Proof of Perron-Frobenius Theorem

Let $x=(x_1,x_2,\ldots,x_n)^T\in\mathbb{R}^n$ with y^T denoting exclusively the transpose of vector y. Let $\|x\|=\max_i\{|x_i|\}$ be the norm. Then the induced operator norm for matrix $A=[a_{ij}]$ is $\|A\|=\max_i\{\sum_j|a_{ij}|\}$.

Consider a Markov's chain on n states with transition probabilities $p_{ij} = \Pr(X_{k+1} = i | X_k = j)$, independent of k, and $P = [p_{ij}]$ the transition matrix. Then $\sum_{i=1}^n p_{ij} = 1$ for all j. Let $p_{ij}^{(t)} = \Pr(X_{k+t} = i | X_k = j)$ and $P^{(t)} = [p_{ij}^{(t)}]$ be the t-step transition probability matrix. Then we have $p_{ij}^{(t)} = \sum_{\ell} p_{i\ell}^{(t-1)} p_{\ell j}$ for all i, j. In matrix, $P^{(t)} = P^{(t-1)}P = \cdots = P^t$ which is the t-step transition matrix. If $q = (q_1, \ldots, q_n)^T$ is a probability distribution for the Markovian states at a given iterate with $q_i \geq 0$, $\sum q_i = 1$, then Pq is again a probability distribution for the states at the next iterate. A probability distribution w is said to be a steady state distribution if it is invariant under the transition, i.e. Pw = w. Such a distribution must be an eigenvector of P and $\lambda = 1$ must be the corresponding eigenvalue. The existence as well as the uniqueness of the steady state distribution is guaranteed for a class of Markovian chains by the following theorem due to Perron and Frobenius.

Theorem 1. Let $P = [p_{ij}]$ be a probability transition matrix, i.e. $p_{ij} \geq 0$ and $\sum_{i=1}^{n} p_{ij} = 1$ for every j = 1, 2, ..., n. Assume P is irreducible and transitive in the sense that there is a $t \geq 1$ so that $p_{ij}^{(t)} > 0$ for all i, j. Then I is a simple eigenvalue of P and all other eigenvalues λ satisfy $|\lambda| < 1$. Moreover, the unique eigenvector can be chosen to be a probability vector w and it satisfies $\lim_{t\to\infty} P^t = [w, w, \ldots, w]$. Furthermore, for any probability vector q we have $P^t q \to w$ as $t \to \infty$.

Proof. We first prove a claim that $\lim_{t\to\infty} p_{ij}^{(t)}$ exist for all i,j and the limit is independent of j, $\lim_{t\to\infty} p_{ij}^{(t)} = w_i$.

Because $P = [p_{ij}]$ (is irreducible and transitive) has non-zero entries, we have

$$\delta = \min_{ij} p_{ij} > 0.$$

Consider the equation of the ijth entry of $P^{t+1} = [p_{ij}^{(t+1)}] = P^t P$,

$$p_{ij}^{(t+1)} = \sum_{k} p_{ik}^{(t)} p_{kj}.$$

Let

$$0 < m_i^{(t)} := \min_j p_{ij}^{(t)} \leq \max_j p_{ij}^{(t)} := M_i^{(t)} < 1.$$

Then, we have

$$m_i^{(t+1)} = \min_j \sum_k p_{ik}^{(t)} p_{kj} \ge m_i^{(t)} \sum_k p_{kj} = m_i^{(t)}.$$

i.e., the sequence $\{m_i^{(1)}, m_i^{(2)}, \dots\}$ is non-decreasing. Similarly, the upper bound sequence $\{M_i^{(1)}, M_i^{(2)}, \dots\}$ is non-increasing. As a result, both limits $\lim_{t \to \infty} m_i^{(t)} = m_i \leq M_i = \lim_{t \to \infty} M_i^{(t)}$ exist. We now prove they are equal $m_i = M_i$.

