0. Because for m > n, ||A7~™|| < ™", and
aff < 1, the first term of the y,,-equation of the VPF (2) goes to 0 as m — oc.
Since h, is bounded, the partial sum of the y,-equation converges as well for
m — 00. So every orbit from W satisfies

{ Tpn = ACSIO + Z? 1 Aniihcs(pi—l)
Yn = Zz n+1 Anﬂ_zh (i),

showing -y is a fixed point of 7'.
Conversely, if a sequence v = {p, = (2, yn)} € Sp is a fixed point of 7T,
satisfying (13), then it is straightforward to verify

(13)

Tntl1l = Acsxn + hcs(xm yn) and Yn = Aglyn—&-l + hu(xTH-h yn—H)

hold for all n > 0. By (1) the sequence is an orbit of f. Therefore, v € W by
definition. 0

Lemma 2. There is a Lipschitz continuous function ¢,, € C%(E*, E*) so that

W = graph(g,). (14)

Proof. By Lemma 1, we know that p € W if and only if p is the initial point
of a sequence v € Sz which is a fixed point of the map 71" defined by (6) and
(9) holds. To show the existence of such a fixed point, we will consider 1" as a
parameterized map by z, € E and show that T'(-, ) : Sz — Ss, 1o € E®,isa
uniform contraction. Specifically, let v,~' and ¥ = T'(vy, zo),5 = T'(7/, z0). We

have
H.%'n — an < Z,L 1 HAn Z[ cs(pifl) - hcs(pgfl)Hl
< S Ll — pio s
< S L =l (15)
< =By =l
and
19 — Tl < 300 AT [hu(pi) — R ()]
<Y @ L ps = Pl 6
< z, Ny v (16)
S o aﬂﬁnH’V Y ||5
Hence,

1T (v, 20) = T(v xo)lg < (% + 2255) Iy =¥l »



showing T'(-, z) is a uniform contraction provided

0:=008) =5+ 5 <1 (17)

which is true for small ||f — D f(q)||, by (4). Denote the unique fixed point of
T('7 *TO) by

7 (o) = {Pa(z0)}nZo, Pa(20) = (2n(20), Yn(20)), n > 0. (18)

Define
Pul0) = yo(wo) = D721 Ay hu(pi(x0)), (19)

the y-coordinate of the initial point of the fixed point v*(z¢). By Lemma 1(9), we
have p € W iff p = (x0, y0) = (%0, ¢u(x0)), i.€., the identity (14).
Next, since 1" : Sg x [E** — Sg is Lipschitz continuous in zy with

IT(v, o) = T, 20l g < [0 — o

because || A” || < 5", we have by the Uniform Contraction Principle I that v*(z)
is Lipschitz continuous with

Iv*(20) = v* (20" l5 < 5110 — 20l (20)

which in turn implies ¢, is Lipschitz continuous with

[pu(z0) = dulz)]| < [I7*(z0) = v* (x5 < tH5llw0 — 20'l|
completing the proof of the lemma. [
Lemma 3. ¢, € C'(E*,E") and T;W*® = E*.

Proof. The main argument is to show that the Uniform Contraction Principle II
applies to T for k = 1. Two conditions are needed to verify: (1) T € C'(Sz x
E*, S3); and (2) || DT (y, xo)]| is uniformly bounded by a constant smaller than
1.

To verify the conditions, let v = {p,, },v = {v,,} € S, and formally differen-
tiate (6). Then D, T (7, zo)v needs to be as below in components:

{ [D’YT<77 'TO)U]TL, cs — Z?:l A?s_iDhcs(piflﬁjifl

[DyT (1,00, = oo er AT Dhy(pi)os. @D

By exactly the same estimates as for (15, 16) we have

I[DAT (7, o), esll < 528 |v]l4

and

I[DAT (7, 20)]n, ull < 155/65””/0”,3 ‘



These estimates imply three things. One, because of the uniform convergence of
the second equation, the derivative D, T(y, zo) is well-defined. Two, the deriva-
tive is in fact in L(Ss, S3) as required. Three, the derivative’s 3-norm

1D, (.0, < 0(8) < 1

is bounded by the same uniform contraction constant (). About its derivative in
o, we have

[onT(% IO)]H, es = AL

cs?

and [D,,T(v,%0)|n, v = 0.

Obviously, D, T (v, zo) € L(E®, Ss) since ||AZ || < ™. This shows the Uniform
Contraction Principle II indeed applies for 7" with the case of £ = 1. Thus, we
can conclude that for the fixed point, v*(-) € C*(E*, Sp), and ¢,, € C*(E**, E¥)
follows.

