
SS2021 M428 Exam 1 Solution Key

Print Your Name Legibly: Score:

1(30 pts) Consider the linear programming problem
Maximize z = 3x1 + 2x2

subject to
x1 ≤ 5
x1 + x2 ≤ 8
x1 ≥ 0, x2 ≥ 0.

(a) Find the dual LP problem.

(b) Solve the dual LP problem graphically, including all details for credit.

(c) Without solving the primal LP problem, what is its optimal value z∗ based on (a) and (b)?

(d) If the right-hand side of the second constraint for the primal LP problem changes from 8 to 7.5, without solving the primal
LP problem again what is the primal optimal value z∗ expected to be? Explain why.

Solution: (a)

Minimize z = 5y1 + 8y2
subject to

y1 + y2 ≥ 3
y2 ≥ 2

y1 ≥ 0, y2 ≥ 0.

(b)

y1

y2

−1 0 1 2 3

−1

1
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3

y1 + y2 = 3

y2 = 2

z = 21

z = 29

z = 13

Optimal solution to the dual: (z∗, y∗
1 , y

∗
2) = (21, 1, 2).

(c) z∗ = 21.
(d) z∗ = 21 + y∗

2∆b2 = 21 + 2(−.5) = 20, because y∗
2 is the shadow price for the primal LP’s second constraint.
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2(35 pts) The augmented matrix form (tableau form) for a LP problem: maximize z = cTx subject to Ax ≤ b, x ≥ 0 is given as
follows:

z x1 x2 x3 x4 x5 rhs
z 1 -1 -2 -3 0 0 0

basic variable x4 0 1 -1 1 1 0 0
x5 0 2 1 1 0 1 4

(a) Is x1 = x2 = x3 = 2 a feasible point of the problem? Justify your answer.

(b) Find the optimal solution of the problem by using the tableau simplex method only. To receive credit, you must show the
feasible echelon form for each iteration of the method together with application of optimality test, ratio test, and elementary
row operations, such as 2R1+R0 for example, from one echelon form to the next.

(c) Let E = Ek · · ·E1 where Ei, i = 1, . . . , k, are the elementary matrices corresponding to the elementary row operations
used for the simplex method above. What is E?

(d) If the right-hand of the constraint is changed from
[
0
4

]
to
[
1
4

]
, use (c) only to find the new optimal solution. Explain why

your solution is the optimal solution. Any other method will not receive the full point.

Solution: (a) No, because the constraint #2 is not satisfied at the point: 2 ∗ x1 + x2 + x3 = 6 > 4 rather than ≤ 4.
(b)

z x1 x2 x3 x4 x5 rhs ratio test
iteration 1 z 1 -1 -2 -3 0 0 0

basic variable x4 0 1 -1 1 1 0 0 0+/1 = 0+ < 4
x5 0 2 1 1 0 1 4 4/1 = 4 > 0+

Feasible solution: (z, x1, x2, x3, x4, x5) = (0, 0, 0, 0, 0, 4).
Optimality Test: No, since there are negative coefficients for the z-equation.
Entering variable: x3 for having the most negative z-equation coefficient.
Leaving variable: x4 for being the smallest 0+ ratio.
Subsequent Row Operations: 3*R1+R0, -R1+R2.

z x1 x2 x3 x4 x5 rhs ratio test
iteration 2 z 1 2 -5 0 3 0 0

basic variable x3 0 1 -1 1 1 0 0 0+/(−1) = 0−

x5 0 1 2 0 -1 1 4 4/2 = 2 > 0

Feasible solution: (z, x1, x2, x3, x4, x5) = (0, 0, 0, 0, 0, 4).
Optimality Test: No, since there is a negative coefficient for the z-equation.
Entering variable: x2 for having the most negative z-equation coefficient.
Leaving variable: x5 by the Ratio Test for being the only positive ratio.
Subsequent Row Operations: R2/2, 5*R2+R0, R2+R1.

z x1 x2 x3 x4 x5 rhs ratio test
iteration 3 z 1 9/2 0 0 1/2 5/2 10

basic variable x3 0 3/2 0 1 1/2 1/2 2
x2 0 1/2 1 0 -1/2 1/2 2

Feasible solution: (z, x1, x2, x3, x4, x5) = (10, 0, 2, 2, 0, 2).
Optimality Test: Yes, since all z-equation’s coefficients are non-negative. Optimal solution is obtained: z∗ = 10, (x∗

1, x
∗
2, x

∗
3) =

(0, 2, 2).

