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Synopsis
In this paper, we prove that for a system of ordinary differential equations of class Cr+U', rSO and
two arbitrary C+Ijl local centre manifolds of a given equilibrium point, the equations when restricted
to the centre manifolds are C conjugate. The same result is proved for similinear parabolic equations.
The method is based on the geometric theory" of invariant foliations for centre-stable and
centre-unstable manifolds.

1. Introduction

Following the pioneering work on invariant manifold theory by Poincare [33],
Lyapunov [23], Hadamard [16], Perron [31], the theory of centre manifolds for
finite dimensional dynamical systems has been developed by Pliss [32], Kelley
[22], Hirsch, Pugh and Shub [20,21], Fenichel [12,13], Wells [38], Carr [39],
Chow and Hale [3], Sijbrand [35], Vanderbauwhede [36] and others. Centre
manifold theory for infinite dimensional systems has been studied by Henry [19],
Carr [39], Hale, Magalhaes and Oliva [18], Hale and Lin [17], Mielke [27], Bates
and Jones [2], Chow and Lu [6, 7], Chow, Lin and Lu [5], Vanderbauwhede and
Iooss [37], and many others.

Although most fundamental problems in the theory of centre manifolds have
been solved, a convincing solution for the uniqueness problem of local centre
manifolds has been missing. In the context of ordinary differential equations, the
standard method for constructing a local centre manifold at a given equilibrium
point is to extend the locally defined equation by a cut-off function to a globally
defined one for which existence and smoothness of a unique global centre
manifold can be established by either Hadamard's or Perron's method (cf. e.g.
Anosov [1], Hirsch, Pugh and Shub [21]). The nonuniqueness of local centre
manifolds results from the use of arbitrary cut-off functions in the construction as
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shown by Sijbrand [35], and under certain conditions there is an exceptional case
given by Bates and Jones [2]. There is little doubt that the dynamics on different
local centre manifolds should behave in the same way, but the question is in what
sense or to what degree that is so. This question has attracted a good deal of
attention in the literature since the birth of the theory, and some results, by no
means a complete account here, can be summarised as follows: (1) any local
centre manifold of a given equilibrium point must contain all the invariant sets,
such as equilibrium points, periodic, homoclinic, heteroclinic orbits, etc. near the
equilibrium point; (2) the formal Taylor expansions at the equilibrium point of
the vector field when restricted to different local centre manifolds are exactly the
same (see, e.g. Carr [39], Sijbrand [35]). In this paper, however, we examine the
uniqueness question from the standpoint of smooth conjugacy. More specifically,
we want to show that the restrictions of the equation to two arbitrary local centre
manifolds are actually topologically or differentiably conjugate, depending on the
smoothness of the vector field. That is, the smooth conjugacy class of the
restricted equations is indeed unique.

Note that, speaking at the conjugacy level, our result does include the
properties (1,2) above, but the converse is less clear. Indeed, we still do not
know what these properties imply about the conjugacy problem within the
context of centre manifold theory, and nothing at all can be said about it outside
the theory. For example, for the two equations x = — xe~l/xt and x = xe~Vxi, the
origin is the only invariant set and the formal Taylor expansions at the origin are
the same. But they are not conjugate because the equilibrium point is stable for
the first equation and unstable for the second one.

The main result, Theorem 2.1, is treated in terms of two types of differential
equations: ordinary differential equations and semilinear parabolic equations.
The method is based on invariant foliations for centre-stable and centre-unstable
manifolds. The theory used here is twofold. Firstly, due to many people's studies
of this subject, cf., e.g. [1,12,13,21] for finite dimensional systems, and [5] for
infinite dimensional systems, it has become a standard procedure to construct
simultaneously for a sufficiently differentiable dynamical system a local centre,
centre-stable, and centre-unstable manifold, together with a stable and an
unstable foliation on the centre-stable and centre-unstable manifold, respectively
(see Theorems 5.1.5.2). Secondly, we show in Theorem 3.1 that these geometric
structures can be recovered for a given local centre manifold by extending the
local manifold of the locally defined equation to the global centre manifold of a
globally defined equation for which the invariant manifold and foliation structures
follow easily from known results. Based on this, our geometrical proof is carried
out in two steps. We first show in Lemma 4.1 that if two local centre manifolds
happen to share a common centre-stable or a common centre-unstable manifold,
then the conjugacy follows from the foliation of that manifold. In general, two
centre manifolds lie in neither a common centre-stable nor a common centre-
unstable manifold (a simple example is given in Section 3). In this case, we show
that the flow structures on the two manifolds can be transformed from one to the
other through the flow structure on a third local centre manifold which lies in the
intersection of a centre-stable manifold containing one of the given centre
manifolds and a centre-unstable manifold containing the other.
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Recently the theory of inertial manifolds has been developed for some
dissipative evolution equations, see [15,26,7,9]. We find that in this context a
similar conjugacy question arises. An inertial manifold of such a system is a
finite-dimensional invariant manifold which attracts solutions exponentially. In
particular, this implies that it contains the global attractor. Under certain
conditions, such as a spectral gap condition or the cone condition, inertial
manifolds do exist. Indeed, similar to the construction of local invariant
manifolds, one obtains such an inertial manifold by modifying the equation
outside an absorbing ball, which contains the attractor, with a cut-off function and
constructing an inertial manifold for the modified equation. Restricting that
globally-defined inertial manifold to the absorbing ball gives the desired
inertial manifold for the original system that is also referred to as a local
inertial manifold. Again, different cut-off functions give rise to different
local inertial manifolds; and it is natural to ask if the dynamics on different local
inertial manifolds are the same up to smooth conjugacy. In fact, we shall be able
to conclude at the end of this paper that the same answer with C° or C1 conjugacy
also applies.

