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Synopsis
In this paper, we prove that for a system of ordinary differential equations of class C"*"', r =0 and
two arbitrary C"* "' local centre manifolds of a given equilibrium point, the equations when restricted
to the centre manifolds are C” conjugate. The same result is proved for similinear parabolic equations.
The method is based on the geometric theory of invariant foliations for centre-stable and
centre-unstable manifolds.

1. Introduction

Following the pioneering work on invariant manifold theory by Poincaré [33],
Lyapunov [23], Hadamard [16], Perron [31], the theory of centre manifolds for
finite dimensional dynamical systems has been developed by Pliss [32], Kelley
[22], Hirsch, Pugh and Shub [20, 21], Fenichel [12,13], Wells [38], Carr {39],
Chow and Hale [3], Sijbrand [35], Vanderbauwhede [36] and others. Centre
manifold theory for infinite dimensional systems has been studied by Henry [19],
Carr [39], Hale, Magalhaes and Oliva [18], Hale and Lin [17], Mielke [27], Bates
and Jones [2], Chow and Lu [6, 7], Chow, Lin and Lu [5], Vanderbauwhede and
Iooss [37], and many others.

Although most fundamental problems in the theory of centre manifolds have
been solved, a convincing solution for the uniqueness problem of local centre
manifolds has been missing. In the context of ordinary differential equations, the
standard method for constructing a local centre manifold at a given equilibrium
point is to extend the locally defined equation by a cut-off function to a globally
defined one for which existence and smoothness of a unique global centre
manifold can be established by either Hadamard’s or Perron’s method (cf. e.g.
Anosov [1], Hirsch, Pugh and Shub [21]). The nonuniqueness of local centre
manifolds results from the use of arbitrary cut-off functions in the construction as
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shown by Sijbrand [35], and under certain conditions there is an exceptional case
given by Bates and Jones [2]. There is little doubt that the dynamics on different
local centre manifolds should behave in the same way, but the question is in what
sense or to what degree that is so. This question has attracted a good deal of
attention in the literature since the birth of the theory, and some results, by no
means a complete account here, can be summarised as follows: (1) any local
centre manifold of a given equilibrium point must contain all the invariant sets,
such as equilibrium points, periodic, homoclinic, heteroclinic orbits, etc. near the
equilibrium point; (2) the formal Taylor expansions at the equilibrium point of
the vector field when restricted to different local centre manifolds are exactly the
same (see, e.g. Carr [39], Sijbrand [35]). In this paper, however, we examine the
uniqueness question from the standpoint of smooth conjugacy. More specifically,
we want to show that the restrictions of the equation to two arbitrary local centre
manifolds are actually topologically or differentiably conjugate, depending on the
smoothness of the vector field. That is, the smooth conjugacy class of the
restricted equations is indeed unique.

Note that, speaking at the conjugacy level, our result does include the
properties (1,2) above, but the converse is less clear. Indeed, we still do not
know what these properties imply about the conjugacy problem within the
context of centre manifold theory, and nothing at all can be said about it outside
the theory. For example, for the two equations ¥ = —xe ™ "2 and x = xe~ "%, the
origin is the only invariant set and the formal Taylor expansions at the origin are
the same. But they are not conjugate because the equilibrium point is stable for
the first equation and unstable for the second one.

The main result, Theorem 2.1, is treated in terms of two types of differential
equations: ordinary differential equations and semilinear parabolic equations.
The method is based on invariant foliations for centre-stable and centre-unstable
manifolds. The theory used here is twofold. Firstly, due to many people’s studies
of this subject, cf., e.g. [1, 12,13, 21] for finite dimensional systems, and [5] for
infinite dimensional systems, it has become a standard procedure to construct
simuitaneously for a sufficiently differentiable dynamical system a local centre,
centre-stable, and centre-unstable manifold, together with a stable and an
unstable foliation on the centre-stable and centre-unstable manifold, respectively
(see Theorems 5.1.5.2). Secondly, we show in Theorem 3.1 that these geometric
structures can be recovered for a given local centre manifold by extending the
local manifold of the locally defined equation to the global centre manifold of a
globally defined equation for which the invariant manifold and foliation structures
follow easily from known results. Based on this, our geometrical proof is carried
out in two steps. We first show in Lemma 4.1 that if two local centre manifolds
happen to share a common centre-stable or a common centre-unstable manifold,
then the conjugacy follows from the foliation of that manifold. In general, two
centre manifolds lie in neither a common centre-stable nor a common centre-
unstable manifold (a simple example is given in Section 3). In this case, we show
that the flow structures on the two manifolds can be transformed from one to the
other through the flow structure on a third local centre manifold which lies in the
intersection of a centre-stable manifold containing one of the given centre
manifolds and a centre-unstable manifold containing the other.
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Recently the theory of inertial manifolds has been developed for some
dissipative evolution equations, see [15,26,7,9]. We find that in this context a
similar conjugacy question arises. An inertial manifold of such a system is a
finite-dimensional invariant manifold which attracts solutions exponentially. In
particular, this implies that it contains the global attractor. Under certain
conditions, such as a spectral gap condition or the cone condition, inertial
manifolds do exist. Indeed, similar to the construction of local invariant
manifolds, one obtains such an inertial manifold by modifying the equation
outside an absorbing ball, which contains the attractor, with a cut-off function and
constructing an inertial manifold for the modified equation. Restricting that
globally-defined inertial manifold to the absorbing ball gives the desired
inertial manifold for the original system that is also referred to as a local
inertial manifold. Again, different cut-off functions give rise to different
local inertial manifolds; and it is natural to ask if the dynamics on different local
inertial manifolds are the same up to smooth conjugacy. In fact, we shall be able
to conclude at the end of this paper that the same answer with C® or C' conjugacy
also applies.

