
Proof of Perron-Frobenius Theorem
Let x = (x1, x2, . . . , xn)

T ∈ R
n with yT denoting exclusively the transpose of

vectory. Let‖x‖ = maxi{|xi|} be the norm. Then the induced operator norm for
matrixA = [aij ] is ‖A‖ = maxi{

∑
j |aij|}.

Consider a Markov’s chain onn states with transition probabilitiespij =
Pr(Xk+1 = i|Xk = j), independent ofk, andP = [pij] the transition matrix.
Then

∑n

i=1 pij = 1 for all j. Let p(t)ij = Pr(Xk+t = i|Xk = j) andP (t) = [p
(t)
ij ] be

the t-step transition probability matrix. Then we havep(t)ij =
∑

ℓ p
(t−1)
iℓ pℓj for all

i, j. In matrix,P (t) = P (t−1)P = · · · = P t which is thet-step transition matrix. If
q = (q1, . . . , qn)

T is a probability distribution for the Markovian states at a given
iterate withqi ≥ 0,

∑
qi = 1, thenPq is again a probability distribution for the

states at the next iterate. A probability distributionw is said to be a steady state
distribution if it is invariant under the transition, i.e.Pw = w. Such a distribution
must be an eigenvector ofP andλ = 1 must be the corresponding eigenvalue.
The existence as well as the uniqueness of the steady state distribution is guaran-
teed for a class of Markovian chains by the following theoremdue to Perron and
Frobenius.

Theorem 1. Let P = [pij ] be a probability transition matrix, i.e.pij ≥ 0 and∑n

i=1 pij = 1 for everyj = 1, 2, ..., n. AssumeP is irreducible and transitive

in the sense that there is at ≥ 1 so thatp(t)ij > 0 for all i, j. Then 1 is a sim-
ple eigenvalue ofP and all other eigenvaluesλ satisfy|λ| < 1. Moreover, the
unique eigenvector can be chosen to be a probability vectorw and it satisfies
limt→∞ P t = [w,w, . . . , w]. Furthermore, for any probability vectorq we have
P tq → w ast → ∞.

Proof. We first prove a claim thatlimt→∞ p
(t)
ij exist for all i, j and the limit is

independent ofj, limt→∞ p
(t)
ij = wi.

BecauseP = [pij ] (is irreducible and transitive) has non-zero entries, we have

δ = min
ij

pij > 0.

Consider the equation of theijth entry ofP t+1 = [p
(t+1)
ij ] = P tP ,

p
(t+1)
ij =

∑

k

p
(t)
ik pkj.

Let
0 < m

(t)
i := min

j
p
(t)
ij ≤ max

j
p
(t)
ij := M

(t)
i < 1.

Then, we have

m
(t+1)
i = min

j

∑

k

p
(t)
ik pkj ≥ m

(t)
i

∑

k

pkj = m
(t)
i .
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i.e., the sequence{m(1)
i , m

(2)
i , . . . } is non-decreasing. Similarly, the upper bound

sequence{M (1)
i ,M

(2)
i , . . . } is non-increasing. As a result, both limitslimt→∞m

(t)
i =

mi ≤ Mi = limt→∞ M
(t)
i exist. We now prove they are equalmi = Mi.

To this end, we consider the differenceM (t+1)
i −m

(t+1)
i :

M
(t+1)
i −m

(t+1)
i = maxj

∑
k p

(t)
ik pkj −minℓ

∑
k p

(t)
ik pkℓ

= maxj,ℓ
∑

k p
(t)
ik (pkj − pkℓ)

= maxj,ℓ[
∑+

k p
(t)
ik (pkj − pkℓ) +

∑
−

k p
(t)
ik (pkj − pkℓ)]

≤ maxj,ℓ[M
(t)
i

∑+
k (pkj − pkℓ) +m

(t)
i

∑
−

k (pkj − pkℓ)]

(1)

where
∑+

k p
(t)
ik (pkj − pkℓ) means the summation of all non-negative termspkj −

pkℓ ≥ 0 and similarly
∑

−

k p
(t)
ik (pkj − pkℓ) means the summation of all negative

termspkj − pkℓ < 0.
It is critical to notice the following unexpected equality:

∑
−

k (pkj − pkℓ) =
∑

−

k pkj −
∑

−

k pkℓ
= 1−

∑+
k pkj − (1−

∑+
k pkℓ)

=
∑+

k (pkℓ − pkj)
= −

∑+
k (pkj − pkℓ).

