Saddle-Node and Period-Doubling Bifurcations

Let \bar{q} be a nonhyperbolic fixed point of a diffeomorphism f in \mathbb{R}^d . Let $J = Df(\bar{q})$, and denote

$$\sigma^s = \sigma(J) \cap \{|z| < 1\}, \ \sigma^c = \sigma(J) \cap \{|z| = 1\}, \ \text{ and } \ \sigma^u = \sigma(J) \cap \{|z| > 1\}$$

the set of stable eigenvalues, center eigenvalues, unstable eigenvalues, respectively, of the linearizatoin $Df(\bar{q})$, counting multiplicity. Consider two cases

either
$$\sigma^c = \{1\}$$
 or $\sigma^c = \{-1\}$.

for which the former is called a saddle-node bifurcation problem and the latter a period-doubling bifurcation problem. Specifically, consider a one-parameter family of map $f: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ such that

$$f(\bar{\lambda}, \bar{q}) = \bar{q}.$$

By augmenting the map to $\tilde{f}(\lambda,p)=(\lambda,f(\lambda,p))$, the parameter dimension is a trivial center direction for the augmented map. Then by the Center Manifold Theorem, for a sufficiently smooth f, the dynamics of \tilde{f} is reduced to a two-dimensional local center manifold with λ being a trivial center dimension. The reduced map is just a parameterized one-dimensional mapping, denoted by $F(\lambda,x)$ for $(\lambda,x)\in\mathbb{R}\times\mathbb{R}$. Therefore, the dynamics of f near the fixed point \bar{q} is completely determined by its center manifold reduction F. Here are application-friendly versions for these two elementary bifurcations.

Theorem 1 (Saddle-Node Bifurcation). Let $F(\lambda, x), (\lambda, x) \in \mathbb{R} \times \mathbb{R}$ be a C^2 function satisfying

- (i) $F(\bar{\lambda}, \bar{x}) = \bar{x}$ for some $\bar{\lambda}$ and \bar{x} for some $\bar{\lambda}$ and \bar{x} .
- (ii) $\frac{\partial F}{\partial x}(\bar{\lambda}, \bar{x}) = 1$.
- (iii) $a := \frac{\partial^2 F}{\partial x^2}(\bar{\lambda}, \bar{x}) \neq 0.$
- (iv) $b := \frac{\partial F}{\partial \lambda}(\bar{\lambda}, \bar{x}) \neq 0$.

Then

(a) If
$$ab(\lambda - \bar{\lambda}) = \frac{\partial^2 F}{\partial x^2}(\bar{\lambda}, \bar{x}) \cdot \frac{\partial F}{\partial \lambda}(\bar{\lambda}, \bar{x}) \cdot (\lambda - \bar{\lambda}) < 0,$$

then there are two fixed points of $F(\lambda, x)$ near \bar{x} for λ near $\bar{\lambda}$, one is asymptotically stable, and the other is asymptotically unstable.

(b) If
$$ab(\lambda - \bar{\lambda}) = \frac{\partial^2 F}{\partial x^2} (\bar{\lambda}, \bar{x}) \cdot \frac{\partial F}{\partial \lambda} (\bar{\lambda}, \bar{x}) \cdot (\lambda - \bar{\lambda}) > 0,$$

then there is no fixed points for $F(\lambda, x)$.

Theorem 2 (Period-Doubling Bifurcation). Let $F(\lambda, x), (\lambda, x) \in \mathbb{R} \times \mathbb{R}$ be a C^3 function satisfying

(i) $F(\bar{\lambda}, \bar{x}) = \bar{x}$ for some $\bar{\lambda}$ and \bar{x} for some $\bar{\lambda}$ and \bar{x} .

(ii)
$$\frac{\partial F}{\partial x}(\bar{\lambda}, \bar{x}) = -1$$
.

(iii)
$$c := \frac{\partial^3 F^2}{\partial x^3}(\bar{\lambda}, \bar{x}) \neq 0.$$

(iv) $d := \frac{d}{d\lambda} [\frac{\partial F}{\partial x}(\bar{\lambda}, x(\bar{\lambda}))] := \frac{d}{d\lambda} [\frac{\partial F}{\partial x}(\lambda, x(\lambda))]|_{\lambda = \bar{\lambda}} \neq 0$, where $x(\lambda)$ is the fixed point of $F(\lambda, x)$ parameterized by λ : $F(\lambda, x(\lambda)) = x(\lambda)$, $x(\bar{\lambda}) = \bar{x}$.

Then

(a) If
$$cd(\lambda - \bar{\lambda}) = \frac{d}{d\lambda} \left[\frac{\partial F}{\partial x} (\bar{\lambda}, x(\bar{\lambda})) \right] \cdot \frac{\partial^3 F^2}{\partial x^3} (\bar{\lambda}, \bar{x}) \cdot (\lambda - \bar{\lambda}) > 0,$$

then there is a unique period-2 orbit of $F(\lambda, x)$ near \bar{x} for λ near $\bar{\lambda}$. Moreover, the period-2 orbit is asymptotically stable (respectively, unstable) if the corresponding fixed point $x(\lambda)$ is asymptotically unstable (respectively, stable).

(b) If
$$cd(\lambda - \bar{\lambda}) = \frac{d}{d\lambda} \left[\frac{\partial F}{\partial x} (\bar{\lambda}, x(\bar{\lambda})) \right] \cdot \frac{\partial^3 F^2}{\partial x^3} (\bar{\lambda}, \bar{x}) \cdot (\lambda - \bar{\lambda}) < 0,$$

then there is no period-2 orbits near \bar{x} .

Remark: For $F(\lambda, x(\lambda)) = x(\lambda)$, by implicit differentiation,

$$\frac{dx}{d\lambda}(\lambda) = \frac{\partial F}{\partial \lambda}(\lambda, x(\lambda))/[1 - \frac{\partial F}{\partial x}(\lambda, x(\lambda))]$$
 and $\frac{dx}{d\lambda}(\bar{\lambda}) = \frac{\partial F}{\partial \lambda}(\bar{\lambda}, \bar{x})/2$.

As a result,

$$\frac{d}{d\lambda} \left[\frac{\partial F}{\partial x} (\bar{\lambda}, x(\bar{\lambda})) \right] = \frac{\partial^2 F}{\partial \lambda \partial x} (\bar{\lambda}, \bar{x}) + \frac{\partial^2 F}{\partial x^2} (\bar{\lambda}, \bar{x}) \frac{\partial F}{\partial x} (\bar{\lambda}, \bar{x}) / 2.$$

To keep the presentation simple enough, we will present a proof for an equivalent form of the second theorem. Similar treatment can be applied to the saddle-node bifurcation.