We remark that invariant foliation theory has been applied to conjugacy
problems by many people. For example, Anosov [1], Palis [28], Palis and Smale
[29], and Robinson [34] used it to analyse structural stability of finite-dimensional
dynamical systems. Palis and Takens [30] used it to prove a result which implies
that two differential equations are locally topologically conjugate if the equations
when restricted to their centre manifolds are topologically congugate. Lu [24, 25]
used the infinite-dimensional counterpart to generalise the Hartman-Grobman
theorem to parabolic equations. It is also very useful in other areas of study of
dynamical systems. In fact, it is one of the key components for the geometric
theory of singular perturbations of Fenichel [14] and its applications, cf. e.g.
Deng [11]. It also plays an important role in the theory of homoclinic and
heteroclinic bifurcations of Chow and Lin [4] and Deng [10].

The paper is organised as follows. In Section 2, we state the main result. In
Section 3, we introduce the principal tool, namely, local invariant foliation
theory. The main result, Theorem 2.1, is proved in Section 4. The existence
theorem for local invariant foliations from Section 3 is proved in Sections 5 and 6.
We end the paper in Section 7 with a discussion of some variations and possible
generalisations of our results.

2. The main result
Let X be a Banach space and consider a semilinear evolution equation
X=Ax+f(x), xeX, (2.1)

together with two hypotheses:

(2.1a) A is a sectorial operator from a dense domain D(A) = X into X. Let o(A4)
denote the spectrum of A, then o(A) N {A|Re A= 0} consists of a finite
number of isolated eigenvalues, each with a finite-dimensional generalised
eigenspace.
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(2.1b) Let X be the fractional power space associated with the operator A and
U = X be a neighbourhood of the origin x =0. Then f: U— X is of class
C™*'! with r = 0. Moreover, f has zero of higher order at the origin, i.e.,
f(0) =0 and the linearisation Df(0) = 0.

For background information concerning semilinear evolution equations, we
refer to [19]. We only point out that when X is finite-dimensional, A is just a
matrix, X*=X for all a and equation (2.1) is simply a system of ordinary
differential equations. It is known that if f € C%'(U, X), for every x,e U = X*,
unique solution x(¢) € D(A) for small > 0 with x(0) = x,. Let S,(x,) = x(¢) denote
the resulting local flow, then a submanifold W «< X is said to be locally invariant
if for every x € W there is a curve in W that is a solution of the equation and
contains x as an interior point.

Let E° =X be the generalised finite-dimensional eigenspace corresponding to
the eigenvalues o°:=0(A)N{A|ReA=0}. Then a locally invariant
differentiable manifold W°c U is said to be a local centre manifold of the
equilibrium point x =0 if W*° is tangent to E“ at the origin x =0.

For simplicity, by a C” diffeomorphism we mean a homeomorphism if r = 0.
Our main result is the following theorem:

THEOREM 2.1. Assume the hypotheses (2.1a, b) for equation (2.1). Then the local
flows on two arbitrary C'*"! local centre manifolds in UcX® are locally C’
conjugate. More specifically, if WS and W5 are such manifolds, then there is a
neighbourhood V < U of the origin and a C" diffeomorphism ¢: WiNV —-WiN
V such that

Seo p(x) = ¢ S,(x)
forall x e WiNV and all t >0 so long as S,(x) e WiN V.

Two different versions of this theorem with weaker regularity assumptions on
the nonlinear term f and slightly more restrictive assumptions on the centre
manifolds are given in Section 7.

3. Local foliations

Let 0° := g(A) N {A| ReA <0}, 0“:= 0(A) N {A|Re A>0}. Then o(A) =o' U
o°U 0" By hypothesis (2.1a), o“ consists of a finite number of isolated
eigenvalues, each with a finite-dimensional generalised eigenspace. Let E* be the
generalised eigenspace corresponding to 0 in D(A). Because both E and E* are
finite-dimensional in D(A), the projection 7;: D(A)— E' < D(A) can be con-
tinuously extended to s;: X— E' c X for i =¢, u. Therefore, 7, :=1Dy — 7. — 7,
is also a projection map, and so we can denote E°:=m (X). We denote
throughout

X*={E°NX“}OEDE", E“:={EENX*}DE’, E“:=E°DE"
Note that E‘ = X“ for all 0= «, i =c, u, whereas E® depends on the fractional

power a. We also use x =x, +x. +x, with x; € E', i =5, ¢, u and ||x ||y = ||x,]|o +
[|xc]| + |Ix.||, where |||, is the graph norm for X* and ||-|| is the norm for X.
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Let V< U be a neighbourhood of the origin where Uc X is as in the
hypothesis (2.1b). A locally invariant manifold W < V (respectively W = V) is
said to be a local centre-stable (respectively centre-unstable) manifold of the
equilibrium point x = 0 if it is tangent to E“ (respectively £) at this point when
differentiable, or if it is the graph of a C”! function h: E NV — E* (respectively
h: E“ NV — E*) with h(0) = 0 and sufficiently small Lipschitz constant Lip & < 1.
We shall take Lip & <} in various places for technical reasons. For simplification,
we also use Lip W <p to mean Lip 2 <p. Such slightly abused notation also
applies to centre-unstable and centre manifolds.

