
[Lecture Note 8]

Center Manifold Theorem
Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd. Let J =

Df(q̄), and denote

σs = σ(J) ∩ {|z| < 1}, σc = σ(J) ∩ {|z| = 1}, and σu = σ(J) ∩ {|z| > 1}

the set of stable eigenvalues, center eigenvalues, unstable eigenvalues, respec-
tively, of the linearizatoin Df(q̄). Let

σcs = σs ∪ σc, and σcu = σc ∪ σu.

Definition 1. Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd

and β be any constant satisfying

1 < β < min{|σu|}.

The center-stable manifold of the fixed point q̄ for f is

W cs = {p : {β−n[fn(p)− q̄]}∞n=0 is a bounded sequence}.

Theorem 1 (Center-Stable Manifold Theorem). Let q̄ be a nonhyperbolic fixed
point of a diffeomorphism f in Rd with splitting Rd ∼= Ecs×Eu. Then a sufficiently
small ‖f −Df(q̄)‖1 implies W cs is independent of any two different choices in β.
Also, W cs is the graph of a C1 function φu : Ecs → Eu

W cs = graph(φu),

and the tangent space of W cs at the fixed point is the center-stable eigenspace

Tq̄W cs ∼= Ecs.

Furthermore, if f ∈ Ck(Rd), 1 ≤ k < ∞, then φu ∈ Ck(Ecs,Eu), and if f ∈
Ck,1(Rd), then φu ∈ Ck,1(Ecs,Eu).

The proof is an application of the Uniform Contraction Principle. The main
idea is to construct the center-stable manifold function φu as part of a fixed point
of a uniform contraction map. We will break it up into a few lemmas.

Before doing so, we recall a few important properties about f . We first trans-
late q̄ to the origin and choose a coordinate system (x, y) for the splitting Rd ∼=
Ecs × Eu for which Df(q̄) ∼= diag(Acs, Au). By the Variation of Parameters For-
mula Theorem, a sufficiently small ‖f −Df(q̄)‖1 implies that the map (x̄, ȳ) =
f(x, y) is equivalent to {

x̄ = Acsx+ hcs(x, y)
y = A−1

u ȳ + hu(x̄, ȳ),
(1)
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and for any orbit, pn = (xn, yn) = f(xn−1, yn−1), n ≥ 0,{
xn = Ancsx0 +

∑n
i=1A

n−i
cs hcs(pi−1)

yn = An−mu ym +
∑m

i=n+1A
n+1−i
u hu(pi).

(2)

Also, by the VPF theorem, functions hcs, hu are all C1 satisfying

hcs(0) = 0, Dhcs(0) = 0, hu(0) = 0, Dhu(0) = 0 (3)

and they are globally Lipschitz and the Lipschitz constant can be taken to be

L = ‖Dh‖0 → 0 as ‖f −Df(q̄)‖1 → 0. (4)

We will repeatedly use the formula below and and its differentiations in r

a+ ar + ar2 + · · ·+ arn−1 = a(1−rn)
1−r , for r 6= 1.

Lemma 1. For the parameter β from the definition of W cs, let

Sβ := {γ = {pn}∞n=0 : pn ∈ Rd, sup{β−n‖pn‖ : n ≥ 0} <∞} (5)

with norm
‖γ‖β = sup{β−n‖pn‖ : n ≥ 0}.

For any γ = {pn = (xn, y0)} ∈ Sβ , let γ = T (γ) be defined by equations{
x̄n = Ancsx0 +

∑n
i=1A

n−i
cs hcs(pi−1)

ȳn =
∑∞

i=n+1A
n+1−i
u hu(pi).