Furthermore, since the fixed point ¢§ ~ 0 is obviously on the manifold, we
have v*(0) = {0},,>0, the zero sequence. Hence, ¢, (0) = 0. In addition, for the
derivative of ¢,, we have from (19)

Déu(wo) = 32721 Ay~ Dha(pi(x0)) Dpi(o)-
Because Dh,(0) = 0, and p;(0) = 0 for all i > 0, we have
D¢,(0) =0,

showing that the tangent space of W at ¢ ~ 0 is the center-stable eigenspace
R = [£¢*, This proves the theorem for k = 1. 0

Lemma 4. The definition of W is independent of any two choices in 3. More
specifically, let v*(xo) be the fixed point of the map T'(-,xo) from Lemma I,
then for any 1 < (' < B, a sufficiently small ||f — D f(q)||, implies v*(-) €
CI(ECS, Sﬁ/) and ")/*() S CI(ECS, Sg)

Proof. Let ' and 8 be two different constants satisfying the definition of .
Assume without loss of generality that 1 < ' < 8 < min{|c"|}. On one hand, it
is automatically true by definition that

CS CS
We C W

because Sz C S, for 8’ < .
On the other hand, we can re-adjust the adapted norm if necessary so that

Al < s < B < B <1/a<min{|o"|, |4, <a<1.
Also, by making || f — D f(g)||, smaller if necessary, we can assume

0(5), 6(8) < 1.



Thus, the same estimates (11, 12) imply that the uniform contraction map 7'(-, x¢)
defined in S maps the subset Sy into itself. Therefore, the fixed point function
v*(-) for parameter 3 must reside in g, and therefore the reverse inclusion Wg* C
Wg? follows, implying

wWg =Wg*,
i.e., the independence of W on (3. The proof of Lemma 3 also shows the same
fixed point function *(+) is in both C'*(E, Sg/) and C*(E**, Sp). O

Lemma 5. If f € C*(RY), then ¢, € CH(E, E¥). If f € C*1, then ¢, € C*L.

Proof. The k = 1 case is proved in Lemma 3. For k£ > 2, we note that the
Uniform Contraction Principle II cannot apply directly as the proof of Lemma 3
did for k = 1. This is because we cannot prove T' € C*(S5 x E®, Sj). An indirect
approach is needed.

We begin by choosing a constant y as below

1< p=pY*D<p (22)

and assume
[Acsll < <p<B<1fa, AT <a <1, (23)

by re-adjusting the adapted norm if necessary. By Lemma 4, we have for small
|f — Df(q)]l, and 5’ = p the following

v*(-) € CY(E*,S,) and T € C'(S, x E*,S,,). (24)
We want to prove first instead the following claim
T € C*(S, x E*, Sp). (25)
We note first that

[D:EOT('-Y? xO)]n, cs — A”

cs)

and [D,,T(v,%0)|n, v = 0.

This implies any mixed derivative in v and x are the zero operators, hence well-
defined and exists. So, we only need to show 7" is C*(S,, x E, S) separately in
~ and z(. For the latter, the identity above shows

1Dz T (v, x0)Inll < [|AG I < ™ < 8"

and || D, T (7, 20| 5 < 1 follows. Also, D}, T'(,x) = 0, for 2 < j < k. Hence,
T(y,) € CH(E®, 5,).

Now we show T'(-,z9) € C*(S,,,Sg), i.e., DIT(v,z0) is a bounded j-linear
form from ®75), to Sg forany 1 < 5 < k. The case of j = 1 is true by (24)
because T'(-, z9) € C'(S,,S,) C C*(S,, Ss) since S, C Sgforl < p < f.

For any 2 < j < Kk, [D%T(v, xo)] should be a bounded j-linear form from
S, to Sg. To this end, let v = v' ® v* ® - - ® v/ with each v* € S,. Formally
differentiate (6) to get

{ [D%T(fy’ xO)U]n, cs — Z?:l A?siiDjhcs(pz‘—l)Ui—l

[DIT(y,20)0],, = D2y AL DI (i), 20
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where
v =0 ®VIR---®vl, v R

7

Similar to the estimate of (15), we have

DT (v, o) vln, esll < 320y AL NND? es(piza)Jvia |
< Zz:l " Z“hCSH H£ 1||Uz 1||
< heslly 2=y 6™ i T [0,
< sl 27y ”H]_1||v£||u
< heslly 2oy "8 1H£:1HU€H;L
< HhcéHkﬁ”H IH’UZ”u

27)

where [|A.|| < ¢ < pu < Band u* < B8 by (22, 23). Similar to the estimate of
(16) we have

IDIT (v, wo)vln, ull < 32340 AT D hus(pi) i
<D @ juﬁﬂé;l\,\ve\!u
< hulla™™ 302 (o )T [, 28)
< Hh Hka_n IZ@ ffrl@/i )Hfz 1”ng

[ [P VA (LS

PRINN;
S ‘1 ik@ BHH 1”’06”#.