Let W < V be a locally invariant manifold of the origin. Let {F(p) |p € W} be
a family of submanifolds of W parametrised by p e W. {F(p) |p € W} is said to
be locally positively (respectively negatively) invariant if S(F(p))NV c
F(S,(p)) NV for those ¢ =0 (respectively ¢ =0, provided S,(p) is well-defined on
W) with S,(p)e WNV for all t€]0, ¢] (respectively T €[z, 0]). 1t is called a C”
family of C”' manifolds if the set {(p,q)|peW,qeF(p)} is a C"xC"!
submanifold of X* X X%, where r 0.

Let W be a local centre-stable manifold in neighbourhood V of the origin. A
family of submanifolds {#*(p) | p € W=} is said to be a C" X C" stable foliation
for W* if the following conditions are satisfied:

(i) pe F(p) of each p e W<,

(i) #°(p) and %°(q) are disjoint or identical for each p and ¢ in W¢;

(iii) if r=1, %°(0) is tangent to E° at the origin; or if r =0, every leaf F(p) is
the graph of a C%' function, say @(p,): E*NV—E™“NV with Lipschitz
constant Lip @(p, -) <1 for all p € W near the origin;

(iv) {#(p)|p e W=} is a positively invariant C” family of C™' manifolds for
we.

Note that we can always identify the local centre-stable manifold W< with the
linear space E“ locally through a function from E* into E* whose graph is the
manifold itself. Thus, in terms of the coordinate system for £, conditions (i—iv)
amount to saying that there is a C" X C"' function ¢: {E“ NV} X {E*NV}— E€
with %' (p) = graph @(p, -) that satisfies (i) p. = @(p, p,); (ii) p. = ¢(q, p,) if and
only if g. = @(p, q,); (iii) either the partial derivative with respect to the second
variable D,@(0, 0) =0 or Lip ¢(p, -) <1, depending on whether r >0 or r =0;
and (iv) S,(x;, + ¢(p, x,)) = 7,.5,(x) + (S,(p), 7S, (x))for small =0, where p =
PstPe, =4 +q. € E°NV.

Similarly, a C” x C™' unstable foliation {F“(p)|p € W™} for a local centre-
unstable manifold W< satisfies:

(i) p € #*(p) for each p € W,

(ii)) #“(p) and F“(q) are disjoint or identical for each p and g in W,

(i) if r=1, F“(0) is tangent o E* at the origin; or if r =0, it is the graph of a
C"! function, say y(p, -): E“ NV — E“ NV with the property that Lip y/(p, ) <
1 for all p e W near the origin;

(iv) {F“(p)|p e W™} is a negatively invariant C" family of C"' manifolds for
wex,

Note that an unstable foliation can be expressed in terms of the local
coordinate system for E in the same way as was done for stable foliations in the
previous paragraph.
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We remark that the formulation of the stable and unstable foliations in this
paper follows that of Fenichel [14] for the geometric theory of singular
perturbations.

One of the key ingredients for proving the main result is the following theorem
which will be proved in Section 6:

THEOREM 3.1. Assume the hypotheses (2.1a, b) for equation (2.1). Then for any
C™*! local centre manifold W< U of the origin, there are a C"' local
centre-stable manifold W< and a C"' local centre-unstable manifold W in a
neighbourhood V < U of the origin both containing W* as a submanifold and
satisfying Lip W' <3, i = cs, cu. Moreover, there are a C” X C"' stable foliation on
W< and a C" x C™! unstable foliation on W*“.

We end this section with an example. Consider the three-dimensional system of
ordinary differential equations: ¥ = —x, y = y?, z = z. Every local centre manifold
of the origin is given by one of the curves W°:={(c;e'”, y, 0) [for small
y =0} U{(0, y, c,e~'”)| for small y =0} for some choice of the constants ¢, c,.
Moreover, given a local centre manifold W<, there is a local centre-stable
manifold W containing W° and, in terms of a stable foliation, W< = {p +
(1,0,0)x | p e W<, |x} < 1}. Similarly, a local centre-unstable manifold W<
containing W* can be expressed as {p + (0, 0, 1)z | p € W¢, |z| < 1} in terms of an
unstable foliation. In fact, every local centre stable manifold is given by z = 0 for
y=0, z=e"f(ex) for y >0, x, y small, where f is any sufficiently smooth
function; similarly, every local centre unstable manifold is given by x=
e'”f(e'z) for y <0, x =0 for y 20, y, z’small, g a sufficient smooth function. A
given local centre manifold lies on a certain centre stable (centre unstable)
manifold, if ¢, =f(0) (¢, = g(0), respectively). Observe that two pairs of distinct
constants (c_, ¢,) can be chosen so that the resulting local centre manifolds share
neither a common centre-stable manifold nor a common centre-unstable man-
ifold. This observation motivates the proof of the main theorem in the next
section.

4. Proof of Theorem 2.1

LEMMA 4.1. Let W= < X® be a C"' local centre-stable manifold of the origin
with Lip W= <1 and r Z0. Assume there is a C" X C"' stable foliation on W*.
Then for two arbitrary C"' local centre manifolds W{c W, W5c W of the
origin with Lip Wi <1, i =1, 2 the conclusion of Theorem 2.1 holds true. That is,
there is a neighbourhood V X% of the origin and a C" diffeomorphism
¢: WS Vo WsNV such that

Sio@(x) = ¢oSi(x)
for all x e W{NV and all t satisfying S,(x) e WiNV.