(6)

Then γ ∈ Sβ with
‖γ̄‖β ≤ ‖x0‖+

L‖γ‖β
β−ς +

Lβ‖γ‖β
1−αβ (7)

where parameters α, ς and β satisfy

1/min{|σu|} < α < 1 < ς < β < 1/α < min{|σu|}. (8)

More importantly, p = (x0, y0) ∈ W cs if and only if the orbit γp = {fn(p)}∞n=0 is
a fixed point of T and

p = (x0, y0) = (x0,
∑∞

i=1 A
1−i
u hu(pi)) . (9)

Proof. An adapted norm will be chosen throughout, but for this lemma we only
need it to satisfy the relations below

‖A−1
u ‖ < α < 1, ‖Acs‖ < ς < β < 1/α < ‖Au‖. (10)

We now show γ̄ ∈ Sβ . Specifically, because ‖hcs(p)‖ = ‖hcs(p)− hcs(0)‖ ≤
L‖p‖ and 1 < ς < β, we have for x̄n

‖x̄n‖ ≤ ‖Ancs‖‖x0‖+
∑n

i=1 ‖An−ics hcs(pi−1)‖
≤ ςn‖x0‖+

∑n
i=1 ς

n−iLβi−1‖γ‖β
= ςn‖x0‖+ L‖γ‖β

βn−ςn
β−ς ≤ (‖x0‖+

L‖γ‖β
β−ς )βn.

(11)
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Similarly,

‖ȳn‖ ≤
∑∞

i=n+1 ‖An+1−i
u hu(pi)‖ ≤

∑∞
i=n+1 α

i−n−1Lβi‖γ‖β
= α−n−1L‖γ‖β

(αβ)n+1

1−αβ =
Lβ‖γ‖β
1−αβ β

n.
(12)

Hence, the bound estimate (7) holds, implying T : Sβ → Sβ .
Next, for any p := p0 = (x0, y0) ∈ W cs, by definition γ = {pn = fn(p0)} ∈

Sβ , so ‖pn‖ ≤ ‖γ‖ββn for n ≥ 0. Because for m ≥ n, ‖An−mu ‖ ≤ αm−n, and
αβ < 1, the first term of the yn-equation of the VPF (2) goes to 0 as m → ∞.
Since hu is bounded, the partial sum of the yn-equation converges as well for
m→∞. So every orbit from W cs satisfies{

xn = Ancsx0 +
∑n

i=1A
n−i
cs hcs(pi−1)

yn =
∑∞

i=n+1A
n+1−i
u hu(pi),

(13)

showing γ is a fixed point of T .
Conversely, if a sequence γ = {pn = (xn, yn)} ∈ Sβ is a fixed point of T ,

satisfying (13), then it is straightforward to verify

xn+1 = Acsxn + hcs(xn, yn) and yn = A−1
u yn+1 + hu(xn+1, yn+1)

hold for all n ≥ 0. By (1) the sequence is an orbit of f . Therefore, γ ∈ W cs by
definition.

Lemma 2. There is a Lipschitz continuous function φu ∈ C0,1(Ecs,Eu) so that

W cs = graph(φu). (14)

Proof. By Lemma 1, we know that p ∈ W cs if and only if p is the initial point
of a sequence γ ∈ Sβ which is a fixed point of the map T defined by (6) and
(9) holds. To show the existence of such a fixed point, we will consider T as a
parameterized map by x0 ∈ Ecs and show that T (·, x0) : Sβ → Sβ, x0 ∈ Ecs, is a
uniform contraction. Specifically, let γ, γ′ and γ̄ = T (γ, x0), γ̄′ = T (γ′, x0). We
have

‖x̄n − x̄′n‖ ≤
∑n

i=1 ‖An−ics [hcs(pi−1)− hcs(p′i−1)]‖
≤
∑n

i=1 ς
n−iL‖pi−1 − p′i−1‖

≤
∑n

i=1 ς
n−iLβi−1‖γ − γ′‖β

≤ L
β−ςβ

n‖γ − γ′‖β

(15)

and
‖ȳn − ȳ′n‖ ≤

∑∞
i=n+1 ‖An+1−i

u [hu(pi)− hu(p′i)]‖
≤
∑∞

i=n+1 α
i−n−1L‖pi − p′i‖

≤
∑∞

i=n+1 α
i−n−1βi‖γ − γ′‖β

≤ Lβ
1−αββ

n‖γ − γ′‖β .