To this end, we consider the difference $M_i^{(t+1)} - m_i^{(t+1)}$:

$$M_{i}^{(t+1)} - m_{i}^{(t+1)} = \max_{j} \sum_{k} p_{ik}^{(t)} p_{kj} - \min_{\ell} \sum_{k} p_{ik}^{(t)} p_{k\ell}$$

$$= \max_{j,\ell} \sum_{k} p_{ik}^{(t)} (p_{kj} - p_{k\ell})$$

$$= \max_{j,\ell} \left[\sum_{k}^{+} p_{ik}^{(t)} (p_{kj} - p_{k\ell}) + \sum_{k}^{-} p_{ik}^{(t)} (p_{kj} - p_{k\ell}) \right]$$

$$\leq \max_{j,\ell} \left[M_{i}^{(t)} \sum_{k}^{+} (p_{kj} - p_{k\ell}) + m_{i}^{(t)} \sum_{k}^{-} (p_{kj} - p_{k\ell}) \right]$$
(1)

where $\sum_{k}^{+} p_{ik}^{(t)}(p_{kj} - p_{k\ell})$ means the summation of all non-negative terms $p_{kj} - p_{k\ell} \geq 0$ and similarly $\sum_{k}^{-} p_{ik}^{(t)}(p_{kj} - p_{k\ell})$ means the summation of all negative terms $p_{kj} - p_{k\ell} < 0$.

It is critical to notice the following unexpected equality:

$$\sum_{k}^{-} (p_{kj} - p_{k\ell}) = \sum_{k}^{-} p_{kj} - \sum_{k}^{-} p_{k\ell}$$

$$= 1 - \sum_{k}^{+} p_{kj} - (1 - \sum_{k}^{+} p_{k\ell})$$

$$= \sum_{k}^{+} (p_{k\ell} - p_{kj})$$

$$= -\sum_{k}^{+} (p_{kj} - p_{k\ell}).$$

Hence, the inequality (1) becomes

$$M_i^{(t+1)} - m_i^{(t+1)} \le (M_i^{(t)} - m_i^{(t)}) \max_{j,\ell} \sum_k^+ (p_{kj} - p_{k\ell}).$$

If $\max_{j,\ell} \sum_k^+ (p_{kj} - p_{k\ell}) = 0$, which is independent of all t, it is done that $M_i^{(t)} = m_i^{(t)}$. Otherwise, for the pair j,ℓ that gives the maximum let r be the number of terms in k for which $p_{kj} - p_{k\ell} > 0$, and s be the number of terms for which $p_{kj} - p_{k\ell} < 0$. Then $r \ge 1$, and $\tilde{n} := r + s \ge 1$ as well as $\tilde{n} \le n$. More importantly

$$\sum_{k}^{+} (p_{kj} - p_{k\ell}) = \sum_{k}^{+} p_{kj} - \sum_{k}^{+} p_{k\ell}$$

$$= 1 - \sum_{k}^{-} p_{kj} - \sum_{k}^{+} p_{k\ell}$$

$$\leq 1 - s\delta - r\delta = 1 - \tilde{n}\delta$$

$$\leq 1 - \delta < 1.$$

The estimate for the difference $M_i^{(t+1)} - m_i^{(t+1)}$ at last reduces to

$$M_i^{(t+1)} - m_i^{(t+1)} \le (1 - \delta)(M_i^{(t)} - m_i^{(t)}) \le (1 - \delta)^t (M_i^{(1)} - m_i^{(1)}) \to 0,$$

as $t \to \infty$, showing $M_i = m_i := w_i$. As a consequence to the inequality $m_i^{(t)} \le p_{ij}^{(t)} \le M_i^{(t)}$, we have $\lim_{t \to \infty} p_{ij}^{(t)} = w_i$ for all j. In matrix notation, $\lim_{t \to \infty} P^t = [w, w, \dots, w] := W$, a matrix of equal column vectors.