Proof. We only demonstrate the C”' case since the C™' case with r>0 is
simplified when the contraction mapping principle is replaced by the implicit
function theorem.
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By assumption, let {F°(p)|pe W} be the local stable foliation in a
neighbourhood U of the origin. We want to show that a homeomorphism is
defined by ¢(p) =q := F(p) N WS for p € W§ near the origin.

To do this, we begin by identifying the local centre-stable manifold W with
the coordinate plane E< N U via a C*' function whose graph is the manifold W<,
Now, in terms of the coordinate system for E<, let W= graph h; for some C*!
function h;: EENU— E*NU with Liph; <1 and let ¢: {E“NU} x {E*NU}—>
E°N U represent the stable foliation on W€, satisfying %°(p) = graph ¢(p, *),
and Lip ¢(p, -)<1 for all p e E“ N U. Let 6 >0 be so small that the closed box
B:={x € E“ | ||x,]la = 6, ||x.|| = 8} centred at the origin is contained entirely in
U. Consider the operator ¥ = ®(p, x), x € B defined by x. = ¢(p, x,), X, = h,(x.)
and parametrised by p € W{N U. We want to show that for some carefully chosen
neighbourhood V < B of the origin, the fixed point g € W5NV, which is the
intersection point of F(p), pe WiNV and W5, gives rise to the conjugating
map ¢.

To be precise, choose a neighbourhood V,= B of the origin so that
lp(p, x)1S6 for all peVy, |Ixlla=6 and [|h(x)ll.S6 for all [x[|=8,
i =1, 2. This can be done because we have the strict inequalities Lip ¢(p, -) <1
and Lip h; < 1. Hence, ®(p, -) maps B into itself for all p e W{N V. Moreover,
by the box norm for the space X, we have

Lip ®(p, -) = max (Lip ¢(p, *), Lip h,} <1

uniformly for all p e Wi N V,. Therefore, by the contraction mapping principle,
there is a unique fixed point g(p) e W5N B for every p e WiNV,. Denote by
q := ¢(p) the fixed point, then ¢ is C’. -Arguing symmetrically, we can also show
that for every point g € W5 NV, there is a unique fixed point p € W{ N B of the
operator . = @(q, x,), X, = h;(x.) so that the fixed point p := ¢(g), which is the
intersection point of #°(q) and W{ N B, depends continuously on g € W5N V.

We now claim that the function ¢ is actually locally invertible with inverse ¢.
More specifically, we claim

(@ lawsrvpne) ™' = @ |owsnvnve:

In fact, let p = ¢(q) with g € p(W5N V) NV,. We first need to show g = ¢(p)
with p € ¢(W5N Vy) N'V,. By definition, we have p. = @(q, p,), ps = h\(p.) with
g, = hy(q.). Because of the foliation property (ii), g. = @(p, gq,), so q is the fixed
point of the operator ®(p, ), provided that p e W{NV,. Suppose on the
contrary that p € B—V,. By definition, there exists for g € ¢(WiNV))NV, a
point pe WiNV, such that g = ¢(p), ie. q.= @, q,), q;=h.(q.). By the
foliation property (ii) again, p.= @(g, 4,). This gives rise to the following
contradiction:

”pc _ﬁcu = “(p(q) Ps) - (p(q’ p~?)” < ”Ps _ﬁs||a
and

”PS —ﬁs”a = ”hl(pc) - hl(ﬁc)“a < ||Pc _I5c||’

because of p, = hy(p.). This implies ||p —pllo <||p —Pllo- Therefore, we must
have p=peWiNV,, qg=¢(p)=d¢°¢p(q). Conversely, the same argument
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shows that if ¢ = ¢(p) with p € p(W5NV,) NV, then p = ¢(q) = po ¢(p). This
proves the claim.
By the foregoing argument the neighbourhood V can be any open set satisfying

VNWi=¢(WiNVy)NV, and VNW{=p(W5NVy)NV,

for instance, we can take V :=V,— {(W5— ¢p(W$N Vy) N Vo) U (WS — d(WSN
Vo) NV,)}.

Finally, since S,(p) e W3, S (¢(p)) e W3, F(P(p))=F(p) and S(F'(p)) c
F°(S.(p)), locally, by the invariance of the centre manifolds and the foliation, we
have

Sio@(p) = S(F(p) NW3) = F(S(p)) N Wi= p°S,(p)
so long as S,(p)e WSNV. O

We remark that the same conclusion also holds true for any C”' local
centre-unstable manifold together with a C” X C™' unstable foliation.

LemMma 4.2. Let W§, W5 be two C™*"! local centre manifolds of the origin. Let
W < X*be a C"! local centre-stable manifold containing W¢ and W < X*q C™!
local centre-unstable manifold containing W5, both constructed according to
Theorem 3.1. Then the intersection W NW is another C™' local centre
manifold, W¢, of the origin with Lip W° < 1.

Proof. For the same reason as in the last proof, we only demonstrate the C°!
case. Since the centre-stable and centre-unstable manifolds are constructed
according to Theorem 3.1, they satisfy W = graph 1, W = graph h“* for some
C%! functions h*, h*“ defined near the origin with Lip h'<3, i=cs, cu. The
intersection W< N W consists of all points x, +x_.+x, € X¢ satisfying x, =
h(x,, x5), X, = h*(x., x,,). Think of the right-hand side of these equations as an
operator parametrised by x., then the contraction constant of this operator is
bounded by max {Lip A®(x,, -), Lip A“(x,, -)} <1 uniformly for all small |x.||.
By the contraction mapping principle, one can solve uniquely for a C’ function
x, +x, = h°(x.) for small ||x{|,. A° is Lipschitz with

Lip h¢ < Lip A” + Lip b
P = max {Lip #°, Lip A°}

<1

as Lip A’ <3, i = cs, cu by Theorem 3.1. This sketch can be made as precise as we
have done for the proof of Lemma 4.1 above.