(c) E =

1 1/2 5/2
0 1/2 1/2
0 −1/2 1/2

 because ES0 =

[
1 yT

0 B

] [
1 −cT 0 b0
0 A I b

]
=

[
1 −cT + yTA yT b0 + yT b
0 BA B Bb

]
= S

(d) Using the exact row operations, E, on the modified problem with the new right-hand side: b =

[
1
4

]
, the new feasible echelon

form S has the same columns except for the last column
[
b0 + yT b

Bb

]
=

0+(1/2)1+(5/2)4=10.5
(1/2)1+(1/2)4=2.5
(-1/2)1+(1/2)4=1.5

. Since the resulting right-hand

is positive, the corresponding corner point solution is feasible. Because of the same optimality test holds, the new solution is the
optimal solution for the modified problem. That is, the last feasible echelon form is:

z x1 x2 x3 x4 x5 rhs ratio test
z 1 9/2 0 0 1/2 5/2 10.5

basic variable x3 0 3/2 0 1 1/2 1/2 2.5
x2 0 1/2 1 0 -1/2 1/2 1.5

and the optimal solution is: z∗ = 10.5, (x∗
1, x

∗
2, x

∗
3) = (0, 1.5, 2.5).
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3(35 pts) For a zero-sum game with the following payoff table

Player 2
Strategy 1 2 3

Player 1 1 3 2 -3
2 -1 1 2

(a) Use the graphical method to find the optimal mixed strategies for Player 1 only.

(b) A fair game is one for which the game value v = 0. With everything else the same except for the pay-off for the {2,3}-play

Player 2
Strategy 1 2 3

Player 1 1 3 2 -3
2 -1 1 a

use the graphical method to determine the parameter value a so that the game is a fair game.

(c) Use the graphical method to find the optimal mixed strategies for both players for the fair game (b).

(d) Write down either the primal or the dual linear programming problem for the fair game, and use Excel/Solver to verify the
solutions obtained above. Including screenshots for the input data sheet and the sensitivity report sheet from the Solver for
supporting work.

Solution: (a) With x1 + x2 = 1 or x2 = 1− x1, 0 ≤ x1 ≤ 1, we have

Y’s pure strategies X’s expected payoff
e1 = (1, 0, 0) : z = E1(x1) = 3x1 − x2 = 4x1 − 1
e2 = (0, 1, 0) : z = E2(x1) = 2x1 + x1 = x1 + 1
e3 = (0, 0, 1) : z = E2(x1) = −3x1 + 2x2 = −5x1 + 2

z = F (x1) = min
y

E(x, y) = min
y
{E1(x1)y1 + E2(x1)y2 + E3(x1)y3} = min{E1(x1), E2(x1), E3(x1)}

The graphs of Ei and F are as follows:

1

−3

−2

−1

1

2

3

z = E1(x1)

z = E2(x1)

z = E3(x1)

z = F (x1)

• (1/3, 1/3)

x∗
1

z∗

z = E3(x1), a = 1

1
4

x1

x2

From the graph, maxF (x1) occurs at the intersection of z = E1(x1) and z = E3(x1). Solve the intersection point to obtain

(x∗
1, z

∗) = arg maxF (x1) = (1/3, 1/3).

That, the optimal mixed strategies for X is x∗ = (1/3, 2/3) with optimal expected payoff E∗ = 1/3.
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(b) The parameter only affects E3: z = E3(x1) == −3x1 + ax2 = −3x1 + a(1 − x1), which goes through these points: (0, a)
and (1,−3). For a fair game, it is from the graph that z = E1(x1) must intersect the zero game value line z = z∗ = 0 at x∗

1 = 1/4,
x∗
2 = 3/4. As a result, z = E3(x1) must goes through point (x∗

1, z
∗) = (1/4, 0) as well: 0 = E3(1/4). Solving a from this equation

to obtain:
0 = E3(1/4) = −3/4 + a(3/4) → a = 1.

(c) From (b) we already have (x∗
1, x

∗
2) = (1/4, 3/4). To solve for y, we know y∗

2 = 0 because z = E2(x1) lies strictly above the
fair value point (1/4, 0). At the optimal strategies, y∗, for Y, the expected payoff z = E(x, y∗), a = 1 must be the zero function

z = E(x, y∗) = E1(x1)y∗
1 + E3(x1)y∗

3 = (4x1 − 1)y∗
1 + (−4x1 + 1)y∗

3 ≡ E∗ = 0.

Collect the like-terms above to have
−y∗

1 + y∗
3 + 4[y∗

1 − y∗
3 ]x1 ≡ 0.

The optimal solution y∗ with y∗
2 = 0 is the solution to the system of equations below:

−y∗
1 + y∗

3 = 0
y∗
1 + y∗

3 = 1

Solve it to obtain y∗ = (1/2, 0, 1/2).
(d) The minimax problem is equivalent to the LP problem below

Maximize z = x3 − x4

subject to 3x1 − x2 − x3 + x4 ≥ 0
2x1 + x2 − x3 + x4 ≥ 0
−3x1 + x2 − x3 + x4 ≥ 0
x1 + x2 = 1
xi ≥ 0, 1 ≤ j ≤ 4.

The ExcelSolver shows the optimal solution is (x1, x2) = (1/4, 3/4) for Player 1, (y1, y2, y3) = (1/2, 0, 1/2) for Player II from
the Shadow Price, with the fair game value v = x3 − x4 = 0− 0 = 0. The same as from (c).

Figure 1: #3 (d)


