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Homework 1

1. Consider the logistic map xn+1 = fλ(xn) = 4λxn(1 − xn). Outline the steps to find period-2 points for the map. Let
0 < ȳ1 < ȳ2 be the period-2 points. Prove for 3/4 ≤ λ ≤ 1 ȳ2(λ) ∈ [0, 1] and ȳ2 is monotone increasing in λ.

2. Let f be a continuous map on the unit interval. Prove that if there is an interval [a, b] ⊆ [0, 1] such that f([a, b]) ⊇ [a, b],
then there is a subinterval I ⊆ [a, b] so that f(I) = [a, b].
Solution: Because f is continuous and f([a, b]) ⊇ [a, b], by the intermediate value theorem there must be points x1 6= x2
in [a, b] so that f(x1) = a and f(x2) = b. WLOG assume a ≤ x1 < x2 ≤ b. Define a set by A = {x ≤ x2 : f(x) ≤ a}.
Then A 6= ∅ because x1 ∈ A. Let c = supA. Then c exists since A is bounded above by x2. Since either c is in A or a
limit point of A, we must have f(c) = a by continuity because the inequality f(c) < a would imply a larger upper bound
of A than c. Also c < x2 since f(x2) = b > f(c) = a. Next, define another set by B = {x ≥ c : f(x) ≥ b}. Then B
is nonempty for containing x2. Since it is bounded below by c, it has the greatest lower bound d = inf B. By continuity
again we must have f(d) = b. Also d > c since f(c) = a < b = f(d). Then the interval J = [c, d] is a required interval,
because by the definitions of c, d, the value of every point x ∈ J must be a ≤ f(x) ≤ b. Otherwise, if f(x) < a, then
x ≤ d ≤ x2 and c < x cannot be the supreme of A, or if f(x) > b = f(d) and x ≥ c, then d cannot be the infimum of B
since x ∈ B and x < d. This proves the result. �

3. Let 0 ≤ a < b < c ≤ 1 and f be a continuous map on the unit interval. Prove that if f(a) = c, f(c) = b, f(b) = a,
then f has a period-k point for every k ≥ 1.
Solution: Make this transformation x̄ = 1− x to the map to get ȳ = 1− f(1− x̄) := f̄(x̄). Then the points a < b < c are
transformed to ā < b̄ < c̄ with ā = 1− c, b̄ = 1− b, c̄ = 1− a. So for the new map f̄ {ā, b̄, c̄} is the period-3 orbit in the
order the same result is proved in the lecture. �

Homework 2

1. Let T be the tent map on [0, 1], and let σ(x0) and Is0...sn be defined as in lecture. Prove the following:

1. σ(x0) = s0s1 . . . sn . . . ⇒ σ(fk(x0)) = sksk+1 . . . sn . . . .

2. Is0...sn = Is0...sn−1 ∩ (fn)−1(Isn).

3. Is0...sn = Is0...snL ∪ Is0...snR and |Is0...sn | = (1/2)n+1.

4. Is0...sn ∩ Is′0...s′n 6= ∅ iff sk = s′k for all k = 0, 1, . . . , n.

5. fn+1 is monotone increasing on Is0...sn ⇔ ns0...sn = even, where ns0...sn is the number of Rs in {s0, . . . , sn}.

Solution: 1. By definition σ(x0) = s0s1 . . . sn . . . if and only if fn(x0) ∈ Isn for n = 0, 1, . . . . For x′0 = fk(x0),
since fn(x′0) = fn(fk(x0)) = fn+k(x0) ∈ Isn+k

= Is′n , we have s′n = sn+k for n = 0, 1, . . . . So by definition
σ(x′0) = s′0s

′
1 . . . s

′
n · · · = sksk+1 . . . .

2. Recall by definition Is0...sn = {x : fk ∈ Isk , k = 0, 1, . . . , n.}. So for every x ∈ Is0...sn , x ∈ Is0...sn−1

since fk(x) ∈ Isk for every k = 0, 1, . . . , n − 1, and fn ∈ Isn , implying x ∈ Is0...sn−1 ∩ (fn)−1(Isn), and Is0...sn ⊂
Is0...sn−1

∩ (fn)−1(Isn). Conversely, for every x ∈ Is0...sn−1
∩ (fn)−1(Isn), fk(x) ∈ Isk for every k = 0, 1, . . . , n − 1

since x ∈ Is0...sn−1
and fn(x0) ∈ Isn . So by definition, x ∈ Is0...sn , implying Is0...sn−1

∩ (fn)−1(Isn) ⊂ Is0...sn . This
two-ways inclusion argument proves the identity.

