Proof of Perron-Frobenius Theorem

Letr = (21,29, ...,2,)T € R*with 4T denoting exclusively the transpose of
vectory. Let ||z|| = max;{|z;|} be the norm. Then the induced operator norm for
matrix A = [aij] is ||AH = maxi{zj\aiﬂ}.

Consider a Markov’s chain on states with transition probabilitigs; =
Pr(X,+1 = i|Xx = j), independent ok, and P = [p;;| the transition matrix.
Then> " p;; = 1forall j. Letpgi) = Pr(Xjyy = i| X = j) and P = | gi)] be
the ¢-step transition probability matrix. Then we hae@ = 3=, ply "y, for all
i, 7. Inmatrix, P®) = Pt~V P = ... = Pt which is thet-step transition matrix. If
q = (qi,...,q,)" is a probability distribution for the Markovian states atizeg
iterate withg; > 0,> " ¢; = 1, thenPq is again a probability distribution for the
states at the next iterate. A probability distributioris said to be a steady state
distribution if it is invariant under the transition, i.€w = w. Such a distribution
must be an eigenvector ¢f and A = 1 must be the corresponding eigenvalue.
The existence as well as the uniqueness of the steady ss&tiéution is guaran-
teed for a class of Markovian chains by the following theodkre to Perron and
Frobenius.

Theorem 1. Let P = [p;;| be a probability transition matrix, i.ep;; > 0 and

Yo, pij = 1foreveryj = 1,2,...,n. AssumeP is irreducible and transitive
in the sense that there ista> 1 so thatpgj.) > 0 for all 7,5. Then 1is a sim-
ple eigenvalue of’ and all other eigenvalues satisfy|\| < 1. Moreover, the
unique eigenvector can be chosen to be a probability veet@nd it satisfies
limy . P' = [w,w,...,w]. Furthermore, for any probability vectar we have
Ptq — wast — oo.

Proof. We first prove a claim thalim, . pg.) exist for all 7, j and the limit is
independent of, lim, o, p. = w;.
Because” = [p;;] (is irreducible and transitive) has non-zero entries, weha

0 = minp;; > 0.
)

Consider the equation of thigth entry of P11 = [p{!*!)] = PtP,
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i.e., the sequenchngl), m§2), ... } is non-decreasing. Similarly, the upper bound
sequencéMi(l), MZ.(Q), ... }isnon-increasing. As aresult, both limitsy; .., m§“ =
m; < M; = limy_, Mi(t) exist. We now prove they are equal = M,;.

To this end, we consider the differeng&™ — {1
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MY = = max; 30, ppy — ming 3, p pie

= max;; 3, P (hj — Pre) )
t — t
— max; [0 P (i — pie) + o5 P (D — o))
t t _
< max; [M S (prs — pre) +m S5 (ks — o))

where> ", pg,? (prj — pre) Means the summation of all non-negative tegpps—

pre > 0 and similarly ", pg,? (prj — pre) Means the summation of all negative
termSpkj — pre < 0.
It is critical to notice the following unexpected equality:

>k (Drj — Pre) = D24 Prj — Do Pre
=1- Z:pkj —(1- le;—pk%)
= Z;(Pu - Pk:j)
== Z;(ij — Dke)-

Hence, the inequality (1) becomes
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Mi(tJrl) . m’gt+1) < (Mz(t) _ m(t)) maXZ+(pkj — pke)
3t .

If max;, > (pr; — pre) = 0, which is independent of all it is done that\/") —

mY. Otherwise, for the paiy, ¢ that gives the maximum let be the number
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of terms ink for which p;; — pxe > 0, ands be the number of terms for which
prj—DPre < 0. Thenr > 1, andn := r+s > 1 as well as: < n. More importantly

ZZ(Pk:j — Dre) = ZZpkj - Z;Pu
=1 =2 iy — 2op Pt
<l—s8d—ré=1-—1d
<1l-6<1.

The estimate for the difference’"™ — m"*") at last reduces to
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MY — Y <1 =) (MY —m") < (1 - o) (MY —mM) =0,
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ast — oo, showingM; = m; := w;. As a consequence to the inequamzy) <
pg-) < M"Y, we havelim,_,. pgi) — w; for all j. In matrix notation}im;_,., P! =
[w,w,...,w] =W, amatrix of equal column vectors.



Next, assume there iska> 1 so that onlypgf) > ( for all 7, j. Then the result
above impliesP* — W ast — oco. We need to show thdt’ — W ast — oo as
well. This is left as an exercise.

Next, we show that = 1 is an eigenvalue with eigenvector. In fact from

the definition ofw abovelim, ., P* = [w,w,...,w] and thusw, w, ..., w] =
lim; o P* = Plimy_o P! = Plw,w,...,w] = [Pw, Pw,..., Pw] showing
Pw =w.

To show that the eigenvalue= 1 is simple, two cases are considered. First,
let z # 0 be an eigenvectaPx = x of the eigenvalue 1. Apply to the identity
repeatedly to havé'z = z. In limit, lim; ,, P'x = Wz = [w,w,...,wjz =
wr+wre+- - -+wz, = (D z;)w = x. Denote it byzr = Zj z;. Thenz; = zw;
for all ;. Becauser # 0, we must haver = Zj z; # 0, and thatr = zw for
some constant # 0, showing that the eigenvectar is unique up to a constant
multiple. Second, let: # 0 be a generalized eigenvector bf= 1. Then there
is a constant # 0 so thatPx = z + cw which impliesP'z = x + ctw. Since
limy o P'z = [w,w, ..., w|z exists on the left, we must have= 0 on the right,

a contradiction. Together we can conclude that the dimensisghe generalized
eigenspace foa = 1is 1, i.e., the eigenvalué is simple. In addition, for any
probability vectorg, the result above showsn,_,., Plq = Wq = Zj Gw = w
asWz = z;w always holds.

Next, let A be an eigenvalue of’. Then it is also an eigenvalue for the
transposeP”. Let x be an eigenvector ok of P”. Then P’z = )z and
[Az]| = [Alllz]] = [[PT2]] < [PT]l|=]|. Since||PT|| = 1 becaus ", p; = 1
we havel\| < 1.

Next, letx be an eigenvector of an eigenvalueThen we havéim; _,., Plz =
Wz = (3 x;)w on one hand antlm,_,, P’z = lim;_,,, A'a on the other hand.
So eitherfA| < 1in which caséim, ., A’ = 0 and theny_ z; = 0, or|\] = 1in
which case\ = ¢ for somed and the limitlim; .., \* = lim,_, ., € exists since
limy o €2 = limy_oo Nz = limy 0o Plz = (3 z;)w. The latter case holds
ifand only if > x; # 0 andd = 0, i.e., A = 1. This shows that all eigenvalues
that is notA = 1 are inside the unit circle and the corresponding eigensjzace
{z : >, x; = 0}, whichn — 1 dimensional. O
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