To show W€ := graph A€ is indeed a C”' local centre manifold of the origin, it
suffices to show that it is locally invariant. For X finite dimensional, this is trivial.
Otherwise, we proceed as follows: Let p € W, and let x(t) € W be the solution
curve in the centre-unstable manifold containing p as an interior point. Because
of the uniqueness for the initial value problem of equation (2.1) and the
invariance of W<, x(f) e W< for small ¢t Z0. Because any backward extension of
the solution x(¢) must also be in W* by the remark after the proof of Theorem
3.1 in Section 6, we have that x(¢) e W for all small [¢| for which it is defined.
Hence, x(¢t) e W =W N W for the same small |¢|. O
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Proof of Theorem 2.1. Let W be a C”' local centre-stable manifold
containing W{ and W be a C"' local centre-unstable manifold containing W$ by
Theorem 3.1. Then W§:=W N W is another C™' local centre manifold by
Lemma 4.2. By Theorem 3.1 again, there exist C” X C"' stable and unstable
foliations on W< and W<, respectively. Hence, the conditions of Lemma 4.1 are
satisfied for W{, W5 on W<, and W5, W5 on W, respectively. Hence, the flows
on W{ and W¢ are C” conjugate for i = 1, 2. Therefore, the local flows on W§ and
WS¢ are C” conjugate because C” conjugacy is an equivalence relation. [

5. Global foliations

The following two sections are dedicated to the proof of Theorem 3.1. The idea
of the proof is to show that the local result can be obtained by extending the
given local centre manifold of the locally defined equation to the global centre
manifold of a globally defined equation to which some modified global result
applies. In this section, we introduce the global theory of invariant manifolds and
foliations.

We begin with some more notation. For § >0, define N; := {x € X*| |||, <
S, ||lx.|| < &}, a tubular neighbourhood of E°. Also, E§:=E°*NN;, E4:=E*N
N5, E§:=E“NN;s, E§ := E“NN;, and E% := E*“ N Ns where E**:= E* @ E“
For simplicity, we denote s, 1= 7, + 7, A,, 1= AT, Xg 1= T, X =X, + X,

In addition to equation (2.1) which is only defined near the origin, we consider
equations of the form

X =Ax+ F(x), 6.1

where F(x) € X is defined for all x € X* for some 0= o < 1. From now on, we use

ey Whe, Wik, for local centre manifold, local centre-stable manifold, local
centre-unstable manifold, respectively; while W€ W, W are reserved for
global centre manifold, global centre-stable manifold, global centre-unstable
manifold, respectively. The former are defined as in the previous sections and the
latter are defined as follows:

We .= {x eX* sup “nsuSt(x)“a < OO}’
{e} <o

wWe .= {x e X*| sup ||7,S(x)]|a < w}, 5.2)
O=r<=

W= {x e X sup |[x S (x)la <°°}-
— o<t =()

We have the following results:

TueoreM 5.1 (Existence, uniqueness and smoothness of global invariant
manifolds). Assume hypothesis (2.1a) for the linear operator A and that F e
Co{X*% X)NC"'(Ns, X) (respectively C”' (X% X)N C’(Ns, X)) satisfying
F(0)=0, where 0= a <1, r=0. There exist constants m = Q(d), € = €(r) and
Oy < 8 such that if sup, x- ||, F(x)|| <m, Lip F < €, there exist for equation (5.1)
a unique global centre-stable manifold and a unique global centre-unstable
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manifold. These manifolds are of class C™' (respectively C') and are given by
W< = graph h®, W =graph h*“. Here, h®: E*— E%, h™: E™“— E% are of
class C*', and h®|pg, h™|pu are of class C™' (respectively C’), satisfying
hi(0)=0, Liph'<3, or Dh'(0)=0 for i=cs,cu, if DF(0)=0 for r=1.

Furthermore, there is a unique global centre manifold given by WS =W N W =

graph h¢, where h*:E°— E%: is of class C™' (respectively C") satisfying h°(0) =0,

Lip A° <1 and for r =1, Dh“(0) =0 if DF(0)=0.

Tueorem 5.2 (Existence and smoothness of global foliations). Assume the
conditions of Theorem 5.1. Then there exist constants m = O(0), € = €(r) and
80 < O such that if |7, F| <m, Lip F <€, there exist for equation (5.1) unique
global centre-stable and centre-unstable manifolds W<, W as stated in Theorem
5.1 and, in addition, there exist a C" X C™' (respectively C'~' x C” if r 2 1) global
stable foliation {F (p)€ Ns,|p e W' N N, } on W and a C" X C"' (respectively
C" ' x C" if r 21) global unstable foliation {F“(p) e Ns,|p € W™“ N Ns,} on W,
More specifically, there are functions @*: E5 X E — E5:, @“: Eg, X E§ — E§, of
class C" X C™' (respectively C"~' x C” if r = 1) satisfying the properties (i—iv) for
invariant foliations of section 3 such that ¥ (p) = graph ¢’(p, -), i =s, u.