We remark that invariant foliation theory has been applied to conjugacy
problems by many people. For example, Anosov [1], Palis [28], Palis and Smale
[29], and Robinson [34] used it to analyse structural stability of finite-dimensional
dynamical systems. Palis and Takens [30] used it to prove a result which implies
that two differential equations are locally topologically conjugate if the equations
when restricted to their centre manifolds are topologically congugate. Lu [24,25]
used the infinite-dimensional counterpart to generalise the Hartman-Grobman
theorem to parabolic equations. It is also very useful in other areas of study of
dynamical systems. In fact, it is one of the key components for the geometric
theory of singular perturbations of Fenichel [14] and its applications, cf. e.g.
Deng [11]. It also plays an important role in the theory of homoclinic and
heteroclinic bifurcations of Chow and Lin [4] and Deng [10].

The paper is organised as follows. In Section 2, we state the main result. In
Section 3, we introduce the principal tool, namely, local invariant foliation
theory. The main result, Theorem 2.1, is proved in Section 4. The existence
theorem for local invariant foliations from Section 3 is proved in Sections 5 and 6.
We end the paper in Section 7 with a discussion of some variations and possible
generalisations of our results.

2. The main result

Let X be a Banach space and consider a semilinear evolution equation

x=Ax+f(x), xeX, (2.1)

together with two hypotheses:
(2.1a) A is a sectorial operator from a dense domain D(A) c X into X. Let o(A)

denote the spectrum of A, then o(A) n {A | Re k ^ 0} consists of a finite
number of isolated eigenvalues, each with a finite-dimensional generalised
eigenspace.
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(2.1b) Let Xa be the fractional power space associated with the operator A and
U a X" be a neighbourhood of the origin x = 0. Then / : U—> X is of class
Cr + 1 1 with r = 0. Moreover, /has zero of higher order at the origin, i.e.,
/(0) = 0 and the linearisation D/(0) = 0.

For background information concerning semilinear evolution equations, we
refer to [19]. We only point out that when X is finite-dimensional, A is just a
matrix, Xa = X for all a and equation (2.1) is simply a system of ordinary
differential equations. It is known that if / e C°'l(U, X), for every jcoe U <=Xa,
unique solution x(t) e D(A) for small t > 0 with x(0) = xQ. Let S,(xa) = x(t) denote
the resulting local flow, then a submanifold W c Xa is said to be locally invariant
if for every x eW there is a curve in W that is a solution of the equation and
contains x as an interior point.

Let Ec c X be the generalised finite-dimensional eigenspace corresponding to
the eigenvalues oc := o(A) D {A | Re A = 0}. Then a locally invariant
differentiable manifold Wc c U is said to be a local centre manifold of the
equilibrium point x = 0 if Wc is tangent to £ c at the origin x = 0.

For simplicity, by a C diffeomorphism we mean a homeomorphism if r = 0.
Our main result is the following theorem:

THEOREM 2.1. Assume tfie hypotheses (2.1a, b) for equation (2.1). Then the local
flows on two arbitrary C + l p l /oca/ centre manifolds in l / c X " are locally Cr

conjugate. More specifically, if W\ and Wc
2 are such manifolds, then there is a

neighbourhood V all of the origin and a Cr diffeomorphism (j): W\ flV-> Wc
2 fl

V such that

for allxeW[nVand allt>0 so long as S,(x) eW\nV.

Two different versions of this theorem with weaker regularity assumptions on
the nonlinear term / and slightly more restrictive assumptions on the centre
manifolds are given in Section 7.

3. Local foliations

Let <f := o{A) n {A | ReA < 0}, a" := o(A) D {A | Re A > 0}. Then o(A) = cr5 U
oc U a". By hypothesis (2.1a), a" consists of a finite number of isolated
eigenvalues, each with a finite-dimensional generalised eigenspace. Let E" be the
generalised eigenspace corresponding to a" in D(A). Because both Ec and E" are
finite-dimensional in D(A), the projection Jit. D(A)—> E'a D(A) can be con-
tinuously extended to Jtt: X—»E' a X for i = c, u. Therefore, ns := YDX — nc — itu

is also a projection map, and so we can denote Es := JTS(X). We denote
throughout

Xa={EsnXa}®Ec®Eu, Ecs:={EsnXa}®Ec, Ecu := Ec 0E"'.

Note that E' aXa for all O^a, i = c, u, whereas Ecs depends on the fractional
power a. We also use x =xs + xc+xu with xt e E', i = s, c,u and ||;t||a = \\xs\\a +
ll*cll + Pull, where || • ||a is the graph norm for Xa and || • || is the norm for X.
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Let K c ( / be a neighbourhood of the origin where UczXa is as in the
hypothesis (2.1b). A locally invariant manifold Wa cz V (respectively Wcu a V) is
said to be a local centre-stable (respectively centre-unstable) manifold of the
equilibrium point x = 0 if it is tangent to Ecs (respectively Ecu) at this point when
differentiable, or if it is the graph of a C01 function h: Ecs n i / - > £ " (respectively
h:EcuD V^E") with h(0) = 0 and sufficiently small Lipschitz constant Lip h< 1.
We shall take Lip h < 3 in various places for technical reasons. For simplification,
we also use Lip Wcs < p to mean Lip h< p. Such slightly abused notation also
applies to centre-unstable and centre manifolds.