(16)

Hence,
‖T (γ, x0)− T (γ′, x0)‖β ≤ ( L

β−ς + Lβ
1−αβ )‖γ − γ′‖β ,
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showing T (·, x0) is a uniform contraction provided

θ := θ(β) = L
β−ς + Lβ

1−αβ < 1 (17)

which is true for small ‖f −Df(q̄)‖1 by (4). Denote the unique fixed point of
T (·, x0) by

γ∗(x0) = {pn(x0)}∞n=0, pn(x0) = (xn(x0), yn(x0)), n ≥ 0. (18)

Define
φu(x0) := y0(x0) =

∑∞
i=1A

1−i
u hu(pi(x0)), (19)

the y-coordinate of the initial point of the fixed point γ∗(x0). By Lemma 1(9), we
have p ∈ W cs iff p = (x0, y0) = (x0, φu(x0)), i.e., the identity (14).

Next, since T : Sβ × Ecs → Sβ is Lipschitz continuous in x0 with

‖T (γ, x0)− T (γ, x0
′)‖β ≤ ‖x0 − x0

′‖

because ‖Ancs‖ < βn, we have by the Uniform Contraction Principle I that γ∗(x0)
is Lipschitz continuous with

‖γ∗(x0)− γ∗(x0
′)‖β ≤

1
1−θ‖x0 − x0

′‖ (20)

which in turn implies φu is Lipschitz continuous with

‖φu(x0)− φu(x0
′)‖ ≤ ‖γ∗(x0)− γ∗(x0

′)‖β ≤
1

1−θ‖x0 − x0
′‖ ,

completing the proof of the lemma.

Lemma 3. φu ∈ C1(Ecs,Eu) and Tq̄W cs = Ecs.

Proof. The main argument is to show that the Uniform Contraction Principle II
applies to T for k = 1. Two conditions are needed to verify: (1) T ∈ C1(Sβ ×
Ecs, Sβ); and (2) ‖DγT (γ, x0)‖ is uniformly bounded by a constant smaller than
1.

To verify the conditions, let γ = {pn}, v = {vn} ∈ Sβ , and formally differen-
tiate (6). Then DγT (γ, x0)v needs to be as below in components:{

[DγT (γ, x0)v]n, cs =
∑n

i=1A
n−i
cs Dhcs(pi−1)vi−1

[DγT (γ, x0)v]n, u =
∑∞

i=n+1A
n+1−i
u Dhu(pi)vi.

(21)

By exactly the same estimates as for (15, 16) we have

‖[DγT (γ, x0)v]n, cs‖ ≤ L
β−ςβ

n‖v‖β

and
‖[DγT (γ, x0)v]n, u‖ ≤ Lβ

1−αββ
n‖v‖β .
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These estimates imply three things. One, because of the uniform convergence of
the second equation, the derivative DγT (γ, x0) is well-defined. Two, the deriva-
tive is in fact in L(Sβ, Sβ) as required. Three, the derivative’s β-norm

‖DγT (γ, x0)‖β ≤ θ(β) < 1

is bounded by the same uniform contraction constant θ(β). About its derivative in
x0, we have

[Dx0T (γ, x0)]n, cs = Ancs, and [Dx0T (γ, x0)]n, u = 0.

Obviously, Dx0T (γ, x0) ∈ L(Ecs, Sβ) since ‖Ancs‖ < βn. This shows the Uniform
Contraction Principle II indeed applies for T with the case of k = 1. Thus, we
can conclude that for the fixed point, γ∗(·) ∈ C1(Ecs, Sβ), and φu ∈ C1(Ecs,Eu)
follows.

Furthermore, since the fixed point q̄ ∼ 0 is obviously on the manifold, we
have γ∗(0) = {0}n≥0, the zero sequence. Hence, φu(0) = 0. In addition, for the
derivative of φu, we have from (19)

Dφu(x0) =
∑∞

i=1A
1−i
u Dhu(pi(x0))Dpi(x0).