Theorem 5.1 was first explicitly stated in [37], while Theorems 5.1, 5.2 with the
tubular neighbourhoods replaced by the respective entire subspaces were
essentially proved by Chow, Lin and Lu {§]. Their proofs can be easily adapted to
our case with some minor modifications based on the following two observations.
The regularity of the global manifolds and foliations at any point only depends on
a neighbourhood of the positive orbit through that point for the centre-stable case
or a neighbourhood of the negative orbit for the centre-unstable case. On the
other hand, following their approach via the variation of constants formula, it is
straightforward to verify that a constant 6,< 6 can be found so that all orbits
starting in the smaller tubular neighbourhood N;, stay in the larger one N, for all
forward or backward time depending on the centre-stable or the centre-unstable
case. For these reasons, we omit the proofs and refer to these two sources for the
necessary modifications.

6. Extension lemma and proof of Theorem 3.1
In this section we use the following standard order notations: by O(1), O(8),
O(87') we mean that lim O(1), lim O(8)/8, lim O(6~')6 are constants, and
5—0% 6—0% 5—0%
by o(1), 0(6) we mean lim o(1)=0, lim 0(8)/8 =0.
5—0% 80+

We now begin with the standard cut-off functions for invariant manifold theory.
A cut-off function in one variable is a C” function o: [0, ®)— [0, =) satisfying
o(t)=1, tel0,1], o(r)=0, t=2 and sup (lo(?)| +|0'(t)| +|0"(t)|) <. Let

0=t

6 >0 and denote o5(t) := o(t/6). It is easy to verify that, in terms of our order
notation,

0s=0(1), d;=0(87"), 0s=0(57?.
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Now cut-off functions in the Banach space X* are defined by

ps(xc) = os(|lxcll),  Ps(x) := os(llxc]) 05 (|| Xsull o)
for x. € E¢, x,, € E°*. The following properties will be used later: p; is a C~
function. Indeed, for ||x.|| = J it is so since ps(||x.||) =1 while for ||x.|| = S, ||x.||
is a C” function since E° is finite dimensional and ¢, is C* as well. Moreover, it
satisfies the following estimates

ps(x.) = O(1),
1Dps(x ) = 05 (llxc DI Sup 1D xe 1]
=0(87),

2
1Dps (x|l élUl%(H%ll)l( sup ||D [lx.| |I> + |os(llx DI Sup, 1D [lxII I

[EAEX)
= 0(872) + 0(6~H)O(87Y)
=0(87?), (6.1a)

because ||D ||x|| || = O1), ID? |lx|| || = O(lix:|| ™) for ||x|| > 0. ps(x) is of class
C"! because the norm functions are C%'; it is C* in Nj since ps(x) = ps(x.) as
05(||xs]o) = 1 for x € Ns. Moreover,

ps(x)=1, xe€Qs and ps(x)=0, xeX"—Qys ,
Lip ps = Lip 05 Lip (|| - ||) sup 05 + sup o5 Lip o5 Lip (|| -{l)
=0(67"),

where Q;:= {x e X~ l fxs]la <8, ||x:f] <6, |lx.]l <8}, a box neighbourhood of
the origin.

We remark that following Vanderbauwhede and Iooss [37] one obtains
existence and smoothness of local centre manifolds for the locally defined
equations (2.1) by applying the global centre manifold result to a globally
extended equation of the form X = Ax + ps;(x)f(x). By the properties of p,
discussed above, the function F:= p,f satisfies the conditions of Theorem 5.1,
and the desired result follows from the fact that the solutions of equations (2.1),
(5.1) coincide in the neighbourhood Q5. Similarly, existence and regularity of the
local centre-stable and centre-unstable manifolds together with the local stable
and unstable foliations for equation (2.1) now follow directly from Theorems
5.1,5.2 for the extended equation. Conversely, Sijbrand [35] has shown that for
systems of ordinary differential equations every local centre manifold can be
constructed in this way. We extend his idea to the infinite-dimensional case in the
following two lemmas:

LemMMmA 6.1. Let W =graphh and h: U c E°— E*“*NX® with 0= a <1 be a
C™*"' r =0 function and U an open set in E°. Then W is invariant for equation
(5.1) if and only if h maps U into X', the domain D(A) of A, and the identity

Agh(x) + Eu(x. + h(x)) = Dh(x)[Acx. + Fx, + h(x.))] (6.2)
holds for all x. € U.
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Proof. Suppose W is invariant. For every x e W with x.e U, let x(¢) be a
solution curve in W containing x as an interior point, say %(¢,) = x for some ¢,.
Then, the invariance of W implies x,,(¢) = h(¥.(¢)). Because £(¢) is a solution,
then h(x.) = h(x.(¢,)) = %,.(ty) € D(A) by definition. Differentiating the identity
%, (t) = h(%.(¢)) at t = ¢, yields (6.2).

Conversely, suppose # maps U into D(A) and the identity (6.2) holds for all
x. € U. Then, for every x € W, let X.(¢) be the solution of the ordinary differential
equation X, = A x. + F.(x. + h(x_.)) such that £.(¢) € U for small |¢| and %.(0) = x..
It can be verified directly that x(¢) := %.(¢t) + h(x.(¢)) € W is a solution curve in W
containing x as an interior point. Indeed, by the definition for £, and identity
(6.2), we have

%o (t) = Dh(Z())[AX:(t) + F.(X(8) + h(£.(1)))]
= Ay h(Z.(1)) + F (%.(t) + h(X.(1)))

which together with the equation for x.(t) shows that the full equation is
satisfied. [J

Note that since the neighbourhood U in the proof above is arbitrary, the result
is true regardless of whether the equation is locally or globally defined. In
particular, it applies for equation (2.1). This observation will be used later.