Let W c V be a locally invariant manifold of the origin. Let {&(p) \ p e W} be
a family of submanifolds of W parametrised by p e W. {&(p) \p eW} is said to
be locally positively (respectively negatively) invariant if S i f f ^ j f l V c
&(St(p)) H V for those t i? 0 (respectively t Si 0, provided S,{p) is well-defined on
W) with Sr(p) € W fl V for all r e [0, t] (respectively T e [t, 0]). It is called a Cr

family of CA manifolds if the set {(p, q) \ p e W, q e &(p)} is a C X CrA

submanifold ofX"XX", where rgO.
Let Wcs be a local centre-stable manifold in neighbourhood V of the origin. A

family of submanifolds {^(p) \p e W"} is said to be a C x CA stable foliation
for W" if the following conditions are satisfied:

(i) pe9f(p) of each peWcs;
(ii) 3Fs(p) and 3Ps(q) are disjoint or identical for each p and q in Wcs;
(iii) if r ^ 1, fP(0) is tangent to ES at the origin; or if r = 0, every leaf 3>\p~) is

the graph of a C01 function, say i p ( / ) . ' ) : F n F ^ £ f " n K with Lipschitz
constant Lip <p(p, •) < 1 for all /? € Wra near the origin;

(iv) {5F (p) \p e Wcs} is a positively invariant Cr family of C r l manifolds for
Wcs.

Note that we can always identify the local centre-stable manifold Wcs with the
linear space Ecs locally through a function from E" into E" whose graph is the
manifold itself. Thus, in terms of the coordinate system for E", conditions (i-iv)
amount to saying that there is a Cr x C r l function q>; {Ecs D V) x {£s f l F } ^ £"
with S^{p) = graph <p(/?, •) that satisfies (i) pc = <p(/7, pv); (ii) pc = (p(^, ps.) if and
only if qc = <p(/?, ̂ s); (iii) either the partial derivative with respect to the second
variable D2(p(0, 0) = 0 or Lip (p{p, •) < 1, depending on whether r > 0 or r = 0;
and (iv) S , ^ + <p{p, xs)) = nsS,(x) + cp{S,{p), jtsSt(x))tox small r ^ 0 , where p =
Ps +Po q = qs + qce ECS n v.

Similarly, a C x Crl unstable foliation {Fu{p) \peWcu} for a local centre-
unstable manifold Wcs satisfies:

(i) pe&u(p) for each p e Wcu;
(ii) &u(p) and ^"(^) are disjoint or identical for each p and 17 in Wcu;

(iii) if r =5 1, ^"(0) is tangent o £" at the origin; or if r — 0, it is the graph of a
C0'1 function, say ip(p, •): Eu n V-> £cs n K with the property that Lip \p(p, •) <
1 for all p e Wcu near the origin;

(iv) {&u(p) \pe Wcu} is a negatively invariant Cr family of C r l manifolds for
Wcu.

Note that an unstable foliation can be expressed in terms of the local
coordinate system for Ecu in the same way as was done for stable foliations in the
previous paragraph.
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We remark that the formulation of the stable and unstable foliations in this
paper follows that of Fenichel [14] for the geometric theory of singular
perturbations.

One of the key ingredients for proving the main result is the following theorem
which will be proved in Section 6:

THEOREM 3.1. Assume the hypotheses (2.1a, b) for equation (2.1). Then for any
Cr+1A local centre manifold Wc a U of the origin, there are a C'1 local
centre-stable manifold Wcs and a Cp l local centre-unstable manifold Wcu in a
neighbourhood V c {/ of the origin both containing Wc as a submanifold and
satisfying Lip W < \, i = cs, cu. Moreover, there are a Cr x CrA stable foliation on
Wcs and a Crx CrA unstable foliation on Wcu.

We end this section with an example. Consider the three-dimensional system of
ordinary differential equations: x = —x, y = y2, z = z. Every local centre manifold
of the origin is given by one of the curves W := {{cxe

xly, y, 0) |for small
y ̂ 0} U {(0, y, c2e~l/y)\ for small y = 0} for some choice of the constants cx, c2.
Moreover, given a local centre manifold Wc, there is a local centre-stable
manifold Wcs containing Wc and, in terms of a stable foliation, Wcs = {p +
(1, 0, O)JC \pe Wc, |JC| « 1>. Similarly, a local centre-unstable manifold Wcu

containing Wc can be expressed as {p + (0, 0, l)z | p e Wc, \z\ « 1} in terms of an
unstable foliation. In fact, every local centre stable manifold is given by z = 0 for
y ̂ 0 , z = e~Vyf(e~l/yx) for y >0, x, y small, where / is any sufficiently smooth
function; similarly, every local centre unstable manifold is given by x =
ellyf(ellyz) for y < 0, x = 0 for y = 0, y, z •small, g a sufficient smooth function. A
given local centre manifold lies on a certain centre stable (centre unstable)
manifold, if c2 = /(0) (cx =g(0), respectively). Observe that two pairs of distinct
constants (c, c2) can be chosen so that the resulting local centre manifolds share
neither a common centre-stable manifold nor a common centre-unstable man-
ifold. This observation motivates the proof of the main theorem in the next
section.

4. Proof of Theorem 2.1

LEMMA 4.1. Let Wcs <=Xa be a CA local centre-stable manifold of the origin
with Lip Wcs < 1 and r ̂  0. Assume there is a C X Cr'' stable foliation on Wcs.
Then for two arbitrary CA local centre manifolds W\ c Wcs, WC

2^WCS of the
origin with Lip Wi< 1, i = 1, 2 the conclusion of Theorem 2.1 holds true. That is,
there is a neighbourhood V c X " of the origin and a Cr diffeomorphism
(p: W\ n V-+ Wc

2 n V such that

Sl°<p(x)=<p°S,(x)

for d / / ^ e W ; n V and all t satisfying St{x) eW\C\V.