Next, assume there is a $k \ge 1$ so that only $p_{ij}^{(k)} > 0$ for all i, j. Then the result above implies $P^{kt} \to W$ as $t \to \infty$. We need to show that $P^t \to W$ as $t \to \infty$ as well. This is left as an exercise.

Next, we show that $\lambda=1$ is an eigenvalue with eigenvector w. In fact from the definition of w above $\lim_{t\to\infty}P^t=[w,w,\ldots,w]$ and thus $[w,w,\ldots,w]=\lim_{t\to\infty}P^t=P\lim_{t\to\infty}P^{t-1}=P[w,w,\ldots,w]=[Pw,Pw,\ldots,Pw]$ showing Pw=w.

To show that the eigenvalue $\lambda=1$ is simple, two cases are considered. First, let $x\neq 0$ be an eigenvector Px=x of the eigenvalue 1. Apply P to the identity repeatedly to have $P^tx=x$. In limit, $\lim_{t\to\infty}P^tx=Wx=[w,w,\dots,w]x=wx_1+wx_2+\dots+wx_n=(\sum x_j)w=x$. Denote it by $\bar x=\sum_j x_j$. Then $x_i=\bar xw_i$ for all i. Because $x\neq 0$, we must have $\bar x=\sum_j x_j\neq 0$, and that $x=\bar xw$ for some constant $\bar x\neq 0$, showing that the eigenvector w is unique up to a constant multiple. Second, let $x\neq 0$ be a generalized eigenvector of $\lambda=1$. Then there is a constant $c\neq 0$ so that Px=x+cw which implies $P^tx=x+ctw$. Since $\lim_{t\to\infty}P^tx=[w,w,\dots,w]x$ exists on the left, we must have c=0 on the right, a contradiction. Together we can conclude that the dimension of the generalized eigenspace for $\lambda=1$ is 1, i.e., the eigenvalue 1 is simple. In addition, for any probability vector q, the result above shows $\lim_{t\to\infty}P^tq=Wq=\sum_j q_jw=w$ as $Wx=\sum_j x_jw$ always holds.

Next, let λ be an eigenvalue of P. Then it is also an eigenvalue for the transpose P^T . Let x be an eigenvector of λ of P^T . Then $P^Tx = \lambda x$ and $\|\lambda x\| = |\lambda| \|x\| = \|P^Tx\| \le \|P^T\| \|x\|$. Since $\|P^T\| = 1$ because $\sum_{i=1}^n p_{ij} = 1$ we have $|\lambda| \le 1$.

Next, let x be an eigenvector of an eigenvalue λ . Then we have $\lim_{t\to\infty} P^t x = Wx = (\sum x_j)w$ on one hand and $\lim_{t\to\infty} P^t x = \lim_{t\to\infty} \lambda^t x$ on the other hand. So either $|\lambda| < 1$ in which case $\lim_{t\to\infty} \lambda^t x = 0$ and then $\sum x_j = 0$, or $|\lambda| = 1$ in which case $\lambda = e^{i\theta}$ for some θ and the limit $\lim_{t\to\infty} \lambda^t = \lim_{t\to\infty} e^{i\theta t}$ exists since $\lim_{t\to\infty} e^{i\theta t} x = \lim_{t\to\infty} \lambda^t x = \lim_{t\to\infty} P^t x = (\sum x_j)w$. The latter case holds if and only if $\sum x_j \neq 0$ and $\theta = 0$, i.e., $\lambda = 1$. This shows that all eigenvalues that is not $\lambda = 1$ are inside the unit circle and the corresponding eigenspace is $\{x: \sum_j x_j = 0\}$, which n-1 dimensional. \square

References: Bellman(1997); Berman & Plemmons(1994); Frobenius(1908, 1912); Lancaster & Tismenetsky(1985); Marcus & Minc(1984); Perron(1907); Petersen(1983); Seneta(1973).

Ethier and Kurtz, Markov Processes – Characterization and Convergence.