/\

Combine these two estimates to obtain
IDET (v, 20l 5 < [(Prcss B |, max{ 5%, 155}

The convergence of the infinite series also shows the derivatives are well-defined.
This completes the proof that 7' € C*(S,, x E, Sp).

We are now ready to show v*(-) € C*¥(IE®*, S3). By the Uniform Contraction
Principle II for T € C*(S,, x E*,S,), the fixed point *(+) is in C*(E*, S,,) and
its derivative is given by

Dy*(-) = 220D T (v (), )" Dag T (v (), )

Since v*(-) € CYE*,S,), T € C*(S, x E*,S,) c C'(S, x E*,Sg), and
T € C*(S, x E* Sg),k > 2, here is the key to notice that the composition
D, T(y*(+),-) is C*(E*, Sg). This implies that the infinite series on the right is
in C*(E*, Sg), and therefore, Dy*(-) € C'(E®,Ss), and v*(-) € C?*(E, Sp)
follows. Apply this argument recursively to obtain v*(-) € C3*(E, Ss), and so
on until we reach v*(-) € C*(E, Sg). As a component of the initial point of v*,
by is in C*(E E*) as well.

For the case of f € C*!, the argument above can be used to show first 7' €
CP1(S, x E®, Sg), using p**! = 3, and then v* € C*1(E*, Sz), which in turn
implies ¢, is C*!. This completes the proof. [

The lemmas above complete the proof for Theorem 1. For future reference,
we state the following result from the proofs above.
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Proposition 1. For any 1 < p < < min{|c"|} and small || f — Df(q)|,, the
orbit v, = {f"(p)}22, of any point p = (x9,y0) € W can be expressed as a
function v, = v*(xo) for o € E* so that v* € C*(E*,S,) and v* € C*(E*, Sp)
if f € CkRY),1 < k < oo, ory* € CHYE™,S,) and v* € C*(E*, Sp) if
f e CHYRY).

Definition 2. Let ¢ be a nonhyperbolic fixed point of a diffeomorphism f in R?
and « be any constant satisfying

max{|c’|} < a < 1.
The center-unstable manifold of the fixed point q is
W ={p:{a"[f"(p) — q)};>, is a bounded sequence}.
By applying Theorem 1 to f~! we obtain the following result.

Theorem 2 (Center-Unstable Manifold Theorem). Let ¢ be a nonhyperbolic fixed
point of a diffeomorphism f in R? with splitting R = E* x E“. Then a sufficiently
small || f — Df(q)||, implies W is independent of any two different choices in
. Also, W is the graph of a C! function ¢, : E°* — E*

W = graph(¢s),
and the tangent space of W at the fixed point is the center-unstable eigenspace
T;We" = E*.
Furthermore, if f € C*(R?), 1 < k < oo, then ¢, € CH(E“ E®), and if f €
CHYR?), then ¢, € CHLH(E™ E?).

Theorem 3 (Local Center-stable and Local Center-unstable Manifold Theorem).
Let § be a nonhyperbolic fixed point of a diffeomorphism f in R% and let E,
£ E®, E" be the center-stable, center-unstable, stable, unstable eigenspace,
respectively, at q for the linearization D f(q). Then there is a small neighborhood
N,.(q) and two differentiable functions ¢, : N,(q)NE* — E*, ¢5 : N,.(q)NE™ —
[E°, so that the local center-stable and local center-unstable manifolds

loe(@) == graph(¢u), Wig(q) := graph(¢)
satisfy the following properties

(i) WCS

o contains all bounded forward orbits in N,.

(ii) W contains all bounded backward orbits in N,.

loc

(iii) They are locally invariant, i.e., f(W{ )N N, C Wi, f~Y(Wi, )N N, C
Wi, i=cs, cu

(iv) Wi, = B, T,Wg = B



Moreover, if f is C*, 1 < k < oo, then both ¢, and ¢, are C*, and if f is C*1,
then both ¢, and ¢4 are C*'.