Proof. We only demonstrate the Co>' case since the Cr' case with r > 0 is
simplified when the contraction mapping principle is replaced by the implicit
function theorem.
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By assumption, let {Fs(p)\p e Wcs} be the local stable foliation in a
neighbourhood U of the origin. We want to show that a homeomorphism is
defined by (p(p) = q := &s(p) H W2 for p e W\ near the origin.

To do this, we begin by identifying the local centre-stable manifold Wcs with
the coordinate plane Ecs n U via a C0' l function whose graph is the manifold Wcs.
Now, in terms of the coordinate system for Ecs, let Wf = graph /i, for some C< u

function h^. Ec (1 U^ Es n U with Lip fc, < 1 and let q>: {£CI n U} x {£* n t / } ^
Ec C\ U represent the stable foliation on Wcs, satisfying 3Fs{p) = graph <p(/?, •),
and Lip q>(p, •)<! for all p e Ecs D I/. Let 6 > 0 be so small that the closed box
B := {x e i s " | ||JC,||a = 5, \\xc\\ = 8} centred at the origin is contained entirely in
U. Consider the operator x = <&(/?, x), x e B defined by xc = <p(p, xs), xs = h2(xc)
and parametrised by p e W\ n U. We want to show that for some carefully chosen
neighbourhood VczB of the origin, the fixed point q eW2nV, which is the
intersection point of 3F(p), p e W\ n V and W2, gives rise to the conjugating
map (p.

To be precise, choose a neighbourhood V o c f i of the origin so that
\\(p(p, xs)\\ = 6 for all peV0, ||Xj||a^<5 and ||^,-(^C)|U = 8 for all | | x c | | ^ 6 ,
i = I, 2. This can be done because we have the strict inequalities Lip (p(p, -)<1
and Lip ht < 1. Hence, <&(/?, 0 rnaps B into itself for all p e W\ n VJ,. Moreover,
by the box norm for the space X, we have

Lip O(p, •) = max (Lip <p(p, •), Lip hx) < 1

uniformly for all p e W\ fl Vo. Therefore, by the contraction mapping principle,
there is a unique fixed point q{p) 6 W2 n B for every p e W\ D Vo. Denote by
q := (p(p) the fixed point, then (p is C°.-Arguing symmetrically, we can also show
that for every point q e W2 n Vo there is a unique fixed point /? e W\ f l B o f the
operator xc = q>(q, xs), xs = hx{xc) so that the fixed point p := <p(q), which is the
intersection point of 3^s(q) and W\ n B, depends continuously on q e W2 Pi Vo.

We now claim that the function <p is actually locally invertible with inverse <j).
More specifically, we claim

In fact, let p = <j>(q) with q e <j>(W\ n Vo) n Vo- We first need to show q = <p(p)
with p e (p{W2 n VJ,) n VJ). By definition, we have pc = cp{q, ps), ps = hx(pc) with
qs = h2(qc). Because of the foliation property (ii), qc = (p(p, qs), so q is the fixed
point of the operator <&(/?, •), provided that p e W\ D VJ,. Suppose on the
contrary that p e B — Vo. By definition, there exists for q e (p{W\ n VJ,) n VJ, a
point p e Wi fl Vo such that q = (p{p), i.e. qc = <p(p, ^ s ) , qs — h2(qc). By the
foliation property (ii) again, pc = q>{q, qs). This gives rise to the following
contradiction:

IIPc -PcW = ll<p(?, p.) - <p(<z, p.s)ll < UP, -Ps\\a

and
lip, - p , L = \\hi(Pc) ~ Ai(pc)IU < IIPc -Pell ,

because oi ps = hx{pc). This implies ||p — p | | a < ||p —pIL- Therefore, we must
have p = p e W\ D VJ,, ^ = 0 ( p ) = <p°(p(q). Conversely, the same argument
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shows that if q = <p(p) with p e <j>(Wc
2 n Vo) n Vo, then p = 4>(q) = 4>°(f>(p). This

proves the claim.
By the foregoing argument the neighbourhood V can be any open set satisfying

inv0)nv0 and vn\Vi = 4>(wc
2nv0)nv0,

for instance, we can take V := Vo- { (W| - 0(W^ n V()) n Vo) U (W^ - <j>(Wc
2n

Vo) n Vo)}-
Finally, since S,(p) e W[, S,(<t>(p)) e W|, ^(tf>(p)) = ^s(/>) and S,(^(/>)) c

&s(S,(p)), locally, by the invariance of the centre manifolds and the foliation, we
have

sr° 4>(P) = st{3F(P) n wc
2) = JF(S,O>)) n w^

solongas5t(p)eW^n V. D

We remark that the same conclusion also holds true for any Cr'1 local
centre-unstable manifold together with a C ' x C'1 unstable foliation.

LEMMA 4.2. Let W\, W2 be two Cr+XA local centre manifolds of the origin. Let
Wcs ^Xabea CA local centre-stable manifold containing W\ and Wcu c X " a C r l

local centre-unstable manifold containing W2, both constructed according to
Theorem 3.1. Then the intersection WcsnWcu is another CA local centre
manifold, Wc, of the origin with Lip Wc < 1.

Proof. For the same reason as in the last proof, we only demonstrate the C01

case. Since the centre-stable and centre-unstable manifolds are constructed
according to Theorem 3.1, they satisfy Wcs = graph hcs, Wcu = graph hcu for some
C0'1 functions hcs,hcu defined near the origin with Lip ft'< 5, i = cs,cu. The
intersection Wcs fl Wcu consists of all points xs + xc + xu e X" satisfying xu -
hcs(xc, xs), xs = hcu(xc, xu). Think of the right-hand side of these equations as an
operator parametrised by xc, then the contraction constant of this operator is
bounded by max {Liphcs(xc, •), hiphcu(xc, •)}<! uniformly for all small ||xc||.
By the contraction mapping principle, one can solve uniquely for a C° function
*s +xu = hc{xc) for small ||JC ||„-- hc is Lipschitz with

as Lip h' < 5, i = cs, cu by Theorem 3.1. This sketch can be made as precise as we
have done for the proof of Lemma 4.1 above.