Because Dhu(0) = 0, and pi(0) = 0 for all i ≥ 0, we have

Dφu(0) = 0,

showing that the tangent space of W cs at q̄ ∼ 0 is the center-stable eigenspace
Rdcs ∼= Ecs. This proves the theorem for k = 1.

Lemma 4. The definition of W cs is independent of any two choices in β. More
specifically, let γ∗(x0) be the fixed point of the map T (·, x0) from Lemma 1,
then for any 1 < β′ < β, a sufficiently small ‖f −Df(q̄)‖1 implies γ∗(·) ∈
C1(Ecs, Sβ′) and γ∗(·) ∈ C1(Ecs, Sβ).

Proof. Let β′ and β be two different constants satisfying the definition of W cs.
Assume without loss of generality that 1 < β′ < β < min{|σu|}. On one hand, it
is automatically true by definition that

W cs
β′ ⊆ W cs

β

because Sβ′ ⊂ Sα for β′ < β.
On the other hand, we can re-adjust the adapted norm if necessary so that

‖Acs‖ < ς < β′ < β < 1/α < min{|σu|, ‖A−1
u ‖ < α < 1.

Also, by making ‖f −Df(q̄)‖1 smaller if necessary, we can assume

θ(β′), θ(β) < 1.
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Thus, the same estimates (11, 12) imply that the uniform contraction map T (·, x0)
defined in Sβ maps the subset Sβ′ into itself. Therefore, the fixed point function
γ∗(·) for parameter β must reside in Sβ′ , and therefore the reverse inclusionW cs

β ⊆
W cs
β′ follows, implying

W cs
β′ = W cs

β ,

i.e., the independence of W cs on β. The proof of Lemma 3 also shows the same
fixed point function γ∗(·) is in both C1(Ecs, Sβ′) and C1(Ecs, Sβ).

Lemma 5. If f ∈ Ck(Rd), then φu ∈ Ck(Ecs,Eu). If f ∈ Ck,1, then φu ∈ Ck,1.

Proof. The k = 1 case is proved in Lemma 3. For k ≥ 2, we note that the
Uniform Contraction Principle II cannot apply directly as the proof of Lemma 3
did for k = 1. This is because we cannot prove T ∈ Ck(Sβ×Ecs, Sβ). An indirect
approach is needed.

We begin by choosing a constant µ as below

1 < µ = β1/(k+1) < β (22)

and assume
‖Acs‖ < ς < µ < β < 1/α, ‖A−1

u ‖ < α < 1, (23)

by re-adjusting the adapted norm if necessary. By Lemma 4, we have for small
‖f −Df(q̄)‖1 and β′ = µ the following

γ∗(·) ∈ C1(Ecs, Sµ) and T ∈ C1(Sµ × Ecs, Sµ). (24)

We want to prove first instead the following claim

T ∈ Ck(Sµ × Ecs, Sβ). (25)

We note first that

[Dx0T (γ, x0)]n, cs = Ancs, and [Dx0T (γ, x0)]n, u = 0.

This implies any mixed derivative in γ and x0 are the zero operators, hence well-
defined and exists. So, we only need to show T is Ck(Sµ × Ecs, Sβ) separately in
γ and x0. For the latter, the identity above shows

‖[Dx0T (γ, x0)]n‖ ≤ ‖Ancs‖ < µn < βn

and ‖Dx0T (γ, x0]‖β ≤ 1 follows. Also, Dj
x0
T (γ, x0) = 0, for 2 ≤ j ≤ k. Hence,

T (γ, ·) ∈ Ck(Ecs, Sβ).
Now we show T (·, x0) ∈ Ck(Sµ, Sβ), i.e., Dj

γT (γ, x0) is a bounded j-linear
form from ⊗jSµ to Sβ for any 1 ≤ j ≤ k. The case of j = 1 is true by (24)
because T (·, x0) ∈ C1(Sµ, Sµ) ⊂ C1(Sµ, Sβ) since Sµ ⊂ Sβ for 1 < µ < β.