Lemma 6.2 (Extension lemma). Assume hypotheses (2.1a, b) for equation
(2.1). For an arbitrary C'*"' local centre manifold W¢,.c X®, there are a small
>0, a function F € C*'(X* X)N C"'(Ns,X) and a global C"' centre manifold
W€ c N5 of the new equation

%=Ax+ F(x) (6.3)

satisfying that sup |F(x)|| = 0(8), Lip F =0(1), as 6— 0%, and that F|y,=f|o,,
xeX*
WeN Qs =Wip.NQs.
Proof. By definition, Wi, = graph & for some small neighbourhood V = X*® of
the origin and a C"*"! function h: E° NV — E* N X* with £(0) =0, Dh(0)=0.

Let ps; and ps be cut-off functions as in (6.1). For 6 >0 so small that Q,; <V,
define

he(xc) == ps(xc)h(xc)
W€ := graph h®
F(x):= ps()f (x) + G(x.)
where G: E°— E™ is defined by
G(x;) 1= Dh(x)[Acx. + Po(xc + h (x))fe(x: + h*(x.))]
= Po(xe + h(x)fulxe + R (xc))
= Po (X H{Dh(x)[Acxc + flxe + h(x:))] = fu(xe + h(x))}-

We claim that F, W¢ have the desired properties.
First, we verify the extension properties for F and W°. Indeed, W N Qs =
Wi,.N Qs by construction. Moreover, ps|o, = Ps|lo,=1, G|o, =0, and hence,
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F|o,=f|o,- Next, we use Lemma 6.1 to demonstrate the invariance of the

C

manifold W°. Note that because the local centre manifold W¢,. is invariant for
equation (2.1), we have by Lemma 6.1.
A h(x.) = Dh(x)[Ax. + f.(x. + h(x))]
—fuxc+h(x.)):=g(x), for x.+h(x)eV.
Moreover, since ps(x.) is a scalar constant with respect to the operator
Asu’ Asuhc(xc) = Asu(pé(XC)h(xv)) = Ps (xc)Asuh(XC) = Ps (x(.)g(xc). ThUS, by de-
finition of F, we have
Anh(xe) + Bu(xe + h(x)) = Auh (x) + o (xc + R () fsulxe + R (x,))
+ Dhc(xc)[Ar,xc + ﬁé(xc + hl‘(xv))ﬁ'(xc + hc(x(‘))]
- ﬁﬁ (x(‘ + hc(xc))f?u(xc + hc(xv)) — Ps (xc)g(xc)
= Dh(x)[Ax. + F.(x. + h°(x.))].

This implies that W€ is invariant for equation (6.3) by Lemma 6.1. Furthermore,
W€ is the centre manifold of the globally defined equation because W — Q,s =
E°— 0,5 on which the growth condition (5.2) characterising the global centre
manifold is satisfied.

Finally, to prove W c N, and the estimates for F, we first collect some order
estimates:

lh(x)lle = o(lix])), IDA(x:)lla = 0(1), as |lx.||—0%, and Lip h|o,, = O(1),
(6.4a)
because #(0) =0, Dh(0) =0 and 4 is of ¢lass C"*'"'. Also,
lg(x)lla =o(llxll), as |lx[l—0%, and Lip(gly,)=o0(1),
Lip (psg) =0(1), as d—0". (6.4b)

Here, the first two estimates are true because of the definition of g and the
preceding estimates for s together with the assumption that f(0)=0, Df(0)=0
and f € C"*"'. The third estimate is true because

Lip (psg) = sup [1IDps(x)l llg(xe)ll + los(xo)] Lip (®)|0.,))

where the first term is of order O(67")0(8) and the second O(1)o(1) by (6.1a)
and the preceding estimates for g. We also claim that the following estimates
hold:

[|IDR(x.)||lo = 0(1), Lip Dh=0(1)O(87"), as 6—0". (6.5)

We now estimate F and W* by assuming this claim and then prove the claim.
To simplify the notation further, we denote

H(x.):= Acxe + Ps(xc + h*(x)fe(xe + h9(x)),  O(x) := X + h*(x.).

Thus, G = Dh°H — (pf..)° 0 — psg.
It is easy to see that [|A°(x.)lla = |ps(x)l 12(x)lla = O(1) sup |||g, lla = 0(8)
by (6.4a). Therefore, W c N; for sufficiently small 8. Also, ||0(x.)}||» = O(j|x.|])-
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The fact that ||F(x)|| = 0(9) is demonstrated as follows. Starting with the first
term in the definition of F, we have ||psf(x)|| = O(1) [|f]0,()|l = o(||x||+) by the
hypothesis for the nonlinear term f. For the second term in the definition of F, we
note that the foregoing estimate also implies ||H (x.)|| = O(]|x.||). Since

|G = DR ) H | 0, (K + 11(Po fru) © O + 11(058) (x I
we also have ||G(x.)||=o0(6) by (6.4b) and (6.5). Therefore, the estimate
|1F(x)|l = 0(6) follows.
To show Lip F = o(1), we also begin with the first term of F, and for which we
have

Lip (psf) = Lip ps sup || f|g,,Il + sup |0s| Lip (f|o,,) = o(1)

because the first term after the inequality sign is of order O(8 ')o(8) and the
second o(1) by (6.1b) together with the assumption for f. For the second term of
F, we note that the foregoing estimate also implies

