Links to the homework sets:

Homework 1

Homework 2

Homework 3

Homework 1

- 1. Consider the logistic map $x_{n+1} = f_{\lambda}(x_n) = 4\lambda x_n(1-x_n)$. Outline the steps to find period-2 points for the map. Let $0 < \bar{y}_1 < \bar{y}_2$ be the period-2 points. Prove for $3/4 \le \lambda \le 1$ $\bar{y}_2(\lambda) \in [0,1]$ and \bar{y}_2 is monotone increasing in λ .
- **2.** Let f be a continuous map on the unit interval. Prove that if there is an interval $[a,b] \subseteq [0,1]$ such that $f([a,b]) \supseteq [a,b]$, then there is a subinterval $I \subseteq [a,b]$ so that f(I) = [a,b].

Solution: Because f is continuous and $f([a,b]) \supseteq [a,b]$, by the intermediate value theorem there must be points $x_1 \ne x_2$ in [a,b] so that $f(x_1) = a$ and $f(x_2) = b$. WLOG assume $a \le x_1 < x_2 \le b$. Define a set by $A = \{x \le x_2 : f(x) \le a\}$. Then $A \ne \emptyset$ because $x_1 \in A$. Let $c = \sup A$. Then c exists since A is bounded above by x_2 . Since either c is in A or a limit point of A, we must have f(c) = a by continuity because the inequality f(c) < a would imply a larger upper bound of A than c. Also $c < x_2$ since $f(x_2) = b > f(c) = a$. Next, define another set by $B = \{x \ge c : f(x) \ge b\}$. Then B is nonempty for containing x_2 . Since it is bounded below by c, it has the greatest lower bound $d = \inf B$. By continuity again we must have f(d) = b. Also d > c since f(c) = a < b = f(d). Then the interval J = [c,d] is a required interval, because by the definitions of c, d, the value of every point $x \in J$ must be $a \le f(x) \le b$. Otherwise, if f(x) < a, then $x \le d \le x_2$ and $x \le a$ cannot be the supreme of a, or if $a \le b$ and $a \le a$, then $a \le a$ and $a \le a$. This proves the result.

3. Let $0 \le a < b < c \le 1$ and f be a continuous map on the unit interval. Prove that if f(a) = c, f(c) = b, f(b) = a, then f has a period-k point for every $k \ge 1$.

Solution: Make this transformation $\bar{x}=1-x$ to the map to get $\bar{y}=1-f(1-\bar{x}):=\bar{f}(\bar{x})$. Then the points a< b< c are transformed to $\bar{a}<\bar{b}<\bar{c}$ with $\bar{a}=1-c,\ \bar{b}=1-b,\ \bar{c}=1-a$. So for the new map \bar{f} $\{\bar{a},\bar{b},\bar{c}\}$ is the period-3 orbit in the order the same result is proved in the lecture.

Homework 2

- 1. Let T be the tent map on [0, 1], and let $\sigma(x_0)$ and $I_{s_0...s_n}$ be defined as in lecture. Prove the following:
 - 1. $\sigma(x_0) = s_0 s_1 \dots s_n \dots \Rightarrow \sigma(f^k(x_0)) = s_k s_{k+1} \dots s_n \dots$
 - 2. $I_{s_0...s_n} = I_{s_0...s_{n-1}} \cap (f^n)^{-1}(I_{s_n}).$
 - 3. $I_{s_0...s_n} = I_{s_0...s_nL} \cup I_{s_0...s_nR}$ and $|I_{s_0...s_n}| = (1/2)^{n+1}$.
 - 4. $I_{s_0...s_n} \cap I_{s'_0...s'_n} \neq \emptyset$ iff $s_k = s'_k$ for all k = 0, 1, ..., n.
 - 5. f^{n+1} is monotone increasing on $I_{s_0...s_n} \Leftrightarrow n_{s_0...s_n} = \text{even}$, where $n_{s_0...s_n}$ is the number of Rs in $\{s_0, \ldots, s_n\}$.