For any 2 ≤ j ≤ k, [Dj
γT (γ, x0)] should be a bounded j-linear form from

Sµ to Sβ . To this end, let v = v1 ⊗ v2 ⊗ · · · ⊗ vj with each v` ∈ Sµ. Formally
differentiate (6) to get{

[Dj
γT (γ, x0)v]n, cs =

∑n
i=1A

n−i
cs Djhcs(pi−1)vi−1

[Dj
γT (γ, x0)v]

n, u
=
∑∞

i=n+1A
n+1−i
u Djhu(pi)vi,

(26)
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where
vi = v1

i ⊗ v2
i ⊗ · · · ⊗ v

j
i , v`i ∈ Rd.

Similar to the estimate of (15), we have

‖[Dj
γT (γ, x0)v]n, cs‖ ≤

∑n
i=1 ‖An−ics ‖‖[Djhcs(pi−1)]vi−1‖

≤
∑n

i=1 ς
n−i‖hcs‖jΠ

j
`=1‖v`i−1‖

≤ ‖hcs‖k
∑n

i=1 ς
n−iµj(i−1)Πj

`=1‖v`‖µ
≤ ‖hcs‖k

∑n
i=1 ς

n−iµk(i−1)Πj
`=1‖v`‖µ

≤ ‖hcs‖k
∑n

i=1 ς
n−iβi−1Πj

`=1‖v`‖µ
≤ ‖hcs‖k

β−ς β
nΠj

`=1‖v`‖µ

(27)

where ‖Acs‖ < ς < µ < β and µk < β by (22, 23). Similar to the estimate of
(16) we have

‖[Dj
γT (γ, x0)v]n, u‖ ≤

∑∞
i=n+1 ‖An+1−i

u ‖‖[Djhu(pi)]vi‖
≤
∑∞

i=n+1 α
i−n−1‖hu‖jµjiΠ

j
`=1‖v`‖µ

≤ ‖hu‖kα−n−1
∑∞

i=n+1(αµj)iΠj
`=1‖v`‖µ

≤ ‖hu‖kα−n−1
∑∞

i=n+1(αµk)iΠj
`=1‖v`‖µ

≤ ‖hu‖kα−n−1 (αβ)n+1

1−αβ Πj
`=1‖v`‖µ

≤ ‖hu‖kβ
1−αβ β

nΠj
`=1‖v`‖µ.

(28)

Combine these two estimates to obtain

‖[Dj
γT (γ, x0)]‖

β
≤ ‖(hcs, hu)‖k max{ 1

β−ς ,
β

1−αβ}.

The convergence of the infinite series also shows the derivatives are well-defined.
This completes the proof that T ∈ Ck(Sµ × Ecs, Sβ).

We are now ready to show γ∗(·) ∈ Ck(Ecs, Sβ). By the Uniform Contraction
Principle II for T ∈ C1(Sµ × Ecs, Sµ), the fixed point γ∗(·) is in C1(Ecs, Sµ) and
its derivative is given by

Dγ∗(·) =
∑∞

n=0[DγT (γ∗(·), ·)]nDx0T (γ∗(·), ·).

Since γ∗(·) ∈ C1(Ecs, Sµ), T ∈ C1(Sµ × Ecs, Sµ) ⊂ C1(Sµ × Ecs, Sβ), and
T ∈ Ck(Sµ × Ecs, Sβ), k ≥ 2, here is the key to notice that the composition
DγT (γ∗(·), ·) is C1(Ecs, Sβ). This implies that the infinite series on the right is
in C1(Ecs, Sβ), and therefore, Dγ∗(·) ∈ C1(Ecs, Sβ), and γ∗(·) ∈ C2(Ecs, Sβ)
follows. Apply this argument recursively to obtain γ∗(·) ∈ C3(Ecs, Sβ), and so
on until we reach γ∗(·) ∈ Ck(Ecs, Sβ). As a component of the initial point of γ∗,
φu is in Ck(Ecs,Eu) as well.

For the case of f ∈ Ck,1, the argument above can be used to show first T ∈
Ck,1(Sµ × Ecs, Sβ), using µk+1 = β, and then γ∗ ∈ Ck,1(Ecs, Sβ), which in turn
implies φu is Ck,1. This completes the proof.