To show Wc := graph hc is indeed a C0'1 local centre manifold of the origin, it
suffices to show that it is locally invariant. For X finite dimensional, this is trivial.
Otherwise, we proceed as follows: Let p e Wc, and let x(t) e Wcu be the solution
curve in the centre-unstable manifold containing p as an interior point. Because
of the uniqueness for the initial value problem of equation (2.1) and the
invariance of Wcs, x(t) e Wcs for small t i?0. Because any backward extension of
the solution x(t) must also be in Wcs by the remark after the proof of Theorem
3.1 in Section 6, we have that x(t) e Wcs for all small |f| for which it is defined.
Hence, x(t) eWc = Wcs n Wcu for the same small \t\. •
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Proof of Theorem 2.1. Let Wcs be a C'1 local centre-stable manifold
containing W\ and Wcu be a Cr>' local centre-unstable manifold containing Wc

2 by
Theorem 3.1. Then WC

3:=WCS HWCU is another C r l local centre manifold by
Lemma 4.2. By Theorem 3.1 again, there exist C x CrA stable and unstable
foliations on Wcs and Wcu, respectively. Hence, the conditions of Lemma 4.1 are
satisfied for W\, Wc

3 on Wcs, and Wc
2, W

c
3 on Wcu, respectively. Hence, the flows

on Wj and Wc
3 are C conjugate for i = 1,2. Therefore, the local flows on W\ and

Wc
2 are C conjugate because Cr conjugacy is an equivalence relation. •

5. Global foliations

The following two sections are dedicated to the proof of Theorem 3.1. The idea
of the proof is to show that the local result can be obtained by extending the
given local centre manifold of the locally defined equation to the global centre
manifold of a globally defined equation to which some modified global result
applies. In this section, we introduce the global theory of invariant manifolds and
foliations.

We begin with some more notation. For S>0, define N6 := {x eJLa \ ||xs||Q.<
<5, IK || < «5}, a tubular neighbourhood of Ec. Also, E%: = Es n Ns, Eu

6:=Eun
N5, Ec£: = Ecs HN8, Ec

d
u:= Ecu D N6, and Ef: = Esu n N6 where Esu :=ES®EU.

For simplicity, we denote nsu := ns + nu, Asu : = Ansu, xsu := nsux = xs +xu.
In addition to equation (2.1) which is only defined near the origin, we consider

equations of the form

x=Ax._+F(x), (5.1)

where F(x) e X is defined for all x e X.a for some 0 = a < 1. From now on, we use
Wfoc, WZc, Wfoc for local centre manifold, local centre-stable manifold, local
centre-unstable manifold, respectively; while Wc, Wcs, Wcu are reserved for
global centre manifold, global centre-stable manifold, global centre-unstable
manifold, respectively. The former are defined as in the previous sections and the
latter are denned as follows:

Wc:=\xeXa

Wcs:=\xeXa

sup \\JisuSt(x)\\a<™\,
J

sup ||jru5^)IU <»}, (5.2)

supWcu:=\xeX

We have the following results:

THEOREM 5.1 (Existence, uniqueness and smoothness of global invariant
manifolds). Assume hypothesis (2. la) for the linear operator A and that Fe
C0''(X1, X) n CrJ(N6, X) (respectively C°' '(X", X) D C(N6, X)) satisfying
F(0) = 0, where 0^a<l, ri=0. There exist constants m = O{&), e = e(r) and
60 < 6 such that if supxeX- II ̂ suF(x) || < m, Lip F < e, there exist for equation (5.1)
a unique global centre-stable manifold and a unique global centre-unstable
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manifold. These manifolds are of class C r l (respectively Cr) and are given by
Wcs = graph hcs, Wcu = graph hcu. Here, hcs: ECS^EU

6(I, hcu: Ecu ^ E%a are of
class C0'1, and hcs

 E<*, /ic"|£™ are of class C r l (respectively Cr), satisfying
h'(0) = 0, Lip ti < 5, "or Dh'{0) = 0 for i = cs, cu, if DF(0) = 0 for r ̂  1.
Furthermore, there is a unique global centre manifold given by Wc = Wcs D Wcu =
graph hc, where hc: Ec -> E%u

a is of class Cr>1 (respectively C) satisfying 6c(0) = 0,
Lip hc < 1 and for r ̂  1, Dhc(o) = 0if DF(0) = 0.

THEOREM 5.2 (Existence and smoothness of global foliations). Assume the
conditions of Theorem 5.1. Then there exist constants m = O(d), e = e(r) and
60<6 such that if \\JISUF\\ <m, L i p F < e , there exist for equation (5.1) unique
global centre-stable and centre-unstable manifolds Wcs, Wcu as stated in Theorem
5.1 and, in addition, there exist a C X C r l (respectively Cr~' x C ' i / r ^ l ) global
stable foliation {&s(p)€ N6(t \ p € Wcs n N6a} on Wcs and a Cr X C r l (respectively
C'1 xCifr^l) global unstable foliation {&u(p) e N6n \ p e Wcu n NS()} on Wcu.
More specifically, there are functions cps: E%, x E%0-* E%u

0, <pu: Ec
b

u
0 x E%n-^ E%t of

class Cr X CrA (respectively C~x x C if r^l) satisfying the properties (i-iv) for
invariant foliations of section 3 such that 2P(p) = graph cp'(p, •), i = s, u.

