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WILL A SEXUAL POPULATION EVOLVE TO AN ESS?

Evolutionary game theory has been developed to help us to think about
phenotypic evolution when the fitnesses of phenotypes are frequency dependent.
It is based on the simplest possible assumption about heredity, namely that inheri-
tance is asexual and exact. Most real populations of interest are sexual and
diploid, and there must, therefore, be some doubts as to whether and to what
extent the conclusions of game theory can be applied to them. This note takes a
step toward resolving these doubts.

An ESS, or evolutionarily stable strategy, is a phenotype toward which the
members of a population will evolve, given parthenogenetic (or haploid one-locus)
inheritance (Maynard Smith and Price 1973). Will a sexual diploid population
evolve to an ESS? If the ESS is a phenotype which can be produced by a
homozygous diploid genotype, no difficulty arises; the ESS will be stable against
invasion by any possible mutants. The difficulty arises if the ESS is a mixed one
(i.e., if it involves a mixture of pure strategies) which can only be achieved by a
genetically variable population.

Consider first a random-mating population in which only two pure strategies are
possible. It will be convenient to refer to these as Hawk and Dove, but no
restrictions are made as to the fitness values in the payoff matrix. The phenotype
is determined by two alleles, 1 and 2, at a locus, as follows.

GeNOLYPE ottt it 11 12 22
Probability of Hawk phenotype ..................... P, P, P,

Lloyd (1977) has shown that if only two phenotypes exist, and there are two
alleles at a locus, then a genetic polymorphism exists only if either (i) the fitnesses
of the two phenotypes are equal (this corresponds to a mixed ESS; see Bishop and
Cannings 1978), or (ii) the relative frequencies of the two alleles are the same in
the two phenotypes.

What follows is simply an application of Lloyd’s result to a particular case.

The frequency of Hawk is ', = p2P, + 2pqP, + q?P,. Given F,, the payoffs
when playing Hawk and Dove, E(H) and E(D), respectively, can be calculated
from the payoff matrix. The genotype fitnesses are then

Wi = PEH) + (1 — PYED)
Wi, = P.EH) + (1 — PYED)
Wi = PLEWH) + (1 — PEWD).

If E(H) = E(D), (Lloyd’s condition [i]), all three fitnesses are equal, and the
population is at equilibrium. If the fitnesses are not equal, then elementary
one-locus theory shows that the equilibrium frequency of allele 1 is

. P —P,
p_2P1—P0"P2' (1)
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At this equilibrium, it is easy to show that the frequencies of allele 1 in the Hawk
and Dove phenotypes are equal, so Lloyd’s condition (ii) is satisfied. Thus a
polymorphic equilibrium can exist either at the ESS, or at p.

Frequency p is an internal equilibrium only if (P, — P,) and (P, — P,) have the
same sign; that is, if there is overdominance. (Note that the overdominance con-
cerns the phenotype, which is frequency-independent, and not the frequency-
dependent fitnesses.) Hence, if there is no overdominance, either (i) the population
becomes genetically homozygous, or (ii) the population reaches the ESS.

Which of these occurs depends on P*, the population frequency of Hawk at the
ESS, which depends only on the fitness values in the payoff matrix. The various
possibilities are illustrated in figure 1A. Either the population reaches the ESS, or,
if the ESS lies outside the range of possible phenotypes, it becomes fixed for the
genotype closest to the ESS.

If there is overdominance, the situation is more complex. The four possible
cases are shown in figure 1B.

Casel.—P* lies outside the genetically possible range, with the heterozygote
lying closest to it. The only stable equilibrium is given by p. This is not the ESS,
but it can be shown that p is such as to maximize F,, the frequency of Hawk, so
that the population is as close to the ESS as its genetic system allows.

Case 2.—P* lies within the genetically possible range. There are now two gene
frequencies giving stable equilibria, both at the phenotypic ESS. The p equilibrium
lies between them, and is unstable.

Case 3.—P%* still lies within the genetically possible range. Only one gene
frequency gives the stable ESS equilibrium. This equilibrium is not globally
stable, and there is a second stable equilibrium (not an ESS) for the fixation of one
allele.

Case 4.—P* is outside the genetically possible range, the heterozygote lying
furthest from it. Fixation for either allele is stable, the basins of attraction being
separated by an unstable equilibrium at p.

These results can be summarized as follows.

i) If the ESS lies within the genetically possible range, then it will be stable.
Unless there is overdominance, it will be the only stable state. If there is over-
dominance, there may be a second stable state, not at an ESS.

ii) If the ESS lies outside the genetically possible range, the population state
closest to the ESS will be stable; it will usually be the only stable state (the only
exception being overdominance case 4).

Hence for the two-strategy game, with two alleles at a locus, it is almost true to
say that the population will evolve to an ESS if it can, and if it cannot it will
approach the ESS as closely as the genetic system permits.

What of more complex games, or more complex genetic systems? For a given
game, if the genetic system has more alleles or more loci and so permits a wider
range of phenotypes, this will in general make it easier and not more difficult for
the population to reach an ESS. Thus difficulties arise mainly with more complex
games (i.e., more pure strategies are possible). First, it should be pointed out that,
even with parthenogenetic inheritance, if there are more than two pure strategies,
then the standard conditions for an ESS given by Maynard Smith and Price (1973)
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FiG. 1.—Equilibria for the two-strategy game with a diploid two-allele system. A, no
overdominance: B, with overdominance. o, unstable equilibria; e, stable equilibria; %, ESS’s.
F, = frequency of Hawk in population; p = gene frequency; P* = frequency of ‘*Hawk’’ at
ESS; p = gene frequency such that frequency is the same in the Hawk and Dove phenotypes.

The bold line is a graph of F, against p.

guarantee the stability of a mixed ESS only if individuals adopting the mixed
strategy can exist and breed true. Clearly, if this is the case, a mixed ESS would

also be stable in a sexual population.

A difficulty only arises, therefore, if there is a complex game with a mixed ESS
which can only be achieved by a genetically polymorphic population. Charles-
worth, in an appendix to Lloyd (1977), has shown that if there are n phenotypes,
and m alleles at a locus, then, provided m = n, a polymorphic equilibrium either
requires that the phenotypic fitnesses are equal (i.e., an ESS), or requires a special
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condition on the gene frequencies, corresponding to condition (i) above but
difficult to interpret. A similar conclusion has been reached for a more general
model by Slatkin (1979). This encourages the hope that, if the genetic system is
sufficiently complex relative to the range of possible phenotypes, the stable states
will be ESS’s. However, there will certainly be cases in which the ESS cannot be
reached because of genetic constraints.
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