3. For the first part, it follows by definition for Is0...sn that x ∈ Is0...sn if and only if fk(x0) ∈ Isk for k = 0, 1, . . . , n.
Since I = IL ∪ IR and IL ∩ IR = ∅, fn+1(x0) is in either IL or IR. So by definition, Is0...sn ⊂ Is0...snL ∪ Is0...snR.
Since the reverse inclusion is trivial, we have the equality as a result.

Next, for the second part, we first note a general result for any affine linear function f on R with slope r 6= 0. It is
always true that the image of an interval is an interval and the pre-image of an interval is also an interval. More importantly,
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the interval lengths are scaled exactly by |r| or 1/|r| accordingly. That is, if J = f(I) for intervals I, J , |f(I)| = |r||I|
and |f−1(J)| = |J |/|r|. Now for the tent map f = T on [0, 1], f is linear on IL = [0, 1/2) and IR = [1/2, 1] with r = 2
and r = −2 respectively. So |r| = 2 on IL and IR. Now for the second part, we can prove first by a similar argument to
(2) above that Is0...sn = Is0 ∩ f−1(Is1...sn). Since f is linear on Is0 and Is1...sn ⊂ I is in the range of f |Is0 , we have
Is0...sn = Is0 ∩ f−1(Is1...sn) = (f |Is0 )−1(Is1...sn). By the result above we have |Is0...sn | = |Is1...sn |/2. So by a recursive
argument, we have |Is0...sn | = |Is2...sn |/22 = · · · = 1/2n+1 because |IL| = |IR| = 1/2 for n = 0.

4. By definition, x ∈ Is0...sn ∩ Is′0...s′n 6= ∅ iff fk(x) ∈ Isk ∩ Is′k 6= ∅ for all k = 0, 1, . . . , n. Since IL ∩ IR = ∅, we
must have sk = s′k for all k = 0, 1, . . . , n.

5. We will prove a more general statement that fn+1 is a linear map on Is0...sn and that it is monotone increasing on
Is0...sn ⇔ rs0...sn = even, where rs0...sn is the number of Rs in {s0, . . . , sn}, referred to as the R-number of sequence
s0, . . . , sn. By induction, this statement is true for n = 0 for which f is linear on IL and IR and is increasing on IL and
decreasing on IR. Assume the statement is true for n−1 for all n-length sequence s0 . . . sn−1. Now consider the case for n.
Because of (2), Is0...sn = Is0...sn−1

∩ (fn)−1(Isn). By induction hypothesis, fn is linear on Is0...sn−1
and is increasing iff

rs0...sn−1
is even. Since the image of fn on Is0...sn is in Isn and f is linear on Isn , the composition fn+1 = f ◦ fn is also

linear because the composition of linear functions is a linear function. Last, if sn = L then f keeps the same inclination
of fn and rs0...sn−1 = even iff rs0...sn = even. If sn = R then f reverses the inclination of fn and rs0...sn−1 = even iff
rs0...sn = odd. This proves (5). �

2. Let B = {0, 1} be the binary symbol set. Define δ(s, t) = 0 if s = t and δ(s, t) = 1 if s 6= t for s, t ∈ B. Show that δ is
a metric on B.

3. Let S2 = {s = s0s1 . . . : si ∈ B} be the set of all binary sequences. Define

d(s, s′) =

∞∑
i=0

δ(si, s
′
i)

2i+1
, for s, s′ ∈ S2.

Show that d is a metric in S2.
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Homework 3

1. Let T (x) be the tent map with slope 3 from the unit interval I = [0, 1] to R: T (x) = 3x, 0 ≤ x < 1/2 and T (x) =
3(1− x), 0 ≤ x < 1/2. Let C = {x ∈ I : fn(x) ∈ I, for all n = 0, 1, 2, . . . .}.

a. Prove that C is the Cantor mid-third set, i.e., it is closed, uncountable, containing no intervals, and every point of C
is a limit point of C.

b. Prove that the dynamics (T,C) is topologically conjugate to the shift dynamics (σ, S2) on 2-symbols.

c. Let Cc = I \C, the complement of C. Show that Cc is the sum of countable disjoint intervals and the total length is
|Cc| = 1.

Solution: Let Cn = {x : f i(x) ∈ I, 0 ≤ i ≤ n}. Then C0 = I , C1 = IL ∪ IR where IL = [0, 1/3] and IR = [2/3, 1], and
C1 is obtained by removing the mid-third open interval from C0. By induction, we can prove the following properties:

(1) Cn is the union of 2n many closed intervals.