The lemmas above complete the proof for Theorem 1. For future reference,
we state the following result from the proofs above.
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Proposition 1. For any 1 < µ < β < min{|σu|} and small ‖f −Df(q̄)‖1, the
orbit γp = {fn(p)}∞n=0 of any point p = (x0, y0) ∈ W cs can be expressed as a
function γp = γ∗(x0) for x0 ∈ Ecs so that γ∗ ∈ Ck(Ecs, Sµ) and γ∗ ∈ Ck(Ecs, Sβ)
if f ∈ Ck(Rd), 1 ≤ k < ∞, or γ∗ ∈ Ck,1(Ecs, Sµ) and γ∗ ∈ Ck,1(Ecs, Sβ) if
f ∈ Ck,1(Rd).

Definition 2. Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd

and α be any constant satisfying

max{|σs|} < α < 1.

The center-unstable manifold of the fixed point q̄ is

W cu = {p : {αn[f−n(p)− q̄]}∞n=0 is a bounded sequence}.

By applying Theorem 1 to f−1 we obtain the following result.

Theorem 2 (Center-Unstable Manifold Theorem). Let q̄ be a nonhyperbolic fixed
point of a diffeomorphism f in Rd with splitting Rd ∼= Es×Ecu. Then a sufficiently
small ‖f −Df(q̄)‖1 implies W cu is independent of any two different choices in
α. Also, W cu is the graph of a C1 function φs : Ecu → Es

W cu = graph(φs),

and the tangent space of W cu at the fixed point is the center-unstable eigenspace

Tq̄W cu ∼= Ecu.

Furthermore, if f ∈ Ck(Rd), 1 ≤ k < ∞, then φs ∈ Ck(Ecu,Es), and if f ∈
Ck,1(Rd), then φs ∈ Ck,1(Ecu,Es).

Theorem 3 (Local Center-stable and Local Center-unstable Manifold Theorem).
Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd and let Ecs,
Ecu, Es, Eu be the center-stable, center-unstable, stable, unstable eigenspace,
respectively, at q̄ for the linearization Df(q̄). Then there is a small neighborhood
Nr(q̄) and two differentiable functions φu : Nr(q̄)∩Ecs → Eu, φs : Nr(q̄)∩Ecu →
Es, so that the local center-stable and local center-unstable manifolds

W cs
loc(q̄) := graph(φu), W cu

loc(q̄) := graph(φs)

satisfy the following properties

(i) W cs
loc contains all bounded forward orbits in Nr.

(ii) W cu
loc contains all bounded backward orbits in Nr.

(iii) They are locally invariant, i.e., f(W i
loc) ∩ Nr ⊆ W i

loc, f
−1(W i

loc) ∩ Nr ⊆
W i

loc , i = cs, cu

(iv) Tq̄W cs
loc
∼= Ecs, Tq̄W cu

loc
∼= Ecu.
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Moreover, if f is Ck, 1 ≤ k < ∞, then both φu and φs are Ck, and if f is Ck,1,
then both φu and φs are Ck,1.

Proof. Modify the map f by a C∞ cut-off function ρr(p − q̄) to f → f(p) =
Df(q̄)p + ρr(p− q̄)(f(p)−Df(q̄)p). Then for sufficiently small r, Theorems 1
and 2 can be applied to the modified map to obtain the maps φu, φs. Restrict both
to the neighborhood Nr(q̄), then the results follow from the theorems.

By applying the theorem above we obtain

Theorem 4 (Local Center Manifold Theorem). Let q̄ be a nonsingular fixed point
of a continuously differentiable map f in Rd and let Es, Ec, Eu be the stable,
center, unstable eigenspace, respectively, at q̄ for the linearization Df(q̄). Then
there is a small neighborhood Nr(q̄) and a differentiable function φsu : Nr(q̄) ∩
Ec → Es × Eu, so that the local center manifold

W c
loc(q̄) := graph(φsu)

satisfies the following properties

(i) W c
loc contains all orbits bounded in both forward and backward directions

in Nr.