Solution: 1. By definition $\sigma(x_0) = s_0 s_1 \dots s_n \dots$ if and only if $f^n(x_0) \in I_{s_n}$ for $n = 0, 1, \dots$ For $x'_0 = f^k(x_0)$, since $f^n(x'_0) = f^n(f^k(x_0)) = f^{n+k}(x_0) \in I_{s_{n+k}} = I_{s'_n}$, we have $s'_n = s_{n+k}$ for $n = 0, 1, \dots$ So by definition $\sigma(x'_0) = s'_0 s'_1 \dots s'_n \dots = s_k s_{k+1} \dots$

- 2. Recall by definition $I_{s_0...s_n} = \{x: f^k \in I_{s_k}, k = 0, 1, \dots, n.\}$. So for every $x \in I_{s_0...s_n}, x \in I_{s_0...s_{n-1}}$ since $f^k(x) \in I_{s_k}$ for every $k = 0, 1, \dots, n-1$, and $f^n \in I_{s_n}$, implying $x \in I_{s_0...s_{n-1}} \cap (f^n)^{-1}(I_{s_n})$, and $I_{s_0...s_n} \subset I_{s_0...s_{n-1}} \cap (f^n)^{-1}(I_{s_n})$. Conversely, for every $x \in I_{s_0...s_{n-1}} \cap (f^n)^{-1}(I_{s_n})$, $f^k(x) \in I_{s_k}$ for every $k = 0, 1, \dots, n-1$ since $x \in I_{s_0...s_{n-1}}$ and $f^n(x_0) \in I_{s_n}$. So by definition, $x \in I_{s_0...s_n}$, implying $I_{s_0...s_{n-1}} \cap (f^n)^{-1}(I_{s_n}) \subset I_{s_0...s_n}$. This two-ways inclusion argument proves the identity.
- 3. For the first part, it follows by definition for $I_{s_0...s_n}$ that $x \in I_{s_0...s_n}$ if and only if $f^k(x_0) \in I_{s_k}$ for k = 0, 1, ..., n. Since $I = I_L \cup I_R$ and $I_L \cap I_R = \varnothing$, $f^{n+1}(x_0)$ is in either I_L or I_R . So by definition, $I_{s_0...s_n} \subset I_{s_0...s_nL} \cup I_{s_0...s_nR}$. Since the reverse inclusion is trivial, we have the equality as a result.

Next, for the second part, we first note a general result for any affine linear function f on \mathbb{R} with slope $r \neq 0$. It is always true that the image of an interval is an interval and the pre-image of an interval is also an interval. More importantly,

the interval lengths are scaled exactly by |r| or 1/|r| accordingly. That is, if J=f(I) for intervals I,J,|f(I)|=|r||I| and $|f^{-1}(J)|=|J|/|r|$. Now for the tent map f=T on [0,1],f is linear on $I_L=[0,1/2)$ and $I_R=[1/2,1]$ with r=2 and r=-2 respectively. So |r|=2 on I_L and I_R . Now for the second part, we can prove first by a similar argument to (2) above that $I_{s_0...s_n}=I_{s_0}\cap f^{-1}(I_{s_1...s_n})$. Since f is linear on I_{s_0} and $I_{s_1...s_n}\subset I$ is in the range of $f|_{I_{s_0}}$, we have $I_{s_0...s_n}=I_{s_0}\cap f^{-1}(I_{s_1...s_n})=(f|_{I_{s_0}})^{-1}(I_{s_1...s_n})$. By the result above we have $|I_{s_0...s_n}|=|I_{s_1...s_n}|/2$. So by a recursive argument, we have $|I_{s_0...s_n}|=|I_{s_0...s_n}|/2=\cdots=1/2^{n+1}$ because $|I_L|=|I_R|=1/2$ for n=0.