Hence, the inequality (1) becomes

M
(t+1)
i −m

(t+1)
i ≤ (M

(t)
i −m

(t)
i )max

j,ℓ

∑

k

+(pkj − pkℓ).

If maxj,ℓ
∑+

k (pkj − pkℓ) = 0, which is independent of allt, it is done thatM (t)
i =

m
(t)
i . Otherwise, for the pairj, ℓ that gives the maximum letr be the number

of terms ink for which pkj − pkℓ > 0, ands be the number of terms for which
pkj−pkℓ < 0. Thenr ≥ 1, andñ := r+s ≥ 1 as well as̃n ≤ n. More importantly

∑+
k (pkj − pkℓ) =

∑+
k pkj −

∑+
k pkℓ

= 1−
∑

−

k pkj −
∑+

k pkℓ
≤ 1− sδ − rδ = 1− ñδ

≤ 1− δ < 1.

The estimate for the differenceM (t+1)
i −m

(t+1)
i at last reduces to

M
(t+1)
i −m

(t+1)
i ≤ (1− δ)(M

(t)
i −m

(t)
i ) ≤ (1− δ)t(M

(1)
i −m

(1)
i ) → 0,

ast → ∞, showingMi = mi := wi. As a consequence to the inequalitym
(t)
i ≤

p
(t)
ij ≤ M

(t)
i , we havelimt→∞ p

(t)
ij = wi for all j. In matrix notation,limt→∞ P t =

[w,w, . . . , w] := W , a matrix of equal column vectors.
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Next, assume there is ak ≥ 1 so that onlyp(k)ij > 0 for all i, j. Then the result
above impliesP kt → W ast → ∞. We need to show thatP t → W ast → ∞ as
well. This is left as an exercise.

Next, we show thatλ = 1 is an eigenvalue with eigenvectorw. In fact from
the definition ofw abovelimt→∞ P t = [w,w, . . . , w] and thus[w,w, . . . , w] =
limt→∞ P t = P limt→∞ P t−1 = P [w,w, . . . , w] = [Pw, Pw, . . . , Pw] showing
Pw = w.

To show that the eigenvalueλ = 1 is simple, two cases are considered. First,
let x 6= 0 be an eigenvectorPx = x of the eigenvalue 1. ApplyP to the identity
repeatedly to haveP tx = x. In limit, limt→∞ P tx = Wx = [w,w, . . . , w]x =
wx1+wx2+ · · ·+wxn = (

∑
xj)w = x. Denote it bȳx =

∑
j xj . Thenxi = x̄wi

for all i. Becausex 6= 0, we must havēx =
∑

j xj 6= 0, and thatx = x̄w for
some constant̄x 6= 0, showing that the eigenvectorw is unique up to a constant
multiple. Second, letx 6= 0 be a generalized eigenvector ofλ = 1. Then there
is a constantc 6= 0 so thatPx = x + cw which impliesP tx = x + ctw. Since
limt→∞ P tx = [w,w, . . . , w]x exists on the left, we must havec = 0 on the right,
a contradiction. Together we can conclude that the dimension of the generalized
eigenspace forλ = 1 is 1, i.e., the eigenvalue1 is simple. In addition, for any
probability vectorq, the result above showslimt→∞ P tq = Wq =

∑
j qjw = w

asWx =
∑

j xjw always holds.
Next, let λ be an eigenvalue ofP . Then it is also an eigenvalue for the

transposeP T . Let x be an eigenvector ofλ of P T . ThenP Tx = λx and
‖λx‖ = |λ|‖x‖ = ‖P Tx‖ ≤ ‖P T‖‖x‖. Since‖P T‖ = 1 because

∑n

i=1 pij = 1
we have|λ| ≤ 1.

Next, letx be an eigenvector of an eigenvalueλ. Then we havelimt→∞ P tx =
Wx = (

∑
xj)w on one hand andlimt→∞ P tx = limt→∞ λtx on the other hand.

So either|λ| < 1 in which caselimt→∞ λtx = 0 and then
∑

xj = 0, or |λ| = 1 in
which caseλ = eiθ for someθ and the limitlimt→∞ λt = limt→∞ eiθt exists since
limt→∞ eiθtx = limt→∞ λtx = limt→∞ P tx = (

∑
xj)w. The latter case holds

if and only if
∑

xj 6= 0 andθ = 0, i.e.,λ = 1. This shows that all eigenvalues
that is notλ = 1 are inside the unit circle and the corresponding eigenspaceis
{x :

∑
j xj = 0}, whichn− 1 dimensional.
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