(ii) Every point not from W c
loc escapes Nr(q̄) in either forward or backward

iteration.

(iii) It is locally invariant, f(W c
loc) ∩Nr ⊆ W c

loc , f−1(W c
loc) ∩Nr ⊆ W c

loc .

(iv) Tq̄W c
loc
∼= Ec.

Moreover, if f is Ck, 1 ≤ k <∞, then φsu is Ck, and if f is Ck,1, then φsu is Ck,1.

Proof. LetW cs
loc = graph(φu) andW cu

loc = graph(φs) be a local center-stable man-
ifold and a local center-unstable manifold, respectively, by the previous theorem.
Define

W c
loc = W cs

loc ∩W cu
loc.

Then property (i) through (iii) follow immediately. To show the existence of φsu
and (iv), let p = (x, y, z) be a coordinate system for the splitting Rd = Es ×Ec ×
Eu. Then a point (x, y, z) ∈ W c

loc iff it satisfies the equations below{
x = φs(y, z)
z = φu(x, y)

(29)

which in turn is equivalent to F (x, y, z) = (F1, F2)(x, y, z) = 0 with

F1(x, y, z) = x− φs(y, z), and F2(x, y, z) = z − φu(x, y).

Obviously, the fixed point, q̄ ∼ (0, 0, 0), is a solution, F (0, 0, 0) = 0. Also,

D(x,z)F (0, 0, 0) = I
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the identity matrix in Rds+du ∼= Es×Eu, because Dφu(0, 0) = 0 and Dφs(0, 0) =
0. Therefore, by the Implicit Function Theorem, equation (29), i.e. F (x, y, z) = 0,
can be solved locally as a function φsu : Nr ∩Ec → Es ×Eu, making r smaller if
necessary, so that (x, z) = φsu(y) and

W c
loc = graph(φsu)

follows. It can be directly checked that φsu(0) = (0, 0) and

Dφsu(0) = 0

by IFT since DyF (0, 0, 0) = 0, showing property (iv). Last, that f is Ck, or
Ck,1, 1 ≤ k < ∞, implies φu, φs are Ck, or Ck,1, which in turn by IFT implies
φsu is Ck, or Ck,1. This completes the proof.

The conclusion is all interesting dynamics near a nonhyperbolic fixed point of
a diffeomorphism takes place on a center manifold.

Local center manifolds are not unique in general (see Fig.1), but the center
manifold dynamics is in the sense that the dynamics on any two local center man-
ifolds are smoothly conjugate. Specifically, we have the following theorem.

Theorem 5 (Uniqueness of Center Manifold Dynamics for Flow 1). Let q̄ = 0 be
a nonhyperbolic equilibrium point of the differential equation

ẋ = Ax+ h(x)

where x ∈ Rd, h(0) = 0, Dh(0) = 0, and h is Ck+1,1, k ≥ 0. Let f be the
time-1 map of the solution, f(x) = ϕ(1, x) where ϕ(t, x0) is the solution of the
equation with initial condition ϕ(0, x0) = x0. Let W c

loc,1, W c
loc,2 be two local

center manifolds of q̄ for f . Then there is an open neighborhood V of q̄ and a Ck

invertible map κ : W c
loc,1 ∩ V → W c

loc,2 ∩ V so that

f ◦ κ(p) = κ ◦ f(p)

for all p ∈ W c
loc,1 ∩ V so long as f(p) ∈ W c

loc,1 ∩ V .

Figure 1. The phase diagram for the system
of differential equations x′ = x2, y′ = −y.
Every red curve on the left coupled with the
right x-axis is a local center manifold of the
time-1 map of the solution operator at the
fixed point 0. There are infinitely many lo-
cal center manifolds of the origin.

Reference: 1. A. Burchard, B. Deng, and K. Lu, Smooth conjugacy of centre
manifolds, Procedings of the Royal Society of Edingurgh, 120A, pp.61–77, 1992.
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