- argument, we have $|I_{s_0...s_n}|=|I_{s_2...s_n}|/2^2=\cdots=1/2^{n+1}$ because $|I_L|=|I_R|=1/2$ for n=0. 4. By definition, $x\in I_{s_0...s_n}\cap I_{s'_0...s'_n}\neq\varnothing$ iff $f^k(x)\in I_{s_k}\cap I_{s'_k}\neq\varnothing$ for all $k=0,1,\ldots,n$. Since $I_L\cap I_R=\varnothing$, we must have $s_k=s'_k$ for all $k=0,1,\ldots,n$.
- 5. We will prove a more general statement that f^{n+1} is a linear map on $I_{s_0...s_n}$ and that it is monotone increasing on $I_{s_0...s_n} \Leftrightarrow r_{s_0...s_n} = \text{even}$, where $r_{s_0...s_n}$ is the number of Rs in $\{s_0,\ldots,s_n\}$, referred to as the R-number of sequence s_0,\ldots,s_n . By induction, this statement is true for n=0 for which f is linear on I_L and I_R and is increasing on I_L and decreasing on I_R . Assume the statement is true for n-1 for all n-length sequence $s_0\ldots s_{n-1}$. Now consider the case for n. Because of (2), $I_{s_0...s_n} = I_{s_0...s_{n-1}} \cap (f^n)^{-1}(I_{s_n})$. By induction hypothesis, f^n is linear on $I_{s_0...s_{n-1}}$ and is increasing iff $r_{s_0...s_{n-1}}$ is even. Since the image of f^n on $I_{s_0...s_n}$ is in I_{s_n} and f is linear on I_{s_n} , the composition $f^{n+1} = f \circ f^n$ is also linear because the composition of linear functions is a linear function. Last, if $s_n = L$ then f keeps the same inclination of f^n and $r_{s_0...s_{n-1}} = \text{even}$ iff $r_{s_0...s_n} = \text{even}$. If $s_n = R$ then f reverses the inclination of f^n and $r_{s_0...s_{n-1}} = \text{even}$ iff $r_{s_0...s_n} = \text{odd}$. This proves (5).
- **2.** Let $B = \{0, 1\}$ be the binary symbol set. Define $\delta(s, t) = 0$ if s = t and $\delta(s, t) = 1$ if $s \neq t$ for $s, t \in B$. Show that δ is a metric on B.
- **3.** Let $S_2 = \{s = s_0 s_1 \dots : s_i \in B\}$ be the set of all binary sequences. Define

$$d(s, s') = \sum_{i=0}^{\infty} \frac{\delta(s_i, s'_i)}{2^{i+1}}, \text{ for } s, \ s' \in S_2.$$

Show that d is a metric in S_2 .

Back to Top

Homework 3

- **1.** Let T(x) be the tent map with slope 3 from the unit interval I = [0,1] to \mathbb{R} : $T(x) = 3x, 0 \le x < 1/2$ and $T(x) = 3(1-x), 0 \le x < 1/2$. Let $C = \{x \in I : f^n(x) \in I, \text{ for all } n = 0, 1, 2, \ldots\}$.
 - a. Prove that C is the Cantor mid-third set, i.e., it is closed, uncountable, containing no intervals, and every point of C is a limit point of C.
 - b. Prove that the dynamics (T, C) is topologically conjugate to the shift dynamics (σ, S_2) on 2-symbols.
 - c. Let $C^c = I \setminus C$, the complement of C. Show that C^c is the sum of countable disjoint intervals and the total length is $|C^c| = 1$.

Solution: Let $C_n = \{x : f^i(x) \in I, 0 \le i \le n\}$. Then $C_0 = I$, $C_1 = I_L \cup I_R$ where $I_L = [0, 1/3]$ and $I_R = [2/3, 1]$, and C_1 is obtained by removing the mid-third open interval from C_0 . By induction, we can prove the following properties:

- (1) C_n is the union of 2^n many closed intervals.
- (2) Each interval in C_n corresponds to an itinerary of length $n, s_0 s_1 \dots s_{n-1}, s_i \in \{L, R\}$, and denote it by $I_{s_0 s_1 \dots s_{n-1}}$.
- (3) The itinerary is defined by $x \in I_{s_0 s_1 \dots s_{n-1}}$ iff $f^i(x) \in I_{s_i}, 0 \le i \le n-1$.
- (4) The length of $I_{s_0 s_1 ... s_{n-1}}$ is $1/3^n$.
- (5) $I_{s_0s_1...s_{n-1}L}$ and $I_{s_0s_1...s_{n-1}R}$ are obtained by removing the mid-third open interval of $I_{s_0s_1...s_{n-1}L}$
- (6) Let r(s) be the number of symbol Rs of any symbol sequence s. Then $r(s_0s_1...s_{n-1})=$ even iff $I_{s_0s_1...s_{n-1}L}$ is the left third subinterval of $I_{s_0s_1...s_{n-1}L}$.
- (7) f^n is a linear map defined on $I_{s_0s_1...s_{n-1}}$ whose image is the interval I, and whose slope is 3^n if $r(s_0s_1...s_{n-1}) =$ even and -3^n if $r(s_0s_1...s_{n-1}) =$ odd.