Proof. Modify the map f by a C'™ cut-off function p,.(p — q) to f — f(p) =
Df(@)p+ pr-(p—q)(f(p) — Df(q)p). Then for sufficiently small r, Theorems 1
and 2 can be applied to the modified map to obtain the maps ¢,, ¢,. Restrict both
to the neighborhood N,.(¢), then the results follow from the theorems. U

By applying the theorem above we obtain

Theorem 4 (Local Center Manifold Theorem). Let q be a nonsingular fixed point
of a continuously differentiable map f in R and let E*, E¢, E* be the stable,
center, unstable eigenspace, respectively, at q for the linearization D f(q). Then
there is a small neighborhood N, (q) and a differentiable function ¢g, : N.(q) N
E¢ — E° x EY, so that the local center manifold

Wiee(q) = graph(¢su)
satisfies the following properties

(i) Wy contains all orbits bounded in both forward and backward directions
in N,.

(ii) Every point not from W _ escapes N,(q) in either forward or backward
iteration.

(iti) It is locally invariant, f(WE.) NN, CWe., f~HWE) NN, C W, .
(iv) T,W¢

loc

~ [,
Moreover, if f is CF, 1 < k < 0o, then ¢g, is C*, and if f is C*, then ¢, is C*L.

Proof. Let W&, = graph(¢,) and W = graph(¢s) be alocal center-stable man-

loc
ifold and a local center-unstable manifold, respectively, by the previous theorem.

Define
Wiee = Wige N Wi,

loc*

Then property (i) through (iii) follow immediately. To show the existence of ¢y,
and (iv), let p = (z,y, 2) be a coordinate system for the splitting R? = E* x [E¢ x
[E". Then a point (x,y, z) € W iff it satisfies the equations below

which in turn is equivalent to F'(x,y, z) = (F1, F3)(x,y, z) = 0 with
Fi(z,y,2) =2 — ¢s(y, 2), and Fp(x,y,z) = 2z — du(x,y).
Obviously, the fixed point, g ~ (0,0, 0), is a solution, F'(0,0,0) = 0. Also,

DiuyF(0,0,0) = I
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the identity matrix in R%+d = Es x E¥, because D¢, (0,0) = 0 and D¢,(0,0) =
0. Therefore, by the Implicit Function Theorem, equation (29),i.e. F'(z,y, z) = 0,
can be solved locally as a function ¢, : N, NE¢ — E® x [E*, making r smaller if
necessary, so that (z, z) = ¢g,(y) and

Wi = graph(¢su)
follows. It can be directly checked that ¢, (0) = (0,0) and
D¢, (0) =0

by IFT since D,F(0,0,0) = 0, showing property (iv). Last, that f is C*, or
CHl. 1 < k < oo, implies ¢,, ¢ are C*, or C*!, which in turn by IFT implies
¢eu is C*, or C¥1. This completes the proof. ]

The conclusion is all interesting dynamics near a nonhyperbolic fixed point of
a diffeomorphism takes place on a center manifold.

Local center manifolds are not unique in general (see Fig.1), but the center
manifold dynamics is in the sense that the dynamics on any two local center man-
ifolds are smoothly conjugate. Specifically, we have the following theorem.

Theorem 5 (Uniqueness of Center Manifold Dynamics for Flow ). Let § = 0 be
a nonhyperbolic equilibrium point of the differential equation

&= Az + h(z)

where v € R?, h(0) = 0, Dh(0) = 0, and h is C*™\1 k > 0. Let f be the
time-1 map of the solution, f(x) = p(1,x) where p(t, ) is the solution of the
equation with initial condition ©(0,x9) = wzo. Let Wi, Wi, be two local
center manifolds of G for f. Then there is an open neighborhood V of q and a C*
invertible map v : Wi, NV — W, NV so that

for(p)=ro f(p)
forallp € Wi, NV solong as f(p) € Wg.,NV.

Figure 1. The phase diagram for the system
of differential equations 2’ = 22, 3y = —y.
, Every red curve on the left coupled with the
0 * right z-axis is a local center manifold of the
time-1 map of the solution operator at the
fixed point 0. There are infinitely many lo-
cal center manifolds of the origin.

Reference: 1. A. Burchard, B. Deng, and K. Lu, Smooth conjugacy of centre
manifolds, Procedings of the Royal Society of Edingurgh, 120A, pp.61-77, 1992.
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