(2) Each interval in Cn corresponds to an itinerary of length n, s0s1 . . . sn−1, si ∈ {L,R}, and denote it by Is0s1...sn−1 .

(3) The itinerary is defined by x ∈ Is0s1...sn−1
iff f i(x) ∈ Isi , 0 ≤ i ≤ n− 1.

(4) The length of Is0s1...sn−1
is 1/3n.

(5) Is0s1...sn−1L and Is0s1...sn−1R are obtained by removing the mid-third open interval of Is0s1...sn−1 .

(6) Let r(s) be the number of symbol Rs of any symbol sequence s. Then r(s0s1 . . . sn−1) = even iff Is0s1...sn−1L is
the left third subinterval of Is0s1...sn−1

.

(7) fn is a linear map defined on Is0s1...sn−1
whose image is the interval I , and whose slope is 3n if r(s0s1 . . . sn−1) =

even and −3n if r(s0s1 . . . sn−1) = odd.



3

(8) Cn ⊂ Cn−1 for n ≥ 1, and the complement Cn relative to Cn−1, Cn−1 \ Cn is the union of 2n−1 open intervals,
each is of length 1/3n and is one of the mid-third interval removed from Is0s1...sn−2 for some s = s0s1 . . . sn−2.

(9) For any itinerary sequence s0s1 . . . sn−2, fn maps the mid-third interval of Is0s1...sn−2
outside of I , hence, every

point from the mid-third interval of Is0s1...sn−2
escapes I , thus not in C.

As a result, C = ∩∞n=0Cn. It is nonempty and closed because {Cn} is a set of nested and closed subsets. It is
uncountable because the itinerary map φ : C → S2 with φ(x) = s0s1 . . . for each point x ∈ C (with f i(x) ∈ Isi , i ≥ 0)
is 1-1 and onto, and S2 is clearly uncountable. Specifically, {x} = ∩∞n=0Is0...sn iff φ(x) = s0s1 . . . . Here, we used the
fact that because Is0...sn ⊂ Is0...sn−1

and |Is0...sn | → 0 as n → 0, the intersection ∩∞n=0Is0...sn contains a unique point.
It contains no interval because for any x ∈ C with itinerary φ(x) = s0s1 . . . , and any interval U of x, there must be a
sufficiently large n so that x ∈ Is0...sn−1

⊂ U because the length of |Is0...sn−1
| = 1/3n → 0, and the removed mid-third

interval from Is0...sn−1 is not in C. Last, for any point x ∈ C and any ε-neighborhood, Bε(x), there must be a large N
so that for all n ≥ N , Is0...sn ⊂ Bε(x) because |Is0...sn−1 | = 1/3n → 0, where s = φ(x). Let x′ be a point whose
itinerary φ(x′) = s′0s

′
1 . . . is the same as x’s except at the (n + 2)nd position for which s′n+1 6= sn+1. By definition,

x′ ∈ Is0...sn ⊂ Bε(x) and x 6= x′. As a result x is a limit point of C.
(b) By the construction of C above, we have obtained the conjugacy map φ : C → S2 by equipping S2 with the usual

symbolic sequence metric d(s, s′) =
∑∞
n=0 δ(si, s

′
i)/2

i+1 and δ being the discrete metric. On can show that φ is 1-1, onto,
continuous, and the inverse is also continuous.

(c) Cc is the union of all mid-third intervals removed from the construction of C. Its length is

|Cc| =
∞∑
n=1

2n−1
1

3n
=

1

3

1

1− 2/3
= 1

where 2n−1 is the number of mid-third intervals removed at step n, each is of length 1/3n. Therefore, |C| = 1− |Cc| = 0
follows.

2. Let f be the piecewise function as below

f(x) =

 2x, 0 ≤ x < 1/2
3/4− x, 1/2 ≤ x < 3/4
x− 3/4, 3/4 ≤ x ≤ 1

Find the piecewise density function for the natural measure of f . Show work.

Solution Key: Transition matrix is P or PT =


1/2 0 1 1
1/2 0 0 0
0 1/2 0 0
0 1/2 0 0

. Here pij = |f−1(Ii) ∩ Ij |/|Ij |, with, for example,

p11 = |f−1(I1) ∩ I1|/|I1| = (1/8)/(1/4)

with I1 = [0, 1/4), I2 = [1/4, 1/2), I3 = [1/2, 3/4), I4 = [3/4, 1]. Probability eigenvector of eigenvalue 1 is Pw = w,
w = [1/2, 1/4, 1/8, 1/8]T . And the piecewise density function is d = (2, 1, 1/2, 1/2).