- (8) $C_n \subset C_{n-1}$ for $n \geq 1$, and the complement C_n relative to C_{n-1} , $C_{n-1} \setminus C_n$ is the union of 2^{n-1} open intervals, each is of length $1/3^n$ and is one of the mid-third interval removed from $I_{s_0s_1...s_{n-2}}$ for some $s = s_0s_1...s_{n-2}$.
- (9) For any itinerary sequence $s_0s_1 \dots s_{n-2}$, f^n maps the mid-third interval of $I_{s_0s_1...s_{n-2}}$ outside of I, hence, every point from the mid-third interval of $I_{s_0s_1...s_{n-2}}$ escapes I, thus not in C.

As a result, $C = \cap_{n=0}^{\infty} C_n$. It is nonempty and closed because $\{C_n\}$ is a set of nested and closed subsets. It is uncountable because the itinerary map $\phi: C \to S_2$ with $\phi(x) = s_0 s_1 \dots$ for each point $x \in C$ (with $f^i(x) \in I_{s_i}, \ i \geq 0$) is 1-1 and onto, and S_2 is clearly uncountable. Specifically, $\{x\} = \cap_{n=0}^{\infty} I_{s_0 \dots s_n}$ iff $\phi(x) = s_0 s_1 \dots$. Here, we used the fact that because $I_{s_0 \dots s_n} \subset I_{s_0 \dots s_{n-1}}$ and $|I_{s_0 \dots s_n}| \to 0$ as $n \to 0$, the intersection $\bigcap_{n=0}^{\infty} I_{s_0 \dots s_n}$ contains a unique point. It contains no interval because for any $x \in C$ with itinerary $\phi(x) = s_0 s_1 \dots$, and any interval U of x, there must be a sufficiently large n so that $x \in I_{s_0 \dots s_{n-1}} \subset U$ because the length of $|I_{s_0 \dots s_{n-1}}| = 1/3^n \to 0$, and the removed mid-third interval from $I_{s_0 \dots s_{n-1}}$ is not in C. Last, for any point $x \in C$ and any ϵ -neighborhood, $B_{\epsilon}(x)$, there must be a large N so that for all $n \geq N$, $I_{s_0 \dots s_n} \subset B_{\epsilon}(x)$ because $|I_{s_0 \dots s_{n-1}}| = 1/3^n \to 0$, where $s = \phi(x)$. Let x' be a point whose itinerary $\phi(x') = s_0' s_1' \dots$ is the same as x's except at the (n+2)nd position for which $s_{n+1}' \neq s_{n+1}$. By definition, $x' \in I_{s_0 \dots s_n} \subset B_{\epsilon}(x)$ and $x \neq x'$. As a result x is a limit point of C.

- (b) By the construction of C above, we have obtained the conjugacy map $\phi:C\to S_2$ by equipping S_2 with the usual symbolic sequence metric $d(s,s')=\sum_{n=0}^\infty \delta(s_i,s_i')/2^{i+1}$ and δ being the discrete metric. On can show that ϕ is 1-1, onto, continuous, and the inverse is also continuous.
 - (c) C^c is the union of all mid-third intervals removed from the construction of C. Its length is

$$|C^c| = \sum_{n=1}^{\infty} 2^{n-1} \frac{1}{3^n} = \frac{1}{3} \frac{1}{1 - 2/3} = 1$$

where 2^{n-1} is the number of mid-third intervals removed at step n, each is of length $1/3^n$. Therefore, $|C| = 1 - |C^c| = 0$ follows.

2. Let f be the piecewise function as below

$$f(x) = \begin{cases} 2x, & 0 \le x < 1/2 \\ 3/4 - x, & 1/2 \le x < 3/4 \\ x - 3/4, & 3/4 \le x \le 1 \end{cases}$$

Find the piecewise density function for the natural measure of f. Show work.

$$p_{11} = |f^{-1}(I_1) \cap I_1|/|I_1| = (1/8)/(1/4)$$

with $I_1 = [0, 1/4), I_2 = [1/4, 1/2), I_3 = [1/2, 3/4), I_4 = [3/4, 1]$. Probability eigenvector of eigenvalue 1 is Pw = w, $w = [1/2, 1/4, 1/8, 1/8]^T$. And the piecewise density function is d = (2, 1, 1/2, 1/2).