Theorem 5.1 was first explicitly stated in [37], while Theorems 5.1, 5.2 with the
tubular neighbourhoods replaced by the respective entire subspaces were
essentially proved by Chow, Lin and Lu [5]. Their proofs can be easily adapted to
our case with some minor modifications based on the following two observations.
The regularity of the global manifolds and foliations at any point only depends on
a neighbourhood of the positive orbit through that point for the centre-stable case
or a neighbourhood of the negative orbit for the centre-unstable case. On the
other hand, following their approach via the variation of constants formula, it is
straightforward to verify that a constant 6n < d can be found so that all orbits
starting in the smaller tubular neighbourhood NSo stay in the larger one Ns for all
forward or backward time depending on the centre-stable or the centre-unstable
case. For these reasons, we omit the proofs and refer to these two sources for the
necessary modifications.

6. Extension lemma and proof of Theorem 3.1

In this section we use the following standard order notations: by 0(1), O(S),
1) we mean that lim 0(1), lim O(d)/d, lim O(d~1)d are constants, and

8->0+ <5->0+ 5 0 +

by o(l), o(6) we mean lim o(l) = 0, lim o(<5)/<5 = 0.

We now begin with the standard cut-off functions for invariant manifold theory.
A cut-off function in one variable is a C°° function o: [0, °°)—»[0, °°) satisfying
a(f) = l, te[0, 1], a(0 = 0, f=:2 and sup (|a(0| + |cx'(OI + K(0l)<°°- Let

0S0Sr

6 >0 and denote o6(t) := o(t/d). It is easy to verify that, in terms of our order
notation,

o6 = 0(1), a^ = O(6~l), &'6 = O(d~2).
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Now cut-off functions in the Banach space X* are denned by

P»{xc) := <7a(ll*cll), Ps(x) : = od(\\xc\\)os(\\xsu\\a)

for xc e Ec, xsu e Esu. The following properties will be used later: pd is a C*
function. Indeed, for ||JCC|| ^ <5 it is so since Pa(||xc||) = 1 while for ||xc|| i? 8, \\xc\\
is a C°° function since Ec is finite dimensional and o6 is C°° as well. Moreover, it
satisfies the following estimates

Pd(Xc) = '

.||)| sup

sup
£ 6

), (6.1a)

because ||D ||*c|| || = O(l), ||D2
 ||JCC|| || = Odl^ll"1) for ||xc|| >0. Pd(x) is of class

Co>1 because the norm functions are C01; it is C°° in Ns since p6(x) = pd(xc) as
°6(\\Xm\a) = 1 for x e A^. Moreover,

pa(Jt) = l, xcQ* and /5a(*) = 0, x e X ^ - g ^ ,

Lip p6 ^ Lip (j6 Lip (|| • ||) sup od + sup o6 Lip o6 Lip (|| • ||a)

where Qs := {JC eX" | |K|U < 6, ||xc|| < 5, \\xu\\ < 8}, a box neighbourhood of
the origin.

We remark that following Vanderbauwhede and Iooss [37] one obtains
existence and smoothness of local centre manifolds for the locally defined
equations (2.1) by applying the global centre manifold result to a globally
extended equation of the form x = Ax + p6(x)f(x). By the properties of p6

discussed above, the function F := psf satisfies the conditions of Theorem 5.1,
and the desired result follows from the fact that the solutions of equations (2.1),
(5.1) coincide in the neighbourhood Q6. Similarly, existence and regularity of the
local centre-stable and centre-unstable manifolds together with the local stable
and unstable foliations for equation (2.1) now follow directly from Theorems
5.1,5.2 for the extended equation. Conversely, Sijbrand [35] has shown that for
systems of ordinary differential equations every local centre manifold can be
constructed in this way. We extend his idea to the infinite-dimensional case in the
following two lemmas:

LEMMA 6.1. Let W = graph h and h: UcEc^Esu n X " with 0 ^ a r < l be a
Cr+1'\ r^O function and U an open set in Ec. Then W is invariant for equation
(5.1) if and only if h maps U into X1, the domain D(A) of A, and the identity

Asuh{*c) + Fsu(xc + h(xc)) = Dh(xc)[Acxc + Fc(xc + h(xc))] (6.2)

holds for all xc e U.
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Proof. Suppose W is invariant. For every x e W with xc e U, let x(t) be a
solution curve in W containing x as an interior point, say x(t0) —x for some t0.
Then, the invariance of W implies xsu(t) = h(xc(t)). Because x(t) is a solution,
then h(xc) = h(xc(t0)) = xsu(t0) e D(A) by definition. Differentiating the identity
xsu(0 = h{xc{t)) at t = f0 yields (6.2).

Conversely, suppose /i maps U into D(v4) and the identity (6.2) holds for all
xc e U. Then, for every x e W, let xc(t) be the solution of the ordinary differential
equation xc = Acxc + Fc(xc + h{xc)) such that xc(t) e U for small \t\ and xc(0) = xc.
It can be verified directly that x(t) := xc(t) + h(xc(t)) e W i s a solution curve in W
containing x as an interior point. Indeed, by the definition for xsu and identity
(6.2), we have

x,u(t) = Dh(xc(t))[Acxc(t) + Fc(xc(t) + h(xc(t)))]

= Asuh(xc(t)) + Fsu(xc(t) + h(xc(t)))

which together with the equation for xc(t) shows that the full equation is
satisfied. D

Note that since the neighbourhood U in the proof above is arbitrary, the result
is true regardless of whether the equation is locally or globally defined. In
particular, it applies for equation (2.1). This observation will be used later.

LEMMA 6.2 (Extension lemma). Assume hypotheses (2.1a, b) for equation
(2.1). For an arbitrary Cr+1?1 local centre manifold ff^cX", there are a small
d>0, a function F e C°-\Xa, X) n Crl(Na,X) and a global CA centre manifold
Wc cz N6 of the new equation

x=Ax + F(x) (6.3)

satisfying that sup \\F(x)\\ =o(d), LipF = o(l), as d^0+, and that F\Qt>=f\Qb,

Proof. By definition, Wjoc = graphh for some small neighbourhood V c X ° of
the origin and a C r + u function h: Ec C\V^ Esu HXa with h(0) = 0, Dh(0) = 0.
Let p6 and ps be cut-off functions as in (6.1). For 6 > 0 so small that Q26 <= V,
define

hc(xc):=p6(xc)h(xc)

Wc:= graph hc

F(x):=p6(x)f(x) + G(xc)

where G: EC^ESU is defined by

G(xc) : = Dhc(xc)[Acxc + ps(xc + hc(xc))fc(xc + hc(xc))]

- p6(xc + hc(xc))fsu(xc + hc(xc))

- pd(xc){Dh(xc)[Acxc +fc(xc + h(xc))] -fm(xc + h(xc))}.

We claim that F, Wc have the desired properties.
First, we verify the extension properties for F and Wc. Indeed, Wc D Qs =

Wfoc^Qd by construction. Moreover, Pa|e6 = Pa|e6 = 1, G\Qs = 0, and hence,
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F\Qti=f\Q/i. Next, we use Lemma 6.1 to demonstrate the invariance of the
manifold Wc. Note that because the local centre manifold Wjoc is invariant for
equation (2.1), we have by Lemma 6.1.

A,uh(*c) = Dh(xc)[Acxc +fc(xc + h(xc))]

-fsJ,xc + h(xc)): = g(xc), for xc + h(xc) e V.

Moreover, since ps(xc) is a scalar constant with respect to the operator
A,u, Axuh

c(xc) = Asu(pd(xc)h(xc)) = p6(xc)Asuh(xc) = ps(xc)g(xc). Thus, by de-
finition of F, we have

Asuh
c(xc) + Fsu(xc + hc (xc)) = Asuh

c(xc) + p6(xc + hc{xc))fsu(xc + hc(xe))

+ Dhc(xc)[Acxc + pd(xc + hc(xc))fc(xc + hc{xc))\

- ps(xc + hc(xc))fsu(xc + hc(xc)) - p6(xc)g(xc)

= Dhc(xc)[Acxc + Fc(xc + hc(xc))].

This implies that Wc is invariant for equation (6.3) by Lemma 6.1. Furthermore,
Wc is the centre manifold of the globally defined equation because Wc — Q26 =
Ec — Q2s on which the growth condition (5.2) characterising the global centre
manifold is satisfied.

Finally, to prove Wc a Nd and the estimates for F, we first collect some order
estimates:

L = O(1), as | | x c | | ^0 + , and |O24

(6.4a)

because h(0) = 0, Dh(0) = 0 and h is of class Cr+lA. Also,

llg(*c)L = o(||*c||), as | K | | ^ 0 + , and L ip (g | e J = o(l),
) = o(l), as 6-^0+. (6.4b)

Here, the first two estimates are true because of the definition of g and the
preceding estimates for h together with the assumption that /(0) = 0, Df(0) = 0
and/ e C+ l f l . The third estimate is true because

Lip (p6g) ̂  juga [||0p8(*c)ll \\g(xc)\\ + \Ps(xc)\ Lip (g)|fiJ],

where the first term is of order O(d~l)o(S) and the second O(l)o(l) by (6.1a)
and the preceding estimates for g. We also claim that the following estimates
hold:

\\Dhc(xc)\\a = o(l), LipDhc = o(l)O(6-1), as 6->0+. (6.5)

We now estimate F and Wc by assuming this claim and then prove the claim.
To simplify the notation further, we denote

H(xc) : = Acxc + p6(xc + hc(xc))fc(xc + hc(xc)), d(xc) : = xc + hc{xc).

Thus, G = DhcH - (pfsu) O 6 - psg.
It is easy to see that \\hc{xc)\\a = \p6(xc)\ \\h(xc)\\« ̂  O(l) sup \\h\QJ\a = o(6)

by (6.4a). Therefore, Wc a Ns for sufficiently small <5. Also, ||0(xc)|U =
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The fact that ||F(j;)|| =0(6) is demonstrated as follows. Starting with the first
term in the definition of F, we have ||As/(x)|| = 0(1) ||/|eM(x)ll = o(||x||a) by the
hypothesis for the nonlinear term / . For the second term in the definition of F, we
note that the foregoing estimate also implies ||//(xc)|| = 0(||xc||). Since

we also have ||G(JCC)|| =0(6) by (6.4b) and (6.5). Therefore, the estimate
||F(x)||= 0(6) follows.