Lip [(p5f)° 6] = Lip (95 f) Lip 6 = o(1)
since Lip 8 =(1 + sup ||Dh°||,) = O(1) by the claim. Hence, Lip H= O(1)+
0(1) = O(1) and Lip (DhH) = o(1) because
Lip (DhH) = Lip (Dk°) sup [|H|o, || + sup || k||, Lip H
for which the first term is of order 0(1)O(8~')O(8) and the second o(1)O(1) by
the claim (6.5). We conclude from above and (6.4b) that
Lip G = Lip (DhH) + Lip [(5s ) * 0] + Lip (psg) = 0(1)

and, hence, Lip F = Lip (psf) + Lip G = o(1) as desired.
Finally, we complete the proof by proving claim (6.5). First, we have
|| DA (x)|lo = 0(1) because

1D (x ) o = 1DPs (I | g, (x )l + 105 (X I DA gy () s

of which the first term is of order O(6 "o (8), or O(1)o(1), and the second term
O(1)o(1). Next, to show Lip (Dh¢) = 0(1)O(8~") we have

Lip (Dh°) = max {Lip (Dhlo,), Lip (Dh%|g,,-0,)}

of which the first element is at most O(1) since & is of class C"*"'! and the second
element can be estimated

Lip (Dh|g,-0,) = sup  [ID?ps(x)l sup lIA(x)lla

€Q26— Qs xc€Qns

+2 sup [IDps(xll sup D)l + Lip (Dhl.,),
which is of order o(1)O(87') because the first term is O(8 *)o(8), or
0(6™No(1),

the second O(6 ")o(1) and the third O(1) by (6.1a) and (6.4a), respectively. O

A different version of this lemma can be obtained based on the following
observations. Note that if Lip f is not replaced by o(1) in all the estimates above,
then the  estimates for the extended nonlinear term  read
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IFx)) =0(8)+ O(d) Lipf and Lip F = o(1) + Lipf. Moreover, if f is of class
C~! while W5, belongs to the same C™*"! class of manifolds as in the lemma,
then the same result holds with these modified estimates of F. This remark will be
used in Section 7 below.

We are now ready to give a proof for Theorem 3.1.

Proof of Theorem 3.1. This is simply an application of Lemma 6.2 and
Theorem 5.2. Indeed, because of sup ||F(x)|| =0(d), Lip F =0(1) by Lemma
xeX*

6.2, the conditions that sup ||7, F(x)]| =0(8)<m = 0(d) and LipF =0(1)<
xeX*

€(r) for Theorem 5.2 are satisfied for sufficiently small 6. The smooth foliations
for the locally defined equation (2.1) are now obtained by restricting the smooth
foliations of the extended equation (5.1) to the neighbourhood V:=Q, c

Q5. U

We end this section with a remark that was used for the proof of Lemma 4.2. It
is easy to see that for a given solution of equation (5.1) that starts on the global
centre-stable manifold W constructed from Theorem 5.1, all the backward
extensions must stay on the manifold by the characterisation (5.2). Therefore, the
same statement is true for any local centre-stable manifold constructed by the
Extension Lemma 6.2 and Theorem 5.1.

7. Final rgmarks

(a) From the proof of the theorem and the remark after the Extension Lemma,
it is easy to see that the following theorem is true:

THEOREM 7.1. Assume the hypothesis (2.1a) for equation (2.1) and that the
nonlinear term f is of class C"' with f(0) = 0 and Lip f sufficiently small. Then the
equations when restricted to two C™*"! local centre manifolds of the origin are C”
conjugate.

(b) In practice, there may be no need for the Extension Lemma because all
centre manifolds in applications are constructed in the way described in Section 6.
These manifolds are as smooth as the equation and the foliations only loose the
Lipschitz continuity of the top partial derivative with respect to the base point.
Hence, the conjugating map in this situation loses the top Lipschitz continuity as
well. We have proved the following result:

THEOREM 7.2. Assume the hypothesis (2.1a) for equation (2.1) and that the
nonlinear term f is of class C"* with f(0) =0 and Lip f sufficiently small. Then the
equations when restricted to two local centre manifolds of the origin that are
constructed by the standard method are C” conjugate.

(c) For other types of infinite dimensional systems, e.g. the elliptic and
hyperbolic equations studied by Vanderbauwhede and lTooss [37], we believe that
invariant foliation theory can also be extended, and so can Theorems 2.1, 7.1,
7.2. The same result should also be expected for centre manifolds of normally
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hyperbolic invariant sets of diffeomorphisms and normally hyperbolic invariant
manifolds of flows, for which a theory of invariant manifolds and foliations has
long been established, cf., e.g., [21, 12-14]. The latter include the case of slow
manifolds in the theory of singular perturbations.

(d) Returning to the conjugacy problem for inertial manifolds of an
appropriate dissipative evolution equation discussed in the Introduction, we point
out that the same result with C° conjugating map applies for C*' inertial
manifolds and C*! equations. Furthermore, for C"' equations, the C° regularity
can be improved to C' when the spectral gap can be cut sufficiently away from the
imaginary axis. Indeed, unlike the general case considered in the proof of
Theorem 2.1, two inertial manifolds can be essentially regarded as lying in a
common manifold, the entire phase space, that possesses a stable foliation. Thus,
a proof for the C° or C' conjugacy statement follows directly from the invariant
foliation theory proved by Chow, Lin and Lu [5] and the argument of Lemma
4.1. We remark that in general inertial manifolds are of class C' at best for
C™!, r 21 systems under the conditions mentioned above. In fact, an example of
an analytic equation having a C' inertial manifold which is not C* was given by
Chow, Lu and Sell [8]. Note that even though this result applies only to inertial
manifolds that are constructed by the standard method described in Section 1, it
might be quite adequate for many practical purposes.
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