To show Lip F = o(\), we also begin with the first term of F, and for which we
have

Lip (As/) = Lip As sup II/IQJI + sup \ps\ Lip (f\QJ = o(l)

because the first term after the inequality sign is of order O(d~l)o(6) and the
second o(l) by (6.1b) together with the assumption for/. For the second term of
F, we note that the foregoing estimate also implies

Lip [(psf) o 6] ^ Lip (p6f) Lip 0 = o(l)

since Lip 0 ^ ( 1 + sup \\Dhc\\a) = 0(1) by the claim. Hence, L ip / /=0(1) +
o(\) = 0(1) and Lip (DhH) = o(l) because

Lip (DhH) ^ Lip (Dhc) sup \\H\QJ\ + sup \\Dhc\\a Lip H

for which the first term is of order o(l)0((5"')0(<5) and the second o(l)O(l) by
the claim (6.5). We conclude from above and (6.4b) that

Lip G % Lip (DhH) + Lip [(pofm) o 0] + Lip (p6g) = o(l)

and, hence, Lip F ^ Lip (As/) + Lip G = o(l) as desired.
Finally, we complete the proof by proving claim (6.5). First, we have

\\Dhc(xc)\\a = o(\) because

\\Dhc(xc)\\a^ \\Dps(xc)\\ \\h\QJxc)\\a + \Ps(xc)\ \\Dh\QJxc)\\«,

of which the first term is of order O(d~l)o(d), or 0(l)o(l), and the second term
O(l)o(l). Next, to show Lip (Dhc) = 0(1)0(6"') we have

Lip (Dhc) ^ max {Lip {Dh\Qt), Lip (Dh%2^Qt)}

of which the first element is at most O(l) since h is of class Cr + 1 1 and the second
element can be estimated

Up(Dhc\Q2^Ql)^^sup \\D2p6(xc)\\ ™p \\h(xc)\\a

+ 2 sup ||Dp6(jcc)|| sup \\Dh(xc)\\a + Up(Dh\Q2t),

which is of order o(l)0(6~') because the first term is O(d~2)o(d), or

the second O(6 ^0(1) and the third 0(1) by (6.1a) and (6.4a), respectively. •

A different version of this lemma can be obtained based on the following
observations. Note that if Lip/is not replaced by o(l) in all the estimates above,
then the estimates for the extended nonlinear term read
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\\F{x)\\ = 0(6) + O(d) Lip/ and Lip F = o(l) + Lip/. Moreover, if / is of class
C'1 while Wjoc belongs to the same C+1<1 class of manifolds as in the lemma,
then the same result holds with these modified estimates of F. This remark will be
used in Section 7 below.

We are now ready to give a proof for Theorem 3.1.

Proof of Theorem 3.1. This is simply an application of Lemma 6.2 and
Theorem 5.2. Indeed, because of sup \\F(x)\\ = o(d), Lip F = o(l) by Lemma

6.2, the conditions that sup \\jtsuF(x)\\= o(d)<m = O(d) and LipF = o( l )<
xeX"

e(r) for Theorem 5.2 are satisfied for sufficiently small <5. The smooth foliations
for the locally defined equation (2.1) are now obtained by restricting the smooth
foliations of the extended equation (5.1) to the neighbourhood V := Q6aa
Qs- •

We end this section with a remark that was used for the proof of Lemma 4.2. It
is easy to see that for a given solution of equation (5.1) that starts on the global
centre-stable manifold Wcs constructed from Theorem 5.1, all the backward
extensions must stay on the manifold by the characterisation (5.2). Therefore, the
same statement is true for any local centre-stable manifold constructed by the
Extension Lemma 6.2 and Theorem 5.1.

7. Final remarks

(a) From the proof of the theorem and the remark after the Extension Lemma,
it is easy to see that the following theorem is true:

THEOREM 7.1. Assume the hypothesis (2.1a) for equation (2.1) and that the
nonlinear term f is of class CJ with /(0) = 0 and Lip / sufficiently small. Then the
equations when restricted to two C+1>1 local centre manifolds of the origin are Cr

conjugate.

(b) In practice, there may be no need for the Extension Lemma because all
centre manifolds in applications are constructed in the way described in Section 6.
These manifolds are as smooth as the equation and the foliations only loose the
Lipschitz continuity of the top partial derivative with respect to the base point.
Hence, the conjugating map in this situation loses the top Lipschitz continuity as
well. We have proved the following result:

THEOREM 7.2. Assume the hypothesis (2.1a) for equation (2.1) and that the
nonlinear term fis of class C r l with /(0) = 0 and Lip / sufficiently small. Then the
equations when restricted to two local centre manifolds of the origin that are
constructed by the standard method are Cr conjugate.

(c) For other types of infinite dimensional systems, e.g. the elliptic and
hyperbolic equations studied by Vanderbauwhede and Iooss [37], we believe that
invariant foliation theory can also be extended, and so can Theorems 2.1, 7.1,
7.2. The same result should also be expected for centre manifolds of normally
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hyperbolic invariant sets of diffeomorphisms and normally hyperbolic invariant
manifolds of flows, for which a theory of invariant manifolds and foliations has
long been established, cf., e.g., [21,12-14]. The latter include the case of slow
manifolds in the theory of singular perturbations.

(d) Returning to the conjugacy problem for inertial manifolds of an
appropriate dissipative evolution equation discussed in the Introduction, we point
out that the same result with C° conjugating map applies for C01 inertial
manifolds and Co>1 equations. Furthermore, for C1'1 equations, the C° regularity
can be improved to C1 when the spectral gap can be cut sufficiently away from the
imaginary axis. Indeed, unlike the general case considered in the proof of
Theorem 2.1, two inertial manifolds can be essentially regarded as lying in a
common manifold, the entire phase space, that possesses a stable foliation. Thus,
a proof for the C° or C1 conjugacy statement follows directly from the invariant
foliation theory proved by Chow, Lin and Lu [5] and the argument of Lemma
4.1. We remark that in general inertial manifolds are of class C1 at best for
C'1, r ^ 1 systems under the conditions mentioned above. In fact, an example of
an analytic equation having a C1 inertial manifold which is not C2 was given by
Chow, Lu and Sell [8]. Note that even though this result applies only to inertial
manifolds that are constructed by the standard method described in Section 1, it
might be quite adequate for